
SMOOTH FAMILIES OVER RATIONAL AND ELLIPTIC CURVES

Sándor J. Kovács

The aim of this article is to present a generalization of the following result of
L. Migliorini to arbitrary dimensions.

Theorem. [Migliorini95] A smooth family of minimal surfaces of general type over

a projective curve of genus at most one is a locally trivial fiber bundle.

Because of the absence of minimal models among smooth varieties in higher dimen-
sions, it is not entirely clear what the proper generalization ought to be. One may
replace the condition “minimal” by the property that the canonical bundle satisfies
certain positivity properties and then prove that the fibers are birational. (See the
end of the introduction for some definitions.)

Theorem 1. Let g : Y → C be a smooth family of projective varieties of general

type with nef canonical bundle and C a smooth projective curve of genus at most

one. Then the fibers of g are birational.

Since the minimal model of a surface of general type is unique, Migliorini’s Theorem
follows from Theorem 1.

One might try to generalize Migliorini’s Theorem replacing “smooth family of
minimal surfaces” by the property that the fibers are minimal varieties. However,
the corresponding statement is not true as soon as the dimension of the fibers
is three or more. Rational double points give terminal singularities in dimension
3 or higher, so a generic Lefschetz pencil with non-birational fibers provides a
counterexample.

In dimension three, [Kollár-Mori92, 12.7.3] implies a stronger statement:

Corollary 2. Let g : Y → C be a smooth family of projective threefolds of general

type with nef canonical bundle and C a smooth projective curve of genus at most

one. Then g is locally trivial.

An important step in the proof is a higher dimensional Arakelov type result.

Theorem 3. Let f : X → C be a proper morphism between complex projective

varieties such that C is a smooth curve and X has only canonical singularities.

Assume that the restriction of KX/C to every fiber is ample. Then either KX/C is

ample or the fibers of f are isomorphic over an open set.
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2 SÁNDOR J. KOVÁCS

Remark. In fact a little more is necessary than this statement. The precise form
can be found in (2.16).

Having this statement, the main line of the proof of Theorem 1 can be illustrated
nicely in the special case when the fibers have an ample canonical bundle.

Let g : Y → C be a smooth family of projective varieties with ample canonical
bundle over a rational or elliptic curve. Suppose ωY/C is ample. Let Lp denote the

ample line bundle ωY ⊗ g∗ω−p
C for p > 0 and consider the following exact sequence:

0 → Ωp−1
Y/C ⊗ Lp−1 → Ωp

Y ⊗ Lp → Ωp
Y/C ⊗ Lp → 0.

By the Kodaira-Akizuki-Nakano Vanishing Theorem Hn−(p−1)(Y,Ωp
Y ⊗Lp) = 0, so

Hn−p(Y,Ωp
Y/C ⊗ Lp) → Hn−(p−1)(Y,Ωp−1

Y/C ⊗ Lp−1)

is surjective and then the composite of all these maps

H1(Y, ωY/C ⊗ Ln−1) → Hn(Y, ωY )

is surjective as well. This gives a contradiction since the former group is zero by
the Kodaira Vanishing Theorem while the latter is not. Therefore the fibers of g
are isomorphic by (2.16).

Now for a family of surfaces one can prove Migliorini’s Theorem in a similar way
using a refinement of the Kodaira-Akizuki-Nakano Vanishing Theorem [Miglior-
ini95].

For higher dimensional families the possible general vanishing results do not seem
to be strong enough to carry the proof through, so this article follows an alternate
way. Instead of trying to require less from the line bundle, using (2.16) one can
pass to the family of the canonical models where ampleness is provided, but have
to allow the spaces to be singular. The inconvenience of doing so is that it becomes
necessary to work in derived categories of complexes of sheaves. However, this
approach has the advantage that all the necessary ingredients exist in this setting,
namely [DuBois81] gave a general definition of the filtered De Rham complex for
singular spaces and the Kodaira-Akizuki-Nakano Vanishing Theorem admits a good
generalization as well (cf. [GNPP88, V.5.1], [Steenbrink85]).

The purpose of §1 is to define a complex of sheaves for a complex variety dom-
inating a smooth curve such that this new complex admits a relationship to the
generalized De Rham complex, similar to the one between the sheaf of relative dif-
ferentials and the sheaf of differentials in the smooth case. In §2 property SP – a
very technical one – is defined and the following theorem is proved:

Theorem 4. A family of Gorenstein canonical varieties with property SP over a

rational or an elliptic curve has isomorphic fibers.

Note that this statement is not true without property SP, and also that any smooth
morphism has this property trivially. This in turn will easily imply Theorem 1 as
shown in §3.
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Finally, as another application of the same principles, a bound on the minimal
number of singular fibers for non-smooth families of varieties of general type of even
dimension admitting at most double points is given in (3.3).

Definitions and Notation. Throughout the article the groundfield will always be C,
the field of complex numbers. A complex scheme will mean a separated scheme of
finite type over C.

A divisor D on a scheme X is called Q-Cartier if mD is Cartier for some m > 0.
It is called ample if mD is ample. A Q-Cartier divisor D is called nef if D.C ≥ 0
for every proper curve C ⊂ X. D is called big if X is proper and |mD | gives a
birational map for some m > 0. In particular ample implies nef and big.

A locally free sheaf E on a scheme X is called semipositive if for every smooth
complete curve C and every map γ : C → X, any quotient bundle of γ∗E has
nonnegative degree. Sk(E) denotes the kth symmetric power of E .

A normal variety X is said to have canonical (resp. terminal) singularities if KX

is Q-Cartier and for any resolution of singularities π : X̃ → X, with the collection
of exceptional prime divisors {Ei}, there exist ai ∈ Q, ai ≥ 0 (resp. ai > 0) such
that KX̃ = π∗KX +

∑

aiEi (cf. [CKM88]). X is called a canonical variety if it has
only canonical singularities and KX is ample. X is called a minimal variety if it
has only terminal singularities and KX is nef.

A singularity is called Gorenstein if its local ring is a Gorenstein ring. A variety
is Gorenstein if it admits only Gorenstein singularities. In particular, the dualizing
sheaf of a Gorenstein variety is locally free (cf. [Bruno-Herzog93, §3]).

Let g : Y → C be a morphism of normal varieties, then KY/C = KY − g∗KC ,

similarly if Y and C are smooth, then ωY/C = ωY ⊗ g∗ω−1
C .
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grateful to my advisor, János Kollár, for his guidance and support. He called my
attention to this problem and helped me in so many ways during my work that it
would be hard to list all of them. I would also like to thank him for his infinite
patience.

Prof. Fabrizio Catanese pointed out an incorrect argumentation in an earlier
version of the article. I would like to thank him and the referee for helpful comments.

1. Relative De Rham complexes

Let X be a complex scheme of dimension n. Dfilt(X) denotes the derived category
of filtered complexes of OX -modules with differentials of order ≤ 1 and Dfilt,coh(X)
the subcategory of Dfilt(X) of complexes K ·, such that for all i, the cohomology
sheaves of GriFK

· are coherent (cf. [DuBois81], [GNPP88]). D(X) and Dcoh(X)
denotes the derived categories with the same definition except that the complexes
are not assumed to be filtered. The superscripts +,−, b carry the usual meaning
(bounded below, bounded above and bounded).

C(X) is the category of complexes of OX -modules with differentials of order ≤ 1
and for u ∈ Mor(C(X)), M(u) ∈ Obj(C(X)) denotes the mapping cone of u (cf.
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[Hartshorne66]). The isomorphism in these categories will be denoted by ≃qis . For
the definition of a hyperresolution the reader is referred to [DuBois81], [GNPP88]
or [Steenbrink85].

1.1 General Čech spectral sequence. [GNPP88] Let X be a complex scheme and
U = {νi : Ui →֒ X}ri=0 a finite open cover of X. For J ⊂ I ⊂ {0, . . . , r}, let
UI = ∩i∈IUi, νI : UI →֒ X and νI,J : UI →֒ UJ . Assume that F ·

UI
∈ Obj(C(UI))

and compatible restriction maps ν∗I,J : (νJ)∗F ·
J → (νI)∗F ·

I are given for all I, J .
Let

Cp(U ,F ·
U·
)· = ⊕

i0<...<ip
(ν{i0,... ,ip})∗F ·

{i0,... ,ip}

δp =
∑

i0<...<ip

p
∑

k=0

(−1)kν∗{i0,... ,ip},{i0,... ,ip}\{ik} : Cp(U ,F ·
U·
)· → Cp+1(U ,F ·

U·
)·.

By construction δp+1 ◦ δp = 0, so one can define

Č(U ,F ·
U·
)m = ⊕

q≥0
Cq(U ,F ·

U·
)m−q

ď =
∑

q≥0

(−1)q(dCq(U,F ·

U·
) − δq).

Č is a left exact functor from the product category of C(UI) for I ⊂ {0, . . . , r} to
C(X). Its right derived functor is denoted by Rν·∗F ·

U·

.

Using the usual Čech resolution for sheaves one sees easily that for an F · ∈ C(X),
F · ≃qis Č(U ,F ·

U·

)·, where F ·
UI

is the restriction of F · to UI .

The following theorem states the existence and some properties of the filtered
De Rham complex for singular spaces. Note that it holds in both the algebraic
and the analytic case.

1.2 Theorem. [DuBois81], [GNPP88, III.1.12, V.3.6, V.5.1] For every complex

scheme X of dimension n there exists an Ω·
X ∈ Obj(Dfilt(X)) with the following

properties.

(1.2.1) It is functorial, i.e. if φ : Y → X is a morphism of complex schemes, then

there exists a natural map φ∗ of filtered complexes

φ∗ : Ω·
X → Rφ∗Ω

·
Y .

Furthermore Ω·
X ∈ Obj(Db

filt,coh(X)) and if φ is proper, then φ∗ is a morphism in

Db
filt,coh(X).

(1.2.2) Let Ω·
X be the usual De Rham complex of Kähler differentials considered

with the “filtration bête”. Then there exists a natural map of filtered complexes

Ω·
X → Ω·

X
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and if X is smooth, it is a quasi-isomorphism.

(1.2.3) Let {νi : Ui →֒ X} be a finite open cover of X. Then

Ω·
X ≃qis Rν·∗Ω

·
U·

.

(1.2.4) Let Ωp
X = GrpF Ω·

X [ p ]. If X is projective and L is an ample line bundle

on X, then

Hq(X,Ωp
X ⊗ L) = 0 for p+ q > n.

If Y is a smooth complex variety, let Ap,q
Y denote the sheaf of complex valued

C∞ forms of type (p, q).
Let X be a complex variety and ε. : X. → X a hyperresolution of X (cf.

[DuBois81], [GNPP88], [Steenbrink85]). Then

K ·
p = ⊕εi∗Ap,·

Xi
[−i] ∈ Obj(C(X))

is an incarnation of Ωp
X . (The differential of K ·

p is cooked up from the ordinary
differentiation of C∞ forms and from pull-backs between the pieces of the hyper-
resolution. The construction is similar to that of Rν·∗F ·

U·

in (1.1). For a more
detailed discussion see [Steenbrink85].)

Let f : X → C be a dominant morphism such that C is a smooth complex curve
and for each natural number p construct a complex which will play the role of Ωp

X/C

in the singular case. First define a morphism of complexes induced by the wedge
product of differential forms as follows. Let

∧p : K ·
p ⊗ f∗Ω1

C → K ·
p+1

be the map generated by

εi∗ηi ⊗ ξ 7→ εi∗(ηi ∧ ε∗i ξ).

Using the explicit form of K ·
p given above, one can see easily that ∧p is in fact a

morphism of complexes.
Let ∧′

p = ∧p ⊗ idf∗Ω1
C
. Since f∗Ω1

C is a line bundle, ∧p ◦ ∧′
p−1 = 0.

Let M ·
r = 0 ∈ Obj(C(X)), w′′

r = 0 ∈ HomC(X)(K
·
r ⊗ f∗Ω1

C ,M
·
r ⊗ f∗Ω1

C) and

w′
r = 0 ∈ HomC(X)(M

·
r ⊗ f∗Ω1

C ,K
·
r+1) for r ≥ n. Assume that p < n and for every

q > p, M ·
q ∈ Obj(C(X)) is defined and there are given morphisms of complexes

w′′
q : K ·

q ⊗ f∗Ω1
C → M ·

q ⊗ f∗Ω1
C and w′

q : M ·
q ⊗ f∗Ω1

C → K ·
q+1

such that
∧q = w′

q ◦ w′′
q and w′′

q ◦ ∧′
q−1 = 0.
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Let
wq = w′′

q ⊗ id(f∗Ω1
C
)−1 ∈ HomC(X)(K

·
r,M

·
r)

and
M ·

p = M(wp+1)[−1]⊗ (f∗Ω1
C)

−1 ∈ Obj(C(X)),

i.e.,
Mm

p ⊗ f∗Ω1
C = Km

p+1 ⊕Mm−1
p+1

and

dMm
p ⊗f∗Ω1

C
=

(

dmKp+1
0

−wm
p+1 −dm−1

Mp+1

)

.

Also let

w′′
p =

(

∧p

0

)

: K ·
p ⊗ f∗Ω1

C → M ·
p ⊗ f∗Ω1

C

and
w′

p = (idK·

p+1
, 0) : M ·

p ⊗ f∗Ω1
C → K ·

p+1.

w′
p is a morphism of complexes by the definition of the mapping cone and w′′

p is a
morphism of complexes because wp+1 ◦∧p = 0. It is also obvious that ∧p = w′

p ◦w′′
p

and w′′
p ◦ ∧′

p−1 = 0.
∧p is natural, i.e., if α is a morphism of hyperresolutions,

X̃.
α−−−−→ X.

ε̃.





y





y

ε.

X −−−−→
idX

X

then it induces a morphism of complexes: α∗ : K ·
p → K̃ ·

p and by the definition of
∧p the following diagram is commutative:

K ·
p ⊗ f∗Ω1

C

∧p−−−−→ K ·
p+1

α∗





y





yα∗

K̃ ·
p ⊗ f∗Ω1

C −−−−→
∧̃p

K̃ ·
p+1

Now α∗ is a quasi-isomorphism, so ∧p and ∧̃p are equivalent in D(X). Then
by [DuBois81, 2.1.4] or [GNPP88, I.3.10], the equivalence class of ∧p in D(X) is
independent of the hyperresolution chosen.

Therefore there exists a natural map in D(X) induced by the usual wedge prod-
uct of differential forms:

Ωp
X ⊗ f∗Ω1

C

∧p−−−→ Ωp+1
X

Also, by their definition, the equivalence classes of wp, w
′
p and w′′

p in D(X) are
independent of the hyperresolution chosen. From now on these symbols will denote
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their equivalence classes in D(X). A map will mean an element of Mor(D(X)),
so it is possibly not represented by an actual morphism of complexes between two
arbitrary representatives of the respective objects.

1.3 Theorem-Definition. Let f : X → C be a dominant morphism between com-

plex varieties such that dimX = n and C is a smooth curve. For every nonnegative

integer p there exists a complex Ωp
X/C ∈ Obj(D(X)) with the following properties.

(1.3.1) The natural map ∧p factors through Ωp
X/C ⊗ f∗Ω1

C , i.e., there exist maps:

w′′
p : Ωp

X ⊗ f∗Ω1
C → Ωp

X/C ⊗ f∗Ω1
C and

w′
p : Ωp

X/C ⊗ f∗Ω1
C → Ωp+1

X

such that ∧p = w′
p ◦ w′′

p .

(1.3.2) If wp = w′′
p ⊗ id(f∗Ω1

C
)−1 : Ωp

X → Ωp
X/C , then

Ωp
X/C ⊗ f∗Ω1

C

w′

p−−−→ Ωp+1
X

wp+1−−−→ Ωp+1
X/C

+1−−−→

is a distinguished triangle in D(X).
(1.3.3) wp is functorial, i.e., if φ : Y → X is a C-morphism, then there are natural

maps in D(X) forming a commutative diagram:

Ωp
X −−−−→ Ωp

X/C




y





y

Rφ∗Ω
p
Y −−−−→ Rφ∗Ω

p
Y/C

(1.3.4) If f is smooth, then Ωp
X/C ≃qis Ω

p
X/C =

∧p
ΩX/C where ΩX/C is the sheaf

of relative Kähler differentials.

(1.3.5) Ωr
X/C = 0 for r ≥ n and if f is proper, then Ωp

X/C ∈ Obj(Db
coh(X)) for

every p.

(1.3.6) Let {νi : Ui →֒ X} be a finite open cover of X. Then

Ωp
X/C ≃qis Rν·∗Ω

·
U·/C

for every p.

Proof. Let Ωp
X/C ≃qis M

·
p ∈ Obj(D(X)). Then (1.3.1), (1.3.2) and the first part of

(1.3.5) follows. Using (1.3.2), the first part of (1.3.5) and descending induction on
p, (1.3.3), (1.3.4), (1.3.6) and the rest of (1.3.5) follows from (1.2.1), (1.2.2) and
(1.2.3). �
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2. Families with property SP

By (1.2.2) there exists a natural map ρ : OX → Ω0
X . This map composed with w0

gives a natural map OX → Ω0
X/C and it is functorial in the sense of (1.3.3).

2.1 Definition. Let f : X → C be a dominant morphism between complex varieties
such that C is a smooth curve. f will be said to have property SP if the natural map
ρ : OX → Ω0

X/C has a left inverse, i.e., there exists a map in D(X), ρ̃ : Ω0
X/C → OX

such that ρ̃ ◦ ρ : OX → OX is a quasi-isomorphism. In particular every smooth
morphism has property SP.

2.2 Remark. If f : X → C has property SP and X is projective, then it has only
Du Bois singularities, i.e., OX ≃qis Ω

0
X (cf. [Kollár93, §12]).

2.3 Proposition. SP is a local property in the following sense: Let f : X → C
be a dominant morphism between complex varieties such that C is a smooth curve

and {νi : Ui →֒ X} a finite open cover of X in the complex topology such that

f : Ui → C has property SP for all i. Then f : X → C has property SP as well.

Proof. By (1.1), (1.3.6) and the assumption

OX ≃qis Rν·∗OU·
→ Rν·∗Ω

0
U·/C

≃qis Ω
0
X/C

has a left inverse. �

2.4 Proposition. Let f : X → C be a dominant morphism between complex

varieties such that C is a smooth curve, φ : Y → X a morphism such that f ◦φ has

property SP and OX → Rφ∗OY has a left inverse. Then f has property SP.

Proof. By functoriality there is a commutative diagram:

OX −−−−→ Ω0
X/C





y





y

Rφ∗OY −−−−→ Rφ∗Ω
0
Y/C

The bottom horizontal and the left vertical arrows have a left inverse by assumption,
so the natural map OX → Ω0

X/C has a left inverse as well. �

2.5 Corollary. Assume that X has rational singularities and there exists a reso-

lution of singularities of X, φ : Y → X, such that f ◦ φ is smooth. Then f has

property SP. �

2.6 Example. Let

fn,r : Xn,r = SpecC [ t, x1, . . . , xn] /
(

tr − (x2
1 + . . .+ x2

n)
)

→ SpecC [ t ] .

These families do or do not have property SP depending on n and r.
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2.7 Example. Let n = 2k + 1, r = 2s and consider

f2k+1,2s : X2k+1,2s → SpecC [ t ] .

Blowing up the zero locus of (ts + x1, x2 +
√
−1x3, . . . , x2k +

√
−1x2k+1) gives

a resolution of X2k+1,2s that is smooth over C, thus f2k+1,2s has property SP by
(2.5). These are examples for non-smooth morphisms having this property as well
as for morphisms having property SP non-trivially, i.e., OX → Ω0

X/C has a left
inverse, but it is not a quasi-isomorphism. Note that this left inverse exists only in
the derived category. If Ω0

X/C is represented by M ·
0, as in its definition, then the

map OX → M ·
0 does not have a left inverse in the category of complexes.

2.8 Example. Let n = 2 and r ≥ 1 arbitrary. Then

f2,r : X2,r = SpecC [ t, x1, x2] /
(

tr − (x2
1 + x2

2)
)

→ SpecC [ t ]

does not have property SP. This can be seen as in (2.10).

2.9 Remark. It seems likely, that f2k,r in general does not have property SP. The
way I can prove this for n = 2 does not work in higher dimensions (cf. (2.12)).

The fibers having only ordinary double points does not imply property SP as the
following examples show.

2.10 Example. Let

Z = SpecC [ t, x1, x2, . . . , xn] /
(

t− (x2
1 + x2

2 + . . .+ x2
n)
)

,

fn,1 : Z → SpecC [ t ] = C.

Z is smooth, so Ω·
Z ≃qis Ω

·
Z and then by definition

Ω0
Z/C = . . . → 0 → Ω1

Z
∧dt−−→ Ω2

Z
∧dt−−→ . . .

∧dt−−→ Ωn
Z → 0 → . . . .

Let

ei1,... ,in−p
=

(

1

2

)n−p

(−1)
∑n−p

j=1
ij+

1
2
p(p+1) dxj1 ∧ . . . ∧ dxjp ,

where i1 < . . . < in−p , j1 < . . . < jp and {i1, . . . , in−p, j1, . . . , jp} = {1, 2, . . . , n}.
Clearly,

Ωp
Z =

〈

ei1,... ,in−p
| i1 < . . . < in−p, ir ∈ {1, 2, . . . , n}

〉

.

Furthermore, dt = 2
∑n

i=1 xidxi, so

ei1,... ,in−p
∧ dt =

n−p
∑

j=1

(−1)j−1xjei1,... ,ij−1,ij+1,... ,in−p
.

Hence the complex
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OZ
∧dt−−→ Ω1

Z
∧dt−−→ Ω2

Z
∧dt−−→ . . .

∧dt−−→ Ωn−1
Z → m

is isomorphic to the Koszul complex of m, the maximal ideal of the origin P .
Therefore H0(Ω0

Z/C) = OZ , Hi(Ω0
Z/C) = 0 for 0 < i < n and Hn(Ω0

Z/C) = CP ,
where CP denotes the skyscraper sheaf C at the point P . Then fn,1 does not have
property SP as follows from (2.11).

2.11 Example. Let Z be a smooth projective variety and h : Z → P1 a proper mor-
phism such that H0(Ω0

Z/C) = OZ , Hi(Ω0
Z/C) = 0 for 0 < i < n and Hn(Ω0

Z/C) =
∑r

i=1 CPi
. For instance let h be not smooth and the special fibers have singularities

isomorphic to the one in the previous example. Now let

Ki = im
[

Ωi
Z ⊗ h∗Ω1

P1

∧−→ Ωi+1
Z

]

⊗ (h∗Ω1
P1)−1.

Choose a line bundle N such that Hi(Z,Ωp
Z ⊗ (h∗Ω1

P1)n−1−p⊗N ) = 0 for all p and
i < n and consider the following short exact sequence:

0 → Kn−1 ⊗N → Ωn
Z ⊗ (h∗Ω1

P1)−1 ⊗N →
r

∑

i=1

CPi
→ 0.

Let ωp = (h∗Ω1
P1)n−1−p ⊗ N . By definition Ωn−1

Z/C ≃qis Ω
n
Z ⊗ (h∗Ω1

P1)−1, so the

previous short exact sequence and vanishing can be written as:

0 → Kn−1 ⊗ ωn−1 → Ωn−1
Z/C ⊗ ωn−1 →

r
∑

i=1

CPi
→ 0

and

Hi(Z,Ωp
Z ⊗ ωp) = 0 for all p and i < n.

In particular H0(Z,Ωn−1
Z/C ⊗ ωn−1) = H0(Z,Ωn

Z ⊗ ωn) = 0, so

H1(Z,Kn−1 ⊗ ωn−1) → H1(Z,Ωn−1
Z/C ⊗ ωn−1)

is not injective.
Next consider the following commutative diagrams where the rows are distin-

guished triangles:

Kp ⊗ ωp −−−−→ Ωp+1
Z ⊗ ωp+1 −−−−→ Kp+1 ⊗ ωp+1

+1−−−−→




y





y

≃





y

Ωp
Z/C ⊗ ωp −−−−→ Ωp+1

Z ⊗ ωp+1 −−−−→ Ωp+1
Z/C ⊗ ωp+1

+1−−−−→
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Since Hi(Z,Ωp+1
Z ⊗ ωp+1) = 0, if

Hi(Z,Kp+1 ⊗ ωp+1) → Hi(Z,Ωp+1
Z/C ⊗ ωp+1)

is not injective, then

Hi+1(Z,Kp ⊗ ωp) → Hi+1(Z,Ωp
Z/C ⊗ ωp)

is not injective either. Hence by induction

Hn(Z, (h∗Ω1
P1)n−1 ⊗N ) → Hn(Z,Ω0

Z/C ⊗ (h∗Ω1
P1)n−1 ⊗N )

is not injective, therefore OZ → Ω0
Z/C does not have a left inverse, so h does not

have property SP.

2.12 Remark. If in the definition of h one replaces t by t2, as it is in the first
example, then Z will no longer be smooth. However, Z0 will still be toric, so Ωp

Z

will be quasi-isomorphic to i∗Ω
p
U , where U is the smooth locus of Z (cf. [GNPP88,

V.4]).
At first the above argument seems to work in this case, too, that is to prove

that h does not have property SP. However, it breaks down, because i∗Ω
1
U is not

coherent, so Serre’s vanishing does not apply. Indeed, if dimZ ≥ 3, then it is
not a Cohen-Macaulay module and Hn−1(Z, i∗Ω

1
U ⊗ ω1) 6= 0, because the local

cohomology group will always contribute.

The next theorem makes use of essentially the same ideas as the proof of the special
case did in the introduction as well as of the properties of the complexes Ωp

X/C . It

provides an important step in the proof of Theorem 2.

2.13 Theorem. Assume f : X → C is a proper morphism with property SP, L is

an ample line bundle on X and C is a smooth projective curve of genus at most

one. Then Hn(X,L ⊗ f∗ωC) = 0.

Proof. Let Lp = L ⊗ f∗ω−p+1
C . Since L is ample, so is Lp for p > 0 and then by

(1.3.2) there is a distinguished triangle in D(X):

Ωp−1
X/C ⊗ Lp−1 → Ωp

X ⊗ Lp → Ωp
X/C ⊗ Lp

+1−−−→
Hn−(p−1)(X,Ωp

X ⊗ Lp) = 0 by (1.2.4), so the map

Hn−p(X,Ωp
X/C ⊗ Lp) → Hn−(p−1)(X,Ωp−1

X/C ⊗ Lp−1)

is surjective and then the composite of all these maps

H0(X,Ωn
X/C ⊗ Ln) → Hn(X,Ω0

X/C ⊗ L⊗ f∗ωC)

is surjective as well. By definition Ωn
X/C = 0, so Hn(X,Ω0

X/C ⊗ L⊗ f∗ωC) = 0.

f has property SP, so OX → Ω0
X/C has a left inverse and then L ⊗ f∗ωC →

Ω0
X/C ⊗ L⊗ f∗ωC has a left inverse as well, so

Hn(X,L ⊗ f∗ωC) = Hn(X,L ⊗ f∗ωC) → Hn(X,Ω0
X/C ⊗ L⊗ f∗ωC) = 0

is injective. �
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2.14 Corollary. With the same hypothesis as in (2.13), further assume that X is

normal, Gorenstein. Then KX/C is not ample.

Proof. Hn(X,OX(KX/C)⊗ f∗ωC) = Hn(X,OX(KX)) = C �

2.15 Lemma. Let f : X → C be a proper morphism between complex projective

varieties such that C is a smooth curve. Let L be a line bundle on X and assume

that R1f∗Lk is locally free for k ≫ 0 and one of the following holds.

(2.15.1) For any fiber F of f , Lk ⊗ OF is generated by global sections and f∗Lk

is an ample locally free sheaf on C for k ≫ 0.
(2.15.2) L ≃ K ⊗ f∗M, where M is an ample line bundle on C and K is a line

bundle on X such that f∗Kk is semipositive for k ≫ 0.

Let F1 and F2 be two arbitrary fibers of f . Then there exists a q0 > 0 such that for

all q ≥ q0 and m ≫ 0

H0(X,Lmq) → H0(F1,Lmq ⊗OF1
)⊕H0(F2,Lmq ⊗OF2

)

is surjective. In case (2.15.2) q0 = 1 works.

Proof. Let P1, P2 ∈ C be such that F1 = f−1(P1) and F2 = f−1(P2). First assume
that there exists a q > 0 such that

(2.15.3) H1(C, f∗Lmq ⊗OC(−P1 − P2)) = 0 for m ≫ 0.

Then by the Leray spectral sequence, there is a commutative diagram:

H1(X,Lmq ⊗OX(−F1 − F2))
α−−−−→ H1(X,Lmq)

γ





y





y

H0(C,R1f∗Lmq ⊗OC(−P1 − P2)) −−−−→
β

H0(C,R1f∗Lmq)

such that γ and β are injective. Then β ◦γ is injective and hence so is α. Therefore
the statement follows.

In the first case if q ≫ 0, then the natural map

Sm(f∗Lq) → f∗Lmq

is surjective for m > 0 by global generation on the fibers. Then (2.15.3) holds since
f∗Lq is ample.

In the second case (2.15.3) holds trivially for q ≥ 1. �

2.16 Theorem. Let f : X → C be a proper morphism between complex projective

varieties with irreducible fibers such that C is a smooth curve and X has only

canonical singularities. Assume that KX/C restricted to every fiber is ample. Then

either KX/C is ample or the fibers of f are isomorphic over an open set. If in

addition the fibers are reduced with canonical singularities and KX/C is not ample,

then all the fibers of f are isomorphic.
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Proof. First assume that there is no open subset of C over which the fibers are
isomorphic. X has canonical singularities, so if π : Y → X is a resolution of
singularities, then for some r > 0, OX(rKX) ≃ π∗ω

r
Y is a line bundle. By [Kollár87,

Theorem, p.363]

f∗OX(mKX/C) ≃ f∗π∗ω
m
Y/C

is an ample locally free sheaf on C for some m > 0. Then L = OX(pKX/C) satisfies
(2.15.1) for a sufficiently divisible p > 0 by [Viehweg83, 5.4, 6.2]. Therefore KX/C

is ample.

Next assume that there is an open subset C0 ⊂ C such that the fibers of f
over C0 are isomorphic and every fiber is reduced with canonical singularities. The
automorphism group of the fibers is finite (cf. [Kobayashi72, III.2.1]), so there is

a finite base change σ : C̃ → C such that X̃ = X ×C C̃ becomes trivial over
C̃0 = σ−1(C0):

C̃0 × F ≃ X̃0 ⊂ X̃ −−−−→ X




y





y





y

C̃0 ⊂ C̃ −−−−→ C.

By the proofs of [Matsusaka-Mumford64, Theorems 1,2] X̃0 has only one compact-

ification with non-ruled fibers, so X̃ ≃ C̃ × F . Therefore in this case all the fibers
of f are isomorphic. �

2.17 Corollary. Theorem 4 follows.

Proof. X has only canonical singularities by [Stevens88, Prop. 7.], so by (2.14)
KX/C is not ample. Then by (2.16) the fibers are isomorphic. �

3. Smooth families and Lefschetz pencils

3.1 Proposition. Let g : Y → C be a morphism between smooth projective vari-

eties with connected fibers, C a curve. Assume that for every fiber F of g, ωm
Y/C⊗OF

is generated by global sections and R1f∗ω
m
Y/C is locally free for m ≫ 0. Then there

exist a projective variety X and surjective morphisms φ : Y → X and f : X → C
such that g = f ◦ φ, f−1(P ) is the canonical model of g−1(P ) for every P ∈ C and

φ induces the stable pluricanonical map on the fibers. Furthermore OX → Rφ∗OY

has a left inverse.

Proof. Let Q ∈ C be an arbitrary point and L = ωY/C ⊗ g∗OC(Q). g∗ω
m
Y/C is

semipositive by [Kawamata82, Theorem 1], so by (2.15) a suitable power of ωY/C

is generated by global sections, hence it defines a morphism φ. This φ has the
required properties.
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Let X = φ(Y ). By the construction, there is an ample line bundle H on X such
that L = φ∗H and then ω−1

Y = φ∗(H ⊗ f∗(ωC(−Q)))−1. By [Kollár86, Theorem
3.1] Rφ∗ωY =

∑

Riφ∗ωY [−i], so

Rφ∗OY = (H⊗ f∗(ωC(−Q)))−1 ⊗Rφ∗ωY =

= (H⊗ f∗(ωC(−Q)))−1 ⊗
∑

Riφ∗ωY [−i] =
∑

Riφ∗OY [−i]

and since OX = φ∗OY , this finishes the proof. �

A smooth projective variety F will be called a G-variety if ωm
F is generated by

global sections and h1(F, ωm
F ) = 0 form ≫ 0, and its canonical model is Gorenstein.

Note that the canonical model of a G-variety has canonical singularities by
[Nakayama88] and that every smooth projective variety of general type with nef
canonical bundle is a G-variety. Indeed, by the Base Point Free Theorem (cf.
[CKM88, (9.3)]) all the large enough multiples of the canonical divisor are base
point free, hence pull-backs of Cartier divisors on the canonical model. Then the
canonical divisor of the canonical model is a difference of two Cartier divisors, thus
itself is Cartier (cf. [Reid87]).

3.2 Corollary. Let g : Y → C be a smooth family of projective G-varieties over a

smooth projective curve C of genus at most one. Then the fibers of g have isomor-

phic canonical models. In particular, Theorem 1 follows.

Proof. Let f : X → C be the fiber space given by (3.1). By (2.4) f has property
SP, so by Theorem 2 it is locally trivial. �

The following application of the theory presented in this article was pointed out
to me by János Kollár. It is an even dimensional analog of [Beauville81].

3.3 Theorem. Let Y be a projective variety of odd dimension and g : Y → P1 a

morphism with connected fibers having at worst ordinary double point singularities.

Assume that KY/P1 restricted to any fiber is nef and big. If g is not smooth, then

it has at least five singular fibers.

Proof. Let

U =
{

P ∈ P1 | g has property SP in an analytic neighborhood of g−1(P )
}

.

Let S = P1 \U . It is enough to prove that either g is smooth or S has at least five
elements. Suppose |S| ≤ 4. Then one can find an elliptic curve E and a double
cover ρ : E → P1 such that the branch locus of ρ contains S. Let YE = Y ×P1 E
and gE : YE → E.

By the construction, for every fiber F of gE , either gE has property SP in an
analytic neighbourhood of F or F is locally analytically isomorphic to the special
fiber of the morphism in (2.7). Therefore by (2.3) gE has property SP. Then (2.4)
and (3.1) imply that there exist a projective variety XE and morphisms φE : YE →
XE and fE : XE → E such that XE is a family of the canonical models of the
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fibers of gE and fE has property SP. Hence by Theorem 2, the fibers of fE are
isomorphic. Then the singularities of the fibers can be resolved simultaneously, so
by [Matsusaka-Mumford64, Corollary 1] the fibers of gE are isomorphic and then
the same is true for g. Therefore g is smooth. �

3.4 Remark. If dimY = 3, the assumption about KY/P1 being nef on the fibers is
not necessary. In fact, for surfaces, rational double points are exactly the canon-
ical singularities (cf. [Reid87, (1.2)]), so using the Minimal Model Program one
can reduce to the case of the theorem, because the singularities of the fibers are
preserved.

Also note that the assumptions allow a somewhat larger class of varieties, than
Lefschetz pencils.
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Erratum

There is a hypothesis missing from the statement of (3.3) without that the pre-
sented proof is incomplete. The missing assumption is that if dimY ≥ 5, then
ωY/P1 restricted to any fibre is required to be ample. The correct statement is as
follows:

Theorem. Let Y be a projective variety of odd dimension and g : Y → P1 a

morphism with connected fibres having at worst ordinary double point singularities.

Assume that ωY/P1 restricted to any fibre is nef and big and if dimY ≥ 5, then

ωY/P1 restricted to any fibre is ample. If g is not smooth, then it has at least 5
singular fibres.

The presented proof works unchanged with the additional remark, that the
isotriviality of fE implies the isotriviality of gE by the extra assumption.

On the other hand this extra assumption is expected to be superfluous as [Kollár-
Mori92, 12.7.3] is conjectured to be true in all dimensions, thus (expected to be)
providing the missing step to the originally stated form, i.e., proving that the
isotriviality of fE implies the isotriviality of gE .

Finally note that (3.3) is not used elsewhere in the article, so the rest, including
the main results, holds true unchanged.
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