
Du Bois singularities deform
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Abstract.

Let X be a variety and H a Cartier divisor on X.
We prove that if H has Du Bois (or DB) singularities,
then X has Du Bois singularities near H. As a conse-
quence, ifX −→ S is a proper flat family over a smooth
curve S whose special fiber has Du Bois singularities,
then the nearby fibers also have Du Bois singularities.
We prove this by obtaining an injectivity theorem for
certain maps of canonical modules. As a consequence,
we also obtain a restriction theorem for certain non-lc
ideals.

1. INTRODUCTION

Du Bois singularities, or henceforth simply DB singu-
larities, were introduced by Steenbrink in [Ste81]. They
may be considered a generalization of the notion of ra-
tional singularities. The definition and its simple conse-
quences makes DB singularities the natural class to con-
sider in many situations including vanishing theorems
and moduli theory. More precisely it is important and
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useful that the singularities considered in these situation
are Du Bois. For instance, Steenbrink showed that fami-
lies over smooth curves whose fibers have DB singularities
possess particularly nice properties; this maxim and its
consequences have been further explored in [KK10, Sec-
tion 7]. These applications imply that the question of
whether DB singularities are invariant under small de-
formations, that is whether the property of having DB
singularities is open in flat families, is very important.
In this paper we settle this question in the affirmative.

As both rational singularities [Kov99] and log canon-
ical singularities [KK10] are DB, it is interesting to note
that rational singularities are invariant under small de-
formations by [Elk78], while log canonical singularities
are not unless the total space has a Q-Cartier canoni-
cal divisor compatible with the canonical divisors of the
family members. In this latter case the statement follows
from inversion of adjunction [Kaw07].

Our main result is the following:

Main Theorem [Theorem 4.1]. Let X be a scheme of
finite type over C and H a reduced Cartier divisor on X.
If H has DB singularities, then X has DB singularities
near H.

The openness of the Du Bois locus in proper flat
families follows immediately, see Corollary 4.2.

In [Ish86], Ishii proved this result for isolated Goren-
stein singularities, and it follows for normal Gorenstein
singularities from a combination of [Kov99] and [Kaw07].
The first named author claimed a proof of the same state-
ment in general in [Kov00]. That proof unfortunately
is incomplete and only works under an additional condi-
tion. The problem lies in the first paragraph of the proof,
namely that one may not always reduce to the case when
the non-Du Bois locus of X is contained in H = Xs. For
additional discussion of this issue see [KS11, Section 12].

In this paper we correct that proof by showing a more
general injectivity theorem, Theorem 3.3, which should
be viewed as playing the same role for Du Bois singular-
ities that Grauert-Riemenschneider vanishing plays for



Du Bois singularities deform 3

rational singularities, see Corollary 3.5. Using this injec-
tivity, we can follow the strategy of [Kov00] and mimic
Elkik’s proof [Elk78] that rational singularities deform in
families to obtain the main result.

As another corollary of this injectivity theorem, we
also prove a restriction theorem for the so-called maximal
non-lc ideals defined in [FST11], at least in the case of a
Gorenstein ambient variety, see Theorem 7.1.
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2. PRELIMINARIES ON DB SINGULARITIES

Throughout this paper, all schemes are assumed to
be separated and of finite type over C, and all morphisms
are defined over C. A variety here means a reduced con-
nected scheme.

We use Db
coh(X) to denote the bounded derived cat-

egory of OX -modules with coherent cohomology. Given
an object C

q ∈ Db
coh(X), its ith cohomology is denoted

by hi(C
q

). For any scheme X of finite type over C, we
use ω

q

X to denote the dualizing complex of X which is de-
fined as ǫ!C where ǫ : X −→ C is the structure map of X.
We will repeatedly use Grothendieck duality in the fol-
lowing form: For any proper map of schemes f : Y −→ X,
and any C

q ∈ Db
coh(Y ), there exists a functorial quasi-

isomorphism:

Rf∗RHom
q

Y (C
q

, ω
q

Y ) ≃ RHom
q

X(Rf∗C
q

, ω
q

X).

For an introduction to derived categories and Grothendieck
duality in the context used in this paper, see [Har66].

Recall that given a variety X, a resolution of singu-

larities π : X̃ −→ X is a proper birational1 map from

a smooth variety X̃. Given a closed subscheme Z ⊆ X

1birational = there exists a bijection of irreducible compo-
nents with an induced isomorphism of fields of fractions.
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with associated ideal sheaf IZ , we say that π : X̃ −→ X
is a log resolution of Z ⊆ X if π is a resolution of sin-
gularities and if in addition π∗IZ ≃ O

X̃
(G) where G is

a divisor, the exceptional set of π, Exc(π) ⊆ X̃, is also
a divisor, and the divisor Exc(π) ∪ supp(G) has simple
normal crossings. Note that resolutions of singularities,
and log resolutions, exist by [Hir64].

We briefly recall some common objects used in the
study of DB singularities. For a more extensive discus-
sion of DB singularities, please see [KS11], [HK10, Sec-
tion 3.I], or [PS08].

Lemma 2.1. Given a variety X, one may associate to
X an object Ω0

X ∈ Db
coh(X) defined as follows: let π q :

X q −→ X be a (cubic or simplicial) hyperresolution of
X, see [GNPP88, Car85, Del74], then

Ω0
X := Rπ q ∗OX q .

This object has the following properties:

(i) Ω0
X is functorial with respect to morphisms of

varieties, i.e., given a morphism of varieties f :
Y −→ X, there is an induced morphism Ω0

X −→
Rf∗Ω

0
Y .

(ii) There is a natural morphism OX −→ Ω0
X com-

patible with (i) in the obvious way.
(iii) If in addition X is proper, then the composition

Hi(Xan,C) −→ Hi(X,OX) −→ Hi(X,Ω0
X)

is surjective.

Proof. See [DB81] and [Ste81] for the original def-
initions and proofs and [KS11] for a survey on DB sin-
gularities. Property (iii) follows directly from the E1-
degeneration of the Deligne-Du Bois variant of the Hodge-
to-De Rham spectral sequence. Q.E.D.

Definition 2.2. We say that X has DB singularities
if the morphism OX −→ Ω0

X from (ii) above is a quasi-
isomorphism.

We also recall the following fact about DB singular-
ities.
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Lemma 2.3 (cf. [Kol95, Proof of Theorem 12.8]). If X
has DB singularities and H is a general member of a
base-point-free linear system δ on X, then H also has
DB singularities.

In this paper, we will repeatedly use the Grothendieck
dual of Ω0

X . To make that easier we introduce the nota-
tion

ω
q

X := RHom
q

X(Ω0
X , ω

q

X).

We will also use the fact that there exists a morphism
Φ : ω

q

X −→ ω
q

X , which is dual to the natural morphism
OX −→ Ω0

X .

Remark 2.4. Note that X has DB singularities if and
only if Φ is a quasi-isomorphism since applying the Gro-
thendieck duality functor again yields a morphism OX −→
Ω0

X which can be identified with the morphism from
Lemma 2.1(ii) up to quasi-isomorphism.

3. THE KEY INJECTIVITY

In Theorem 3.3 below, we prove the following injectivity.
For every integer j ∈ Z,

Φj : hj(ω
q

X) →֒ hj(ω
q

X)

is injective. In the case that x ∈ X is a closed point such
thatX\{x} is DB, the injectivity of this morphism played
a key role in proving that rational, log canonical and F -
injective singularities are DB, see [Kov99, KK10, Sch09].

Because of its potential usefulness it has been asked
several times whether this injectivity holds. In particular,
it was asked in [Sch09, Question 8.3] and [KS11, Question
5.2].

First we prove a lemma that is interesting on its own.

Lemma 3.1. Let X be a variety and L a semi-ample
line bundle. Choose s ∈ L n a general global section for
some n ≫ 0 and take the nth-root of this section as in
[KM98, 2.50]:

η : Y = Spec

n−1⊕

i=0

L
−i −→ X.
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Then η∗ = Rη∗,

η∗Ω
0
Y ≃ Ω0

X ⊗ η∗OY ≃
n−1⊕

i=0

(Ω0
X ⊗ L

−i),

and this direct sum decomposition is compatible with the
decomposition η∗OY =

⊕n−1
i=0 L −i.

Proof. We fix π q : X q −→ X a finite cubic (or sim-
plicial) hyperresolution of X as in [GNPP88]. On each
component Xi of X q , L pulls back to a semi-ample line
bundle and further s is still a general member of the base-
point free linear subsystem of π∗

i L
n. Thus we obtain a

cyclic cover ηi : Yi −→ Xi for each i as well. Furthermore,
each Yi is smooth since it is ramified over a general ele-
ment of a base-point free linear system. Obviously, these
Yi’s glue to give a diagram of smooth C-schemes Y q with
an augmentation morphism ρ q : Y q −→ Y . From the
construction of a cubic hyperresolution, it is easy to see
that Y q is also a cubic hyperresolution.

We briefly sketch the idea of this last claim: if X ′ −→
X is a resolution of singularities, then the induced Y ′ −→
Y is also a resolution of singularities. Furthermore, if
X ′ −→ X is an isomorphism outside of Σ ⊆ X, then
Y ′ −→ Y is also an isomorphism outside of η−1(Σ), which
is itself the induced cyclic cover of Σ.

Therefore,

Rη∗Ω
0
Y ≃ Rη∗Rρ q ∗OY q ≃ Rπ q ∗Rη q ∗OY q

≃ Rπ q ∗

(
⊕n−1

i=0 (OX q ⊗ π∗
qL

−i)
)

≃ ⊕n−1
i=0

(
(Rπ q ∗OX q )⊗ L

−i
)

≃ ⊕n−1
i=0 (Ω

0
X ⊗ L

−i)

≃ Ω0
X ⊗ (⊕n−1

i=0 L
−i)

≃ Ω0
X ⊗ η∗OY .

and the result follows, the compatibility statement fol-
lowing by construction.

Alternatively, if one wishes to avoid hyperresolutions
one may proceed as follows. By restricting to an open set,
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we may assume that X embeds as a closed subscheme in
a smooth scheme U such that L is the restriction of
a globally generated line-bundle M on U . Further set
π : U ′ −→ U to be a log resolution of X ⊆ U where we
use X to denote the reduced divisor π−1(X)red. Then
Rπ∗OX ≃ Ω0

X . Choosing a general section s of the glob-
ally generated line bundle M n, we obtain a diagram of
cyclic covers:

Y
� � //

��

W ′

��

Y
� � // W

where Y,W,W ′ and Y are the induced cyclic covers of
X,U,U ′ and X respectively. It is clear that W and W ′

are smooth and that Y is the reduced-preimage of Y
and has simple normal crossings. Thus the result follows
again since Rπ∗OY ≃ Ω0

Y by [Sch07], also see [Esn90].
Q.E.D.

Before proving our main injectivity, we need one more
result.

Proposition 3.2. Let X be a proper variety over C and
L a semi-ample line bundle on X. Then the natural map

Hj(X,L −i) −→ Hj(X,Ω0
X ⊗ L

−i)

is surjective for all j, i ≥ 0.

Proof. Choose n > i such that L n is base-point-
free and choose a general section s ∈ Γ(X,L n). Consider
the induced cyclic cover η : Y −→ X and note that Y is
also proper. Now, we have the following factorization

Hi(Y an,C) −→ Hi(Y,OY ) −→ Hi(Y,Ω0
Y ).

This composition is surjective by Lemma 2.1(iii). Thus
Hi(Y,OY ) −→ Hi(Y,Ω0

Y ) is also surjective. Then the
statement follows by Lemma 3.1. Q.E.D.

Now we are ready to prove the main result of the
section.
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Theorem 3.3. Let X be a variety over C. Then the
natural map

Φj : hj(ω
q

X) →֒ hj(ω
q

X)

is injective for every j ∈ Z.

Proof. The statement is local and compatible with
restriction to an open subset. Therefore we may as-
sume that X is projective. Let j ∈ Z and L an ample
line bundle on X. It follows from Proposition 3.2 that
H−j(X,L −i) −→ H−j(X,Ω0

X⊗L −i) is surjective. Next,
apply HomC( ,C) and observe that then

H−j(X,Ω0
X ⊗ L

−i)∨ →֒ H−j(X,L −i)∨

is injective. However,

H−j(X,L −i)∨ ≃ hj(RΓ(X,RHomOX
(L −i, ω

q

X)))

≃ Hj(X,ω
q

X ⊗ L
i)

by Grothendieck duality applied to the structure map
ǫ : X −→ C. Likewise,

H−j(X,Ω0
X ⊗ L

−i)∨ ≃ Hj(X,ω
q

X ⊗ L
i).

Thus we get that

Hj(X,ω
q

X ⊗ L
i) →֒ Hj(X,ω

q

X ⊗ L
i)

is injective. Notice that

Hj(X,ω
q

X ⊗ L
i) ≃ H0(X,hj(ω

q

X)⊗ L
i)

for i ≫ 0 by Serre-vanishing and the associated Grothendieck
spectral sequence. Likewise,

Hj(X,ω
q

X ⊗ L
i) ≃ H0(X,hj(ω

q

X)⊗ L
i)

for i ≫ 0. Therefore,

(3.3.1) H0(X,hj(ω
q

X)⊗ L
i) →֒ H0(X,hj(ω

q

X)⊗ L
i)

is injective for i ≫ 0. Observe that since L is ample,
both hj(ω

q

X) ⊗ L i and hj(ω
q

X) ⊗ L i are generated by
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global sections for i ≫ 0. Therefore the injectivity of
equation (3.3.1) implies, that

Φj : hj(ω
q

X) −→ hj(ω
q

X)

is also injective for every j. This completes the proof.
Q.E.D.

We also have the following local-dual version of The-
orem 3.3.

Corollary 3.4 (cf. [Kov99, Lemma 2.2]). Let X be a
variety and P ∈ X is a point (not necessarily closed).
Then the natural map

Hi
P (X,OX,P ) ։ Hi

P (X,Ω0
X ⊗ OX,P )

is surjective for all i ≥ 0.

Proof. We have the injection hi(ω
q

X)P −→ hi(ω
q

X)P
for all i. After shifting (in case P is not a closed point),
we have that hi(ω

q

OX,P
) −→ hi(ω

q

OX,P
) also injects for

all i. Let E be the injective hull of the residue field
OX,P /mX,P and apply the (faithful and exact) functor
HomOX,P

( , E). Local duality in the form of [Har66,
IV, Theorem 6.2] then yields the corollary. Q.E.D.

With respect for deciding whether X has DB sin-
gularities, the complex Ω0

X plays the same role as the
complex Rπ∗OX̃

does for detecting rational singularities,

here π : X̃ −→ X is a resolution of singularities.
However, in many applications what makes Rπ∗OX̃

a useful object is the Grauert-Riemenschneider vanish-
ing theorem [GR70] applied to its Grothendieck dual,
Rπ∗ω

q

X̃
≃ RHom

q

OX
(Rπ∗OX̃

, ω
q

X) implying that it is a

complex with non-zero cohomology in only one spot:

Rπ∗ω
q

X̃
≃ π∗ωX̃

[dimX].

For X Cohen-Macaulay, Theorem 3.3 yields an anal-
ogous vanishing for DB singularities.

Corollary 3.5. Let X be a Cohen-Macaulay variety of
dimension d. Then

ω
q

X ≃ h−d(ω
q

X)[d].
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If additionally X is normal and π : X̃ −→ X is a log
resolution of singularities with reduced exceptional divisor
E, then

ω
q

X ≃ π∗ωX̃
(E)[d]

Proof. Since X is Cohen-Macaulay and connected,
it is equidimensional. The first statement is immediate
since a submodule of the zero-module is zero and because
hi(ω

q

X) = 0 for i 6= −d. For the second statement, use
the fact that h−d(ω

q

X) ≃ π∗ωX̃
(E) by [KSS10, Theorem

3.8]. Q.E.D.

Remark 3.6. Notice that if X is DB, then ω
q

X ≃ ω
q

X

and hence the statement is equivalent to X being Cohen-
Macaulay.

A slight reinterpretation of the previous result also
gives us the following corollary.

Corollary 3.7. Let Y be a smooth n-dimensional variety
and X ⊆ Y a Cohen-Macaulay subvariety of pure dimen-

sion d. Let π : Ỹ −→ Y be a log resolution of X ⊆ Y .
Set E ⊆ Y to be the reduced pre-image of X in Y (which
is a divisor since π is a log resolution). Then

Riπ∗ωỸ
(E) = 0

for all i 6= 0, n− d− 1.

Proof. Consider the long exact sequence

Riπ∗ωỸ
−→ Riπ∗ωỸ

(E) −→ Riπ∗ωE −→ Ri+1π∗ωỸ

and notice first that Riπ∗ωỸ
= 0 for all i 6= 0 by [GR70].

Since ωE [n−1] ≃ ω
q

E we haveRj+n−1π∗ωE ≃ hj(Rπ∗ω
q

E).
However, Rπ∗ω

q

E ≃ ω
q

X by [Sch07]. Therefore, since
hj(ω

q

X) = 0 for j 6= −d by Corollary 3.5, we see that
Rj+n−1π∗ωE = 0 for j 6= −d. Thus Riπ∗ωE = 0 for
i 6= n− d− 1 and the result follows. Q.E.D.

Remark 3.8. The previous two corollaries do not hold
if X is not Cohen-Macaulay. In fact they automatically
fail for any non-Cohen-Macaulay variety with Du Bois
singularities. For example, they fail for the affine cone
over an Abelian variety of dimension > 1.
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Theorem 3.3 also provides slightly simpler proofs of
existing results.

Corollary 3.9 ([Kov99], cf. [Kol95, Section 12]). If the
morphism OX −→ Ω0

X has a left-inverse in Db
coh(X), then

X has DB singularities.

Proof. The hypothesis implies that Φi : hi(ω
q

X) −→
hi(ω

q

X) is surjective for every i. Thus Φi is an isomor-
phism by Theorem 3.3 and hence Φ : ω

q

X −→ ω
q

X is a
quasi-isomorphism and so X has DB singularities by Re-
mark 2.4. Q.E.D.

4. DEFORMATION OF DB SINGULARITIES

We now prove the main result of the paper. In fact,
simply using Corollary 3.4 fills in the gap in the first au-
thor’s proof of this statement in [Kov00, Theorem 3.2].
For completeness, we provide a proof below. This proof
(as well as the proof of [Kov00, Theorem 3.2]) was in-
spired by Elkik’s proof of the fact that rational singular-
ities deform [Elk78].

Theorem 4.1. Let X be a scheme of finite type over
C and H a reduced effective Cartier divisor (if X is not
normal, by a Cartier divisor we mean a subscheme locally
defined by a single non-zero-divisor at each stalk). If H
has DB singularities, then X has DB singularities near
H.

Proof. Choose hyperresolutions π q : X q −→ X and
µ q : H q −→ H with a map H q −→ X q factoring through
the diagram of schemes Z q := X q ×X H as pictured
below, cf. [GNPP88].

H q

µ q
!!
❉

❉

❉

❉

❉

❉

❉

❉

// Z q

ε q

��

// X q

π q

��

H
� � // X

Note that the components of Z q need not be smooth or
even reduced.

Choose a closed point q of X contained within H. It
is sufficient to prove that X is DB at q. Let R denote
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the stalk OX,q and choose f ∈ R to denote a defining
equation of H in R. We also define Ω0

R := Ω0
X ⊗ R and

ω
q

R := R Hom
q

R(Ω
0
R, ω

q

R). Consider the following diagram
whose rows are exact triangles in Db

coh(X):

R

��

×f
// R

��

// R/(f)

ρ
��

+1
//

Ω0
R ×f

// Ω0
R

// (Rε q ∗OZ q )⊗R

τ
��

+1
//

Ω0
H ⊗R

where τ ◦ ρ is a quasi-isomorphism by hypothesis. Next
we apply the functor R Hom

q

R( , ω
q

R). Using the nota-
tion ω̃

q

Z q
= R Hom

q

R((Rε q ∗OZ q )⊗R,ω
q

R) and taking co-
homology we obtain the following diagram of long exact
sequences:

hi(ω
q

R)OO

Φ
i

?�

hi(ω
q

R)
×f
oo

OO

Φ
i

?�

oo
δi

hi(ω
q

R/f )
OOOO

γi

oo
αi

hi−1(ω
q

R)OO

Φ
i−1

?�

oo
×f

hi−1(ω
q

R)OO

Φ
i−1

?�

hi(ω
q

R)
oo
×f

hi(ω
q

R)
oo hi(ω̃

q

Z q
) oo

βi

hi−1(ω
q

R)
oo
×f

hi−1(ω
q

R)

where the vertical Φ maps are injective because of The-
orem 3.3 and the morphism γi is surjective because τ ◦ ρ
is an isomorphism.

Fix z ∈ hi−1(ω
q

R). Pick w ∈ hi(ω̃
q

Z q
) such that

αi(z) = γi(w). Since δi(αi(z)) = 0 and Φi is injective,
it follows that there exists a u ∈ hi−1(ω

q

R) such that
βi(u) = w. Therefore, αi(Φ

i−1(u)) = αi(z) and so

(4.1.1) z − Φi−1(u) ∈ f · hi−1(ω
q

R).

Now, fix Ci−1 to be the cokernel of Φi−1 and set
z ∈ Ci−1 to be the image of z. Equation (4.1.1) then
guarantees that z ∈ f · Ci−1. But z was arbitrary and

so the multiplication map Ci−1

×f
// Ci−1 is surjective.

But this contradicts Nakayama’s lemma unless Ci−1 = 0.
Therefore Ci−1 = 0 and Φi−1 is also surjective. This
holds for all i and so the natural morphism ω

q

X −→ ω
q

X
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is a quasi-isomorphism. Thus X has DB singularities by
Remark 2.4. Q.E.D.

Corollary 4.2. Let f : X −→ S be a proper flat family
of varieties over a smooth curve S and s ∈ S a closed
point. If the fiber Xs has DB singularities, then so do
the other fibers near s.

Proof. By Theorem 4.1,X has DB singularities near
Xs. Let Σ denote the non-Du Bois locus of X. Since f is
proper, f(Σ) is a closed subset of S not containing s ∈ S.
Thus by restricting S to an open set, we may assume that
X has DB singularities. By Lemma 2.3, all fibers over
nearby points of s ∈ S have DB singularities. Q.E.D.

5. DB PAIRS

In [Kov11], the first author defined a notion of Du Bois
(or simply DB) pairs. Indeed, given a (possibly non-
reduced) subscheme Z ⊆ X one has an induced map in
Db

coh(X),

Ω0
X −→ Ω0

Z ,

noting that by definition Ω0
Z = Ω0

Zred
. Then Ω0

X,Z to be
the object in the derived category making the following
an exact triangle:

Ω0
X,Z −→ Ω0

X −→ Ω0
Z

+1−−→ .

If IZ is the ideal sheaf of Z, then it is easy to see that
there is a natural map IZ −→ Ω0

X,Z , [Kov11, Section

3.D].

Definition 5.1. [Kov11, Definition 3.13] The Du Bois
defect of (X,Z), denoted Ω×

X,Z , is the mapping cone of

the morphism IZ −→ Ω0
X,Z , so that there is an exact

triangle

IZ −→ Ω0
X,Z −→ Ω×

X,Z

+1−−→

We say that (X,Z) has Du Bois singularities if Ω×
X,Z is

quasi-isomorphic to zero. In other words, if IZ −→ Ω0
X,Z

is a quasi-isomorphism.

We now mimic our approach before:
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Lemma 5.2 (cf. Lemma 3.1). Let X be a variety and
L a semi-ample line bundle. Choose s ∈ L n a general
global section for some n ≫ 0 and take the nth-root of
this section as in [KM98, 2.50]:

η : Y = Spec

n−1⊕

i=0

L
−i −→ X.

Set W = η−1(Z) (with the induced scheme structure).

Note that we have η|W : W = Spec
⊕n−1

i=0 L −i|Z −→ Z.
Then as before η∗ = Rη∗,

η∗Ω
0
Y,W ≃ Ω0

X,Z ⊗ η∗OY ≃
n−1⊕

i=0

(Ω0
X,Z ⊗ L

−i),

and this direct sum decomposition is compatible with the
decomposition η∗OY =

⊕n−1
i=0 L −i.

Proof. This can be proven just as in Lemma 3.1
or alternately follows formally from Lemma 3.1 via the
functoriality of the construction. Q.E.D.

Just as in Proposition 3.2, we also obtain that

Hj(X,IZ ⊗ L
−i) −→ Hj(X,Ω0

X,Z ⊗ L
−i)

simply by using [Kov11, Theorem 4.1] in place of Lemma
2.1(iii).

If we set ω
q

X,Z = RHom
q

OX
(X,ω

q

X), then we easily
obtain.

Theorem 5.3. Let X be a variety over C. Then the
natural map

Φj : hj(ω
q

X,Z) →֒ hj(RHomOX
(IZ , ω

q

X))

is injective for every j ∈ Z.

Proof. The proof is the same as in Theorem 3.3
Q.E.D.
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6. TRANVERSALITY

Lemma 6.1. Let X be a reduced scheme and Σ ⊆ X
a reduced subscheme with ideal sheaf IΣ. Further let
H ⊆ X be a Cartier divisor with ideal sheaf IH such
that H does not contain any irreducible components of
either X or Σ. Then

IH ∩ IΣ = IH · IΣ.

Proof. The statement is local, so we may assume
that X = SpecA. Let I ⊆ A be the ideal of Σ, i.e.,

IΣ = Ĩ. Since Σ is reduced, I =
√
I and hence I =

∩r
i=1pi with prime ideals pi ⊂ A. Assume that this is

an economic decomposition, i.e., none of the pi are re-
dundant. Further let f ∈ A a local equation for H, i.e.,

IH = (̃f). The assumption that H does not contain any
irreducible components of either X or Σ imply that

(6.1.1) f is not contained in any minimal primes of A,
and

(6.1.2) f is not contained in any of the pi.

Claim 6.2. For any prime ideal p ⊆ A such that f 6∈ p,

(f) ∩ p = fp.

Proof. (f) ∩ p ⊇ fp trivially, so we only need to
prove the opposite containment. Let fg ∈ (f) ∩ p. Since
f 6∈ p, it follows that g ∈ p, so fg ∈ fp as desired.

Q.E.D.

Applying this to the pi we obtain that
(6.2.1)

(f) ∩ I = (f)
⋂

(∩r
i=1pi) =

r⋂

i=1

((f) ∩ pi) =
r⋂

i=1

fpi

Claim 6.3. Assume that f is not contained in any min-
imal primes of A. Then for any set of prime ideals {pi ⊆
A},

(6.3.1)

r⋂

i=1

fpi = f (∩r
i=1pi) .
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Proof. Let x ∈ ⋂r
i=1 fpi and let gi ∈ pi such that

x = fgi for all i. We claim that gi = gj for any i, j.
Indeed, fgi = x = fgj so

f(gi − gj) = 0 ∈
⋂

p⊆A
is a minimal prime

p

By assumption f 6∈ p for any of the p, so we must have
gi − gj ∈ p for all p. However, since X is reduced,

⋂

p⊆A
is a minimal prime

p = 0,

so it follows that gi = gj =: g. Finally this implies that
x = fg ∈ f (∩r

i=1pi) . Q.E.D.

Combining (6.2.1) and (6.3.1) implies that (f) ∩ I = f ·
I. Q.E.D.

7. APPLICATION TO RESTRICTION THEOREMS FOR

MAXIMAL NON-LC IDEALS

In this section we assume the reader is familiar with
log canonical singularities; see [KM98] for an introduc-
tion. Let X be a normal variety, ∆ an effective Q-divisor

on X such that KX +∆ is Q-Cartier and π : X̃ −→ X is
a log resolution for (X,∆). Write K

X̃
− π∗(KX +∆) =∑

aiEi and set E=−1 =
∑

ai=−1 Ei. The following ideal

JNLC(X,∆) := π∗OX̃
(⌈K

X̃
− π∗(KX +∆) + E=−1⌉)

is defined to be the non-log canonical ideal of X.
This ideal was first defined by F. Ambro in [Amb03,

Definition 4.1] where it was denoted by IX−∞
. The study

of this ideal as an object similar to the multiplier ideal,
was recently initiated by O. Fujino in [Fuj10]. One of
the main facts about this ideal is that the zero set of
JNLC is exactly the locus where (X,∆) does not have
log canonical singularities. Fujino proved the following
restriction theorem for JNLC(X,∆) (in fact, he proved a
more general result):
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Theorem. [Fuj10, Theorem 1.2] If H is a normal Cartier
divisor on a Q-Gorenstein variety X, then JNLC(X,H)⊗
OH ≃ JNLC(H, 0).

However, there are other natural ideals that define
the non-lc locus. With notation as above, set E =

∑
Ei

and set EZ =
∑

ai∈Z
Ei. Then consider the ideal

J ′(X,∆) := π∗OX̃
(⌈K

X̃
− π∗(KX +∆) + EZ⌉)

= π∗OX̃
(⌈K

X̃
− π∗(KX +∆) + εE⌉)

where we choose 1 ≫ ε > 0. This is the largest ideal
which canonically defines the non-log canonical locus of
(X,∆) and as such is called the maximal non-lc ideal.
In [FST11], the authors explored this ideal (and other
non-lc-ideals). In particular, they obtained restriction
theorems in special cases [FST11, Theorem 12.7, Theo-
rem 13.13]. As an application of Theorem 3.3, we obtain
the following restriction theorem for J ′(X,H) in the case
that X is Gorenstein.

Theorem 7.1. If X is a normal d-dimensional Goren-
stein variety and H is a normal Cartier divisor on X,
then J ′(X,H)|H ≃ J ′(H, 0).

The proof strategy is the same as in [FST11, Section
13]

Proof. By working sufficiently locally, we may as-
sume that KX ∼ 0 and H = V (f) ∼ 0 for some f ∈
Γ(X,OX). Shrinking X again if necessary, we embed
X ⊆ Y as a closed subscheme in a smooth scheme Y .
Let π : Ỹ −→ Y be a log resolution of H ⊆ Y which
is simultaneously an embedded resolution of X ⊆ Y .

Let X = π−1(X)red, X̃ the strict transform of X, and
H = π−1(H)red. We may assume that π is an isomor-

phism outside of SingX ∪H and write X = X̃ ∪ E ∪H
where E = π−1(SingX)red. Finally, we may also as-
sume that E ∪ H is a reduced simple normal crossings

divisor which intersects X̃ with normal crossings so that

(E ∪H)∩ X̃ is a reduced simple normal crossings divisor
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on X̃. We have the following short exact sequence:

0 −→ O
X̃
(−E ∪H) −→ OX −→ OE∪H −→ 0.

By pushing forward and using [Sch07], we obtain the ex-
act triangle,

Rπ∗OX̃
(−E ∪H) // Ω0

X
// Ω0

H∪SingX

+1
// .

Applying RHom
q

OX
( , ω

q

X) gives

ω
q

H∪SingX
// ω

q

X
// Rπ∗OX̃

(K
X̃
+ E ∪H)[d]

+1
// ,

and by taking cohomology, we arrive at the exact se-
quence

(7.1.1) 0 −→ h−d(ω
q

X) −→ π∗OX̃
(K

X̃
+ E ∪H) −→

−→ h−d+1(ω
q

H∪SingX) −→ h−d+1(ω
q

X) = 0.

The vanishing on the right follows by Corollary 3.5 since
X is Gorenstein and thus Cohen-Macaulay.

By [FST11, Lemma 13.11],

h−d+1(ω
q

H∪SingX) ≃ h−d+1(ω
q

H).

Furthermore, by [KSS10, Theorem 3.8] we have that

J ′(X, 0) ∼= h−d(ω
q

X)⊗ OX(−KX)

and

J ′(H, 0) ∼= h−d+1(ω
q

H)⊗ OX(−KX −H).

Hence twisting (7.1.1) by OX(−KX −H) we obtain the
following short exact sequence: cf. [FST11, Lemma 13.8]
[KSS10, Lemma 4.14],

0 −→ J ′(X, 0)⊗ OX(−H) −→
−→ π∗OX̃

(K
X̃
− π∗(KX +H) + E ∪H) −→

−→ J ′(H, 0) −→ 0.

This completes the proof. Q.E.D.
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