This page is doomed to be continuously not-up-to-date, but I will do my best to periodically update it...
Published papers
- Kovács, Sándor J. Moduli theory and singularities, Notices Amer. Math. Soc. 65 (2018), no.4, 406--408. PDF
- Kovács, Sándor J.; Patakfalvi, Zs. Projectivity of the moduli space of stable log-varieties and subadditvity of log-Kodaira dimension, J. Amer. Math. Soc., 30(4):959--1021, 2017. PDF
- Kovács, Sándor J. Singularities of low degree complete intersections. Methods Appl. Anal., 24(1):99--104, 2017. Special issue dedicated to Henry Laufer 70th birthday. PDF
- Kovács, Sándor J.; Schwede, K : Du Bois singularities deform, In ``Minimal models and extremal rays'' ({K}yoto, 2011), Adv. Stud. Pure Math. vol. 70, pages 49--65. Math. Soc. Japan, [Tokyo], 2016. PDF
- Kovács, Sándor J; Schwede, K. Inversion of adjunction for rational and Du Bois pairs, Algebra Number Theory 10 (2016), no. 5, 969–1000. PDF
- Hacon, C. D. ; Kovács, Sándor J. Generic vanishing fails for singular varieties and in characteristic p>0. Recent advances in algebraic geometry, 240--253, London Math. Soc. Lecture Note Ser., 417, Cambridge Univ. Press, Cambridge, 2015. PDF
- Bauer, Thomas ; Kovács, Sándor J. ; Küronya, Alex ; Mistretta, Ernesto C. ; Szemberg, Tomasz ; Urbinati, Stefano . On positivity and base loci of vector bundles. Eur. J. Math. 1 (2015), no. 2, 229--249. PDF
- Graf, Patrick ; Kovács, Sándor J. Potentially Du Bois spaces. J. Singul. 8 (2014), 117--134. PDF
- Kovács, Sándor J. Steenbrink vanishing extended. Bull. Braz. Math. Soc. (N.S.) 45 (2014), no. 4, 753--765. PDF
- Graf, Patrick ; Kovács, Sándor J. An optimal extension theorem for 1-forms and the Lipman-Zariski conjecture. Doc. Math. 19 (2014), 815--830. PDF
- Kovács, Sándor J. Singularities of stable varieties. Handbook of moduli. Vol. II, 159--203, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA, 2013. PDF
- Kovács, Sándor J. The cone of curves of K3 surfaces revisited. Birational geometry, rational curves, and arithmetic, 163--169, Springer, New York, 2013. PDF
- Kollár, János . Singularities of the minimal model program. With a collaboration of Sándor Kovács. Cambridge Tracts in Mathematics, 200. Cambridge University Press, Cambridge, 2013. x+370 pp. ISBN: 978-1-107-03534-8
- Kovács, Sándor J. The intuitive definition of Du Bois singularities. Geometry and arithmetic, 257--266, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012. PDF
- Kovács, Sándor J. The splitting principle and singularities. Compact moduli spaces and vector bundles, 195--204, Contemp. Math., 564, Amer. Math. Soc., Providence, RI, 2012. PDF
- Kovács, Sándor . Irrational centers. Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1495--1515. PDF
- Greb, Daniel ; Kebekus, Stefan ; Kovács, Sándor J. ; Peternell, Thomas . Differential forms on log canonical spaces. Publ. Math. Inst. Hautes Études Sci. No. 114 (2011), 87--169. PDF
- Kovács, Sándor J. ; Schwede, Karl E. Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities. Topology of stratified spaces, 51--94, Math. Sci. Res. Inst. Publ., 58, Cambridge Univ. Press, Cambridge, 2011. PDF
- Kovács, Sándor J. Du Bois pairs and vanishing theorems. Kyoto J. Math. 51 (2011), no. 1, 47--69. PDF
- Kovács, Sándor J. ; Lieblich, Max: Boundedness of families of canonically polarized manifolds: a higher dimensional analogue of Shafarevich's conjecture. Ann. of Math. (2) 173 (2011), no. 1, 585--617. (Ann. of Math. (2) 172 (2010), no. 3, 1719--1748.) PDF
- Kollár, János ; Kovács, Sándor J. Log canonical singularities are Du Bois. J. Amer. Math. Soc. 23 (2010), no. 3, 791--813. PDF
- Kebekus, Stefan ; Kovács, Sándor J. The structure of surfaces and threefolds mapping to the moduli stack of canonically polarized varieties. Duke Math. J. 155 (2010), no. 1, 1--33. PDF
- Kovács, Sándor J. ; Schwede, Karl ; Smith, Karen E. The canonical sheaf of Du Bois singularities. Adv. Math. 224 (2010), no. 4, 1618--1640. PDF
- Hacon, Christopher D. ; Kovács, Sándor J. Classification of higher dimensional algebraic varieties. Oberwolfach Seminars, 41. Birkhäuser Verlag, Basel, 2010. x+208 pp. ISBN: 978-3-0346-0289-1
- Greb, Daniel ; Kebekus, Stefan ; Kovács, Sándor J. Extension theorems for differential forms and Bogomolov-Sommese vanishing on log canonical varieties. Compos. Math. 146 (2010), no. 1, 193--219. PDF
- Kovács, Sándor J. Young person's guide to moduli of higher dimensional varieties. Algebraic geometry—Seattle 2005. Part 2, 711--743, Proc. Sympos. Pure Math., 80, Part 2, Amer. Math. Soc., Providence, RI, 2009. PDF
- Kovács, Sándor J. Subvarieties of moduli stacks of canonically polarized varieties: generalizations of Shafarevich's conjecture. Algebraic geometry—Seattle 2005. Part 2, 685--709, Proc. Sympos. Pure Math., 80, Part 2, Amer. Math. Soc., Providence, RI, 2009. PDF
- Araujo, Carolina ; Druel, Stéphane ; Kovács, Sándor J. Cohomological characterizations of projective spaces and hyperquadrics. Invent. Math. 174 (2008), no. 2, 233--253. PDF
- Kebekus, Stefan ; Kovács, Sándor J. Families of varieties of general type over compact bases. Adv. Math. 218 (2008), no. 3, 649--652. PDF
- Kebekus, Stefan ; Kovács, Sándor J. Families of canonically polarized varieties over surfaces. Invent. Math. 172 (2008), no. 3, 657--682. PDF
- Kovács, Sándor J. Spectral sequences associated to morphisms of locally free sheaves. Recent progress in arithmetic and algebraic geometry, 57--85, Contemp. Math., 386, Amer. Math. Soc., Providence, RI, 2005. PDF
- Kovács, Sándor J. Strong non-isotriviality and rigidity. Recent progress in arithmetic and algebraic geometry, 47--55, Contemp. Math., 386, Amer. Math. Soc., Providence, RI, 2005. PDF
- Cadman, Charles ; Coskun, Izzet ; Jabbusch, Kelly ; Joyce, Michael ; Kovács, Sándor J. ; Lieblich, Max ; Sato, Fumitoshi ; Szczesny, Matt ; Zhang, Jing . A first glimpse at the minimal model program. Snowbird lectures in algebraic geometry, 17--42, Contemp. Math., 388, Amer. Math. Soc., Providence, RI, 2005. PDF
- Hacon, Christopher D. ; Kovács, Sándor J. Holomorphic one-forms on varieties of general type. Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 4, 599--607. PDF
- Kebekus, Stefan ; Kovács, Sándor J. Are rational curves determined by tangent vectors? Ann. Inst. Fourier (Grenoble) 54 (2004), no. 1, 53--79. PDF
- Hassett, Brendan ; Kovács, Sándor J. Reflexive pull-backs and base extension. J. Algebraic Geom. 13 (2004), no. 2, 233--247. PDF
- Kovács, Sándor J. Families of varieties of general type: the Shafarevich conjecture and related problems. Higher dimensional varieties and rational points (Budapest, 2001), 133--167, Bolyai Soc. Math. Stud., 12, Springer, Berlin, 2003. PDF
- Kovács, Sándor J. Viehweg's conjecture for families over Pn. Special issue in honor of Steven L. Kleiman. Comm. Algebra 31 (2003), no. 8, 3983--3991. PDF
- Kovács, Sándor J. Vanishing theorems, boundedness and hyperbolicity over higher-dimensional bases. Proc. Amer. Math. Soc. 131 (2003), no. 11, 3353--3364 (electronic). PDF
- Kovács, Sándor J. Logarithmic vanishing theorems and Arakelov-Parshin boundedness for singular varieties. Compositio Math. 131 (2002), no. 3, 291--317. PDF
- Kovács, Sándor J. Number of automorphisms of principally polarized abelian varieties. Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), 3--7, Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001. PDF
- Kovács, Sándor J. Rational, log canonical, Du Bois singularities. II. Kodaira vanishing and small deformations. Compositio Math. 121 (2000), no. 3, 297--304. PDF
- Kovács, Sándor J. A characterization of rational singularities. Duke Math. J. 102 (2000), no. 2, 187--191. PDF
- Kovács, Sándor J. Algebraic hyperbolicity of fine moduli spaces. J. Algebraic Geom. 9 (2000), no. 1, 165--174. PDF
- Némethi, A. Five lectures on normal surface singularities. With the assistance of Ágnes Szilárd and Sándor Kovács. Bolyai Soc. Math. Stud., 8, Low dimensional topology (Eger, 1996/Budapest, 1998), 269--351, János Bolyai Math. Soc., Budapest, 1999.
- Kovács, Sándor J. Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink. Compositio Math. 118 (1999), no. 2, 123--133. PDF
- Kovács, Sándor J. Families over a base with a birationally nef tangent bundle. Math. Ann. 308 (1997), no. 2, 347--359. PDF
- Kovács, Sándor J. Relative de Rham complex for non-smooth morphisms. Birational algebraic geometry (Baltimore, MD, 1996), 89--100, Contemp. Math., 207, Amer. Math. Soc., Providence, RI, 1997. PDF
- Kovács, Sándor J. On the minimal number of singular fibres in a family of surfaces of general type. J. Reine Angew. Math. 487 (1997), 171--177. PDF
- Kovács, Sándor J. Smooth families over rational and elliptic curves. J. Algebraic Geom. 5 (1996), no. 2, 369--385. PDF Erratum: J. Algebraic Geom. 6 (1997), no. 2, 391. PDF
- Kovács, Sándor . The unknown aquaintance—algebraic geometry for non-algebraic geometers. (Hungarian) Mat. Lapok (N.S.) 4 (1994), no. 1, 7--35 (1998). PDF
- Kovács, Sándor J. The cone of curves of a K3 surface. Math. Ann. 300 (1994), no. 4, 681--691. PDF
- Kovács, Sándor J. Small saturated sets in finite projective planes. Rend. Mat. Appl. (7) 12 (1992), no. 1, 157--164. PDF
- Károlyi, Gy. ; Kovács, Sándor J. ; Pálfy, P. P. Doubly transitive permutation groups with abelian stabilizers. Aequationes Math. 39 (1990), no. 2-3, 161--166. PDF