
THE INTUITIVE DEFINITION OF DU BOIS

SINGULARITIES
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Abstract. It is proved that for projective varieties having Du Bois
singularities is equivalent to the condition that the coherent coho-
mology groups of the structure sheaf coincide with the appropriate
Hodge components of the singular cohomology groups.

Kivonat. A cikk fő eredménye a következő: Egy projekt́ıv va-
rietásnak pontosan akkor vannak Du Bois szingularitásai, ha a
struktúra kéve koherens kohomológia csoportjai megegyeznek a
szinguláris kohomológia csoportok megfelelő Hodge komponenseivel.

1. INTRODUCTION

If X is a smooth proper variety, then Hodge theory tells us that
there is a strong link between toplogical (say singular) and analytic
(say Dolbeault) cohomology. In particular, there is a surjective map

(1.1) H i(X,C) ։ H i(X,OX).

This seemingly innocent fact has far reaching consequences: it plays
an important role in the proof of the Kodaira vanishing theorem [Kol87]
and has some nice consequences for deformations of smooth proper
varieties.
Because of the usefulness of this map we are interested in finding out

how this could be extended to (some) singular varieties. Let us first
recall where this map comes from.
For a smooth proper variety, the Hodge-to-de-Rham (a.k.a. Frölicher)

spectral sequence degenerates at E1 hence the singular cohomology
group H i(X,C) admits a Hodge filtration

(1.2) H i(X,C) = F 0H i(X,C) ⊇ F 1H i(X,C) ⊇ . . .
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and in particular there exists a natural surjective map

(1.3) H i(X,C) ։ Gr0FH
i(X,C)

where

(1.4) Gr0FH
i(X,C) ≃ H i(X,OX).

Deligne’s theory of (mixed) Hodge stuctures implies that even if X
is singular (but still proper) there still exists a Hodge filtration and
(1.3) remains true, but in general (1.4) fails.
However, there is something one can still say in general: Even if X

is singular (but still proper) there exist natural maps between these
groups; namely the map from (1.3) factors through H i(X,OX) (see
(2.3) for a more precise statement):

(1.5) H i(X,C)
β

//

α
,, ,,

H i(X,OX) γ
// Gr0FH

i(X,C).

Du Bois singularities were introduced by Steenbrink to identify the
class of singularities for which γ in the above diagram is an isomor-
phism, that is, those for which (1.4) remains true as well. However,
naturally, one does not define a class of singularities by properties of
proper varieties. Singularities should be defined by local properties and
Du Bois singularities are indeed defined locally. For the definition see
(2.4).
It is known that rational singularities are Du Bois (conjectured by

Steenbrink and proved in [Kov99]) and so are log canonical singular-
ities (conjectured by Kollár and proved in [KK10]). These properties
make Du Bois singularities very important in higher dimensional ge-
ometry, especially in moduli theory (see [Kol11] for more details on
applications).
Unfortunately the definition of Du Bois singularities is rather techni-

cal. The most important and useful fact about them is the consequence
of (1.3) and (1.4) that if X is a proper variety over C with Du Bois
singularities, then the natural map

(1.6) H i(X,C) ։ H i(X,OX)

is surjective.
One could try to take this as a definition, but it would not lead to a

good result for two reasons. As mentioned earlier, singularities should
be defined locally and it is not at all likely that a global cohomolog-
ical assumption would turn out to be a local property. Second, this
particular condition could obviously hold “accidentally” and lead to



THE INTUITIVE DEFINITION OF DU BOIS SINGULARITIES 3

the inclusion of singular spaces that should not be included, thereby
further lowering the chances of having a local description of this class
of singularities.
Therefore the reasonable approach is to keep Steenbrink’s original

definition, after all it has been proven to define a useful class. It does
satisfy the first requirement above: it is defined locally. Once that
is accepted, one might still wonder if proper varieties with Du Bois
singularities could be characterized with a property that is close to
requiring that (1.6) holds.
The main result of the present paper is exactly a characterization

like that.
As we have already observed, simply requiring that (1.6) holds is

likely to lead to a class of singularities that is too large. A more nat-
ural requirement is to ask that (1.4) holds, or in other words that γ

is an isomorphism. Clearly, (1.4) implies (1.6) by (1.5), so our goal
requirement is indeed satisfied.
The definition [Ste83, (3.5)] of Du Bois singularities easily implies

that if X has Du Bois singularities and H ⊂ X is a general member of
a basepoint-free linear system, thenH has Du Bois singularities as well.
Therefore it is reasonable that in trying to give an intuitive definition
of Du Bois singularities, one may assume that the defining condition
holds for the intersection of general members of a fixed basepoint-free
linear system.
I will prove here that this is actually enough to characterize Du Bois

singularities (see (2.4) for their definition). This result is not geared
for applications, it is mainly interesting from a philosophical point of
view. It says that the local definition not only achieves the desired
property for proper varieties, but does it in an economical way: it does
not allow more than it has to.
At the same time, a benefit of this characterization is the fact that

for the uninitiated reader this provides a relatively simple criterion
without the use of derived categories or resolutions directly. In fact,
one can make the condition numerical. This is a trivial translation
of the “real” statement, but further emphasizes the simplicity of the
criterion.
In order to do this we need to define some notation: Let X be a

proper algebraic variety over C and consider Deligne’s Hodge filtration
F

q

on H i(X,C) as in (1.2). Let

Gr
p
FH

i(X,C) = F pH i(X,C)
/
F p+1H i(X,C)
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and
f
p,i(X) = dimCGr

p
FH

i(X,C).

I will also use the usual notation

h
i(X,OX) = dimC H

i(X,OX).

Recall (cf. (1.5)) that the natural surjective map from H i(X,C) fac-
tors through H i(X,OX):

H i(X,C) //

,, ,,

H i(X,OX) // Gr0FH
i(X,C).

In particular, the natural morphism

(1.7) H i(X,OX) ։ Gr0FH
i(X,C)

is also surjective and hence

(1.8) h
i(X,OX) ≥ f

0,i(X).

Now we are almost ready for the main theorem. It essentially says
that if the opposite inequality of (1.8) holds for general complete in-
tersections, then the ambient variety has Du Bois singularities.
The following definition will be used throughout the article:

Definition 1.9. Let X be a proper variety over C. A linear system
d is the collection of effective (Cartier) divisors linearly equivalent to
a fixed Cartier divisor. If X is not normal an effective Cartier divisor
is defined as a subscheme defined by a single non-zero divisor at each
point. If L is a line bundle, then global sections of L define effective
Cartier divisors. A linear system is basepoint-free if for every x ∈ X

there exists a member of the linear system that does not contain x.

Theorem 1.10. Let X be a proper variety over C with a fixed basepoint-
free linear system d. (For instance, X is projective with a fixed pro-
jective embedding). Then X has Du Bois singularities if and only if
h
i(L,OL) ≤ f

0,i(L) for i > 0 for any L ⊆ X which is the intersection
of a set of general members of d. (X is included among these as the
intersection of the empty set of general members of d).

Corollary 1.11. Let X ⊆ P
N be a projective variety over C with only

isolated singularities. Then X has only Du Bois singularities if and
only if hi(X,OX) ≤ f

0,i(X) for i > 0.

Proof. As X has only isolated singularities, a general hyperplane sec-
tion is smooth and does not contain any of the singular points. Hence
as soon as h

i(X,OX) ≤ f
0,i(X) one also has that h

i(L,OL) ≤ f
0,i(L)

for any L ⊆ X which is the intersection of general hyperplanes in P
N .

Therefore the statement follows from (1.10). �
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These statements reiterate the fact that singularities impose restric-
tions on global cohomological conditions. In particular one has the
following ad hoc consequence:

Corollary 1.12. Let X ⊆ P
N be a projective variety over C with only

isolated singularities. Assume that hi(X,OX) = 0 for i > 0. Then X

has only Du Bois singularities.

Proof. As f0,i(X) ≥ 0, the statement follows from (1.11). �

Observe that (1.7) combined with the condition h
i(L,OL) ≤ f

0,i(L)
implies that H i(L,OL) → Gr0FH

i(L,C) is an isomorphism and hence
(1.10) follows from the following.

Theorem 1.13. Let X be a proper variety over C with a fixed basepoint-
free linear system d. Then X has only Du Bois singularities if and only
if for any L ⊆ X, which is the intersection of a (possibly empty) set of
general members of d, the natural map,

νi = νi(L) : H
i(L,OL) → Gr0FH

i(L,C)

given by Deligne’s theory1 is an isomorphism for all i.

Remark 1.14. It is clear that if X has only Du Bois singularities then
νi(L) is an isomorphism for all L. Therefore the interesting statement
of the theorem is that the condition above implies that X has only
Du Bois singularities.

Theorem 1.13 will be proven in two steps. A reduction step showing
that it is enough to prove the statement in the case when the non-
Du Bois locus is isolated (3.6) and the proof in that special case (3.8).

Definitions and Notation 1.15. Unless otherwise stated, all objects
are assumed to be defined over C, all schemes are assumed to be of finite
type over C and a morphism means a morphism between schemes of
finite type over C.
Let X be a complex scheme (i.e., a scheme of finite type over C)

of dimension n. Let Dfilt(X) denote the derived category of filtered
complexes of OX-modules with differentials of order≤ 1 andDfilt,coh(X)
the subcategory of Dfilt(X) of complexes K, such that for all i, the
cohomology sheaves of GrifiltK

q

are coherent cf. [DB81], [GNPP88].
Let D(X) and Dcoh(X) denote the derived categories with the same
definition except that the complexes are assumed to have the trivial
filtration. The superscripts +,−, b carry the usual meaning (bounded
below, bounded above, bounded). Isomorphism in these categories is
denoted by ≃qis . A sheaf F is also considered as a complex F

q

with

1see [Del71, Del74, Ste83, GNPP88] (cf. (1.5), (2.3))
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F 0 = F and F i = 0 for i 6= 0. If K
q

is a complex in any of the above
categories, then hi(K

q

) denotes the i-th cohomology sheaf of K
q

.
The right derived functor of an additive functor F , if it exists, is

denoted by RF and R
iF is short for hi ◦ RF . Furthermore H

i will
denote RiΓ, where Γ is the functor of global sections

2. HYPERRESOLUTIONS AND DU BOIS’ ORIGINAL DEFINITION

We will start with Du Bois’s generalized De Rham complex, an ob-
ject of Dfilt(X). The original construction of the Deligne-Du Bois’s
complex, Ω

q

X , is based on simplicial resolutions. The reader interested
in the details is referred to the original article [DB81]. Note also that
a simplified construction was later obtained in [Car85] and [GNPP88]
via the general theory of polyhedral and cubic resolutions. An easily
accessible introduction can be found in [Ste85].
The word “hyperresolution” will refer to either simplicial, polyhe-

dral, or cubic resolution. Formally, the construction of Ω
q

X is the same
regardless the type of resolution used and no specific aspects of either
types will be used.

Theorem 2.1 [DB81, 3.1, 3.2, 3.10, 4.5, 4.11]. Let X be a complex
scheme of finite type. Then there exists an object Ω

q

X ∈ ObDfilt(X),
unique up to quasi-isomorphism, such that using the notation

Ωp
X := Gr

p
filt Ω

q

X [p],

it satisfies the following properties

(2.1.1) Ω
q

X ≃qis CX , i.e., Ω
q

X is a resolution of the constant sheaf C on
X.

(2.1.2) Ω
q

( ) is functorial, i.e., if φ : Y → X is a morphism of proper
complex schemes of finite type, then there exists a natural map
φ∗ of filtered complexes

φ∗ : Ω
q

X → Rφ∗Ω
q

Y .

Furthermore, Ω
q

X ∈ Ob
(
Db

filt,coh(X)
)
and if φ is proper, then

φ∗ is a morphism in Db
filt,coh(X).

(2.1.3) Let U ⊆ X be an open subscheme of X. Then

Ω
q

X

∣∣
U
≃qis Ω

q

U .

(2.1.4) If X is proper, there exists a spectral sequence degenerating at
E1 and abutting to the singular cohomology of X such that the
resulting filtration coincides with Deligne’s Hodge filtration:

E
pq
1 = H

q (X,Ωp
X) ⇒ Hp+q(X,C).
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In particular,

Gr
p
FH

p+q(X,C) ≃ H
q (X,Ωp

X) .

(2.1.5) If ε q : X q → X is a hyperresolution, then

Ω
q

X ≃qis Rε q
∗
Ω

q

X q
.

In particular, hi (Ωp
X) = 0 for i < 0.

(2.1.6) There exists a natural map, OX → Ω0
X , compatible with (2.1.2).

(2.1.7) If X is smooth, then

Ω
q

X ≃qis Ω
q

X .

In particular,

Ωp
X ≃qis Ω

p
X .

(2.1.8) If φ : Y → X is a resolution of singularities, then

ΩdimX
X ≃qis Rφ∗ωY .

(2.1.9) If π : Ỹ → Y is a projective morphism, X ⊂ Y is a reduced
closed subscheme such that π is an isomorphism outside of X,

E is the reduced subscheme of Ỹ with support equal to π−1(X),
and π′ : E → X is the induced map, then for each p one has an
exact triangle in the derived category,

Ωp
Y

// Ωp
X ⊕ Rπ∗Ω

p

Ỹ

−
// Rπ′

∗
Ωp

E

+1
// .

Corollary 2.2. Let X be a complex scheme of finite type and H ⊂ X a
general member of a basepoint-free linear system. Then Ω

q

H ≃qis Ω
q

X⊗LOH

and hence in particular Ω0
H ≃qis Ω

0
X ⊗L OH .

Proof. Let ε q : X q → X be a hyperresolution. SinceH is general, it is a
reduced effective Cartier divisor and the fiber product X q ×X H → H

provides a hyperresolution of H. Then the statement follows from
(2.1.5) applied to both X and H. �

It turns out that the Deligne-Du Bois complex behaves very much
like the de Rham complex for smooth varieties. Observe that (2.1.4)
says that the Hodge-to-de Rham spectral sequence works for singu-
lar varieties if one uses the Deligne-Du Bois complex in place of the
de Rham complex. This has far reaching consequences and if the asso-
ciated graded pieces, Ωp

X turn out to be computable, then this single
property leads to many applications.
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Observation 2.3. Notice that (2.1.6) gives a natural map OX → Ω0
X .

This implies that the natural map H i(X,C) → H
i(X,Ω0

X), which is
surjective when X is proper because of the degeneration at E1 of the
spectral sequence in (2.1.4), factors as

H i(X,C) //

,,

H i(X,OX) // H
i(X,Ω0

X) = Gr0FH
i(X,C).

The induced map H i(X,OX) → Gr0FH
i(X,C) is the one that appears

in (1.13).

Definition 2.4. A scheme X is said to have Du Bois singularities (or
DB singularities for short) if the natural map OX → Ω0

X from (2.1.6)
is a quasi-isomorphism.

Remark 2.5. If ε q : X q → X is a hyperresolution of X then X has
Du Bois singularities if and only if the natural map OX → Rε q

∗
OX q

is a quasi-isomorphism.

Example 2.6. It is easy to see that smooth points are Du Bois and
Deligne proved that normal crossing singularities are Du Bois as well
cf. [DJ74, Lemme 2(b)].

3. THE PROOF OF (1.13)
As observed in (1.14), we only need to prove that if for every i > 0

and for every L ⊆ X which is the intersection of general members of
d, the natural map

(3.1) νi : H
i(L,OL) → Gr0FH

i(L,C)

is an isomorphism, then X has Du Bois singularities.

Observation 3.2. Note that it follows that νi is an isomorphism for
all i ∈ Z. Indeed, both sides are zero for i < 0 and have the same
dimension for i = 0. Since νi is surjective this implies the claim.

Definition 3.3. Let X be a complex scheme of finite type and let
ΣX ⊆ X denote the locus of points where X does not have Du Bois
singularities, i.e., ΣX is the smallest closed subset ofX such thatX\ΣX

has Du Bois singularities. Using this notation X has Du Bois singular-
ities if and only if ΣX = ∅.

Definition 3.4. [Kov11, 2.9] The DB defect of X, denoted by Ω×

X , is
defined as the mapping cone of the natural morphism OX → Ω0

X . In
other words, by definition there exists an exact triangle,

(3.4.1) OX
// Ω0

X
// Ω×

X

+1
// .

Observe that ΣX = supp(Ω×

X) = ∪i supph
i(Ω×

X) and X has Du Bois
singularities if and only if Ω×

X ≃qis 0.
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Lemma 3.5. Let X be a complex scheme of finite type and H ⊂ X

a reduced effective Cartier divisor such that Ω×

H ≃qis Ω
×

X ⊗L OH holds.
Then ΣH = ΣX ∩H.

Proof. If Ω×

X ≃qis 0, then so is Ω×

H ≃qisΩ
×

X⊗LOH and hence ΣH ⊆ ΣX∩H.
Next let P ∈ X \ΣH . Then Ω×

H ≃qis 0 in a neighborhood of P , so in
the same neighborhood we have that Ω×

X ⊗L OX(−H)≃qis Ω
×

X . Since
OX(−H) is locally free this implies that for all i,

hi(Ω×

X) ≃ hi(Ω×

X)⊗ OX(−H),

which in turn implies that H is disjoint from supphi(Ω×

X) for all i in
this neighborhood of P and hence P 6∈ ΣX ∩H and so the statement
follows. �

Corollary 3.6. Let X be a complex scheme of finite type and H ⊂ X a
general member of a basepoint-free linear system. Then ΣH = ΣX ∩H.

Proof. By (2.2) Ω0
H ≃qis Ω

0
X⊗LOH , so by (3.4.1) Ω×

H ≃qis Ω
×

X⊗LOH and
hence the statement follows from (3.5). �

Remark 3.7. The last statement fails if H is not general since there
exist non-Du Bois hypersurfaces [Kov99, 3.6]. However, the implication
ΣH ⊇ ΣX ∩H holds for arbitrary Cartier divisors by [KS11, 4.1].

As our goal is to prove that ΣX = ∅, using (3.5) we may replace X

with an intersection of general members of d and assume that ΣX is
finite. In other words, (1.13) follows from the following special case:

Theorem 3.8. Let X be a proper variety over C and assume that there
exists a finite set Σ ⊆ X such that X \ Σ has Du Bois singularities.
Then X has Du Bois singularities if and only if

νi : H
i(X,OX) → Gr0FH

i(X,C)

is an isomorphism for all i.

Proof. By (3.2) and (2.1.4), H i(X,OX)
≃

−→ H
i(X,Ω0

X) is an isomor-
phism for all i ∈ Z, and hence

(3.8.1) H
i(X,Ω×

X) = 0

for all i ∈ Z. On the other hand there exists a spectral sequence
computing H

i(X,Ω×

X):

Hp(X, hq(Ω×

X)) ⇒ H
p+q(X,Ω×

X).

Observe that supphq(Ω×

X) ⊆ ΣX ⊆ Σ and hence it is 0-dimensional.
Consequently

Hp(X, hq(Ω×

X)) = 0
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for p > 0, and therefore

H
i(X,Ω×

X) = H0(X, hi(Ω×

X)) = hi(Ω×

X)

for all i ∈ Z. Comparing with (3.8.1) we obtain that hi(Ω×

X) = 0 for
all i ∈ Z and hence Ω×

X ≃qis 0. By the definition of the DB defect this
implies (cf. (3.4.1)) that X has Du Bois singularities. �

This proves (1.13) by the argument preceding (3.8). By (1.14) that
implies (1.10), so all desired statements are now proven.
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