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1. Introduction

In recent years there has been considerable interest in understanding
the geometry of irregular varieties, i.e., varieties admitting a nontrivial
morphism to an abelian veriety. One of the central results in the area
is the following result conjectured by M. Green and R. Lazarsfeld (cf.
[GL91, 6.2]) and proven in [Hac04] and [PP09].

Theorem 1.1. Let λ : X → A be a generically finite (onto its image)
morphism from a compact Kähler manifold to a complex torus. If L →
X×Pic0(A) is the universal family of topologically trivial line bundles,
then

RiπPic0(A)∗L = 0 for i < n.

At first sight, the above result appears to be quite technical however
it has many concrete applications (see for example [CH11], [JLT11] and
[PP09]). In this paper we will show that (1.1) does not generalize to
characteristic p > 0 or to singular varieties in characteristic 0.

Notation 1.2. Let A be an abelian variety over an algebraically closed

field k, Â its dual abelian variety, P the normalized Poincaré bundle

on A × Â and pÂ : A × Â → Â the projection. Let λ : X → A

be a projective morphism, πÂ : X × Â → Â the projection and L :=

(λ×idÂ)
∗P where (λ×idÂ) : X×Â → A×Â is the product morphism.

Theorem 1.3. Let k be an algebraically closed field. Then, using the
notation in (1.2), there exist a projective variety X over k such that

• if char k = p > 0, then X is smooth, and

• if char k = 0, then X has isolated Gorenstein log canonical singular-
ities,

and a separated projective morphism to an abelian variety λ : X → A
which is generically finite onto its image and such that

RiπÂ∗
L 6= 0 for some 0 ≤ i < n.
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Remark 1.4. Due to the birational nature of the statement, (1.1)
trivially generalizes to the case of X having only rational singularities.
Arguably Gorenstein log canonical singularities are the simplest exam-
ples of singularities that are not rational. Therefore the characteristic
0 part of (1.3) may be interpreted as saying that generic vanishing does
not extended to singular varieties in a non-trivial way.

Remark 1.5. Note that (1.3) seems to contradict the main result of
[Par03].
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2. Preliminaries

Let A be a g-dimensional abelian variety over an algebraically closed

field k, Â its dual abelian variety pA and pÂ the projections of A × Â

onto A and Â, and P the normalized Poincaré bundle on A× Â. We

denote by RŜ : D(A) → D(Â) the usual Fourier-Mukai functor given

by RŜ(F ) = RpÂ∗
(p∗AF ⊗ P) cf. [Muk81]. There is a corresponding

functor RS : D(Â) → D(A) such that

RS ◦RŜ = (−1A)
∗[−g] and RŜ ◦RS = (−1Â)

∗[−g].

Definition 2.1. An object F ∈ D(A) is called WIT-i if RjŜ(F ) = 0

for all j 6= i. In this case we use the notation F̂ = RiŜ(F ).

Notice that if F is a WIT-i coherent sheaf (in degree 0), then F̂ is a

WIT-(g − i) coherent sheaf (in degree i) and F ≃ (−1A)
∗Rg−iS(F̂ ).

One easily sees that if F and G are arbitrary objects, then

HomD(A)(F,G) = Hom
D(Â)(RŜF,RŜG).

An easy consequence (cf. [Muk81, 2.5]) is that if F is a WIT-i sheaf
and G is a WIT-j sheaf (or if F is a WIT-i locally free sheaf and G is
a WIT-j object – not necessarily a sheaf), then
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(2.1.1) ExtkOA
(F,G) ≃ HomD(A)(F,G[k]) ≃

≃ Hom
D(Â)(RŜF,RŜG[k]) =

= Hom
D(Â)(F̂ [−i], Ĝ[k − j]) ≃ Extk+i−j

O
Â

(F̂ , Ĝ).

Let L be any ample line bundle on Â, then RS(L) = R0S(L) = L̂ is
a vector bundle on A of rank h0(L). For any x ∈ A, let tx : A → A be

the translation by x and let φL : Â → A be the isogeny determined by

φL(x̂) = t∗x̂L⊗ L∨, then φ∗
L(L̂) =

⊕
h0(L) L

∨.
Let λ : X → A be a projective morphism of normal varieties, and

L = (λ× idÂ)
∗P. We let RΦ : D(X) → D(Â) be the functor defined

by RΦ(F ) = RπÂ∗
(π∗

XF⊗L ) where πX and πÂ denote the projections

of X × Â on to the first and second factor. Note that

(2.1.2) RΦ(F ) = RπÂ∗
(π∗

XF ⊗ L ) ≃1

≃ RpÂ∗
R(λ× idÂ)∗(π

∗
XF ⊗ (λ× idÂ)

∗
P) ≃2

≃ RpÂ∗

(
R(λ× idÂ)∗(π

∗
XF )⊗ P

)
≃3

≃ RpÂ∗
(p∗ARλ∗F ⊗ P) ≃ RŜ(Rλ∗F ),

where ≃1 follows by composition of derived functors [Har66, II.5.1], ≃2

follows by the projection formula [Har66, II.5.6], and ≃3 follows by flat
base change [Har66, II.5.12].

We also define RΨ : D(Â) → D(X) by RΨ(F ) = RπX∗(π
∗

Â
F ⊗L ).

Notice that if F is a locally free sheaf, then π∗

Â
F ⊗ L is also a locally

free sheaf. In particular, for any i ∈ Z, we have that

(2.1.3) RiΨ(F ) ≃ RiπX∗(π
∗

Â
F ⊗ L ).

We will need the following fact (which is also proven during the proof
of Theorem B of [PP11]).

Lemma 2.2. Let L be an ample line bundle on Â, then

RΨ(L∨) = RgΨ(L∨) = λ∗L̂∨.

Proof. Since L is ample, H i(Â, L∨ ⊗ Lx) = H i(Â, L∨ ⊗ Pλ(x)) = 0
for i 6= g where Pλ(x) = P|λ(x)×Â and Lx = L |x×Â are isomorphic.

By cohomology and base change RΨ(L∨) = RgΨ(L∨) (resp. L̂∨) is a

vector bundle of rank hg(Â, L∨) on X (resp. on A).
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The a natural transformation idA×Â → (λ× idÂ)∗(λ× idÂ)
∗ induces

a natural morphism,

L̂∨ = RgpA∗(p
∗

Â
L∨ ⊗ P) → RgpA∗(λ× idÂ)∗(π

∗

Â
L∨ ⊗ L ).

Let σ = pA ◦ (λ × idÂ) = λ ◦ πX . By the Grothendieck spectral
sequence associated to pA∗ ◦ (λ× idÂ)∗ there exists a natural morphism

RgpA∗(λ× idÂ)∗(π
∗

Â
L∨ ⊗ L ) → Rgσ∗(π

∗

Â
L∨ ⊗ L ),

and similarly by the Grothendieck spectral sequence associated to λ∗ ◦
πX∗ there exists a natural morphism

Rgσ∗(π
∗

Â
L∨ ⊗ L ) → λ∗R

gπX∗(π
∗

Â
L∨ ⊗ L ).

Combining the above three morphisms gives a natural morphism

L̂∨ → λ∗R
gπX∗(π

∗

Â
L∨ ⊗ L ) = λ∗R

gΨ(L∨),

and hence by adjointness a natural morphism,

η : λ∗L̂∨ → RgΨ(L∨).

For any point x ∈ X, by cohomology and base change, the induced
morphism on the fiber over x is an isomorphism:

ηx : λ∗L̂∨ ⊗ κ(x) ≃ Hg(λ(x)× Â, L∨ ⊗ Pλ(x))
≃

−→
≃

−→ Hg(x× Â, L∨ ⊗ Lx) ≃ RgΨ(L∨)⊗ κ(x).

Therefore ηx is an isomorphism for all x ∈ X and hence η is an isomor-
phism. �

3. Examples

Notation 3.1. Let T ⊆ P
n be a projective variety. The cone over T

in A
n+1 will be denoted by C(T ). In other words, if T ≃ ProjS, then

C(T ) ≃ SpecS.
Linear equivalence between (Weil) divisors is denoted by ∼ and strict

transform of a subvariety T by the inverse of a birational morphism σ
is denoted by σ−1

∗ T .

Example 3.2. Let k be an algebraically closed field, V ⊆ P
n and

W ⊆ P
m two smooth projective varieties over k, and p ∈ V a closed

point. Let x0, . . . , xn and y0, . . . , ym be homogenous coordinates on P
n

and P
m respectively.

Consider the embedding V × W ⊂ P
N induced by the Segre em-

bedding of Pn × P
m. We may choose homogenous coordinates zij for

i = 0, . . . , n and j = 0, . . . ,m on P
N and in these coordinates Pn × P

m
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is defined by the equations zαγzβδ − zαδzβγ for all 0 ≤ α, β ≤ n and
0 ≤ γ, δ ≤ m.
Next let H ⊂ W such that {p} × H ⊂ {p} × W is a hyperplane

section of {p} × W in P
N . Let Y = C(V × W ) ⊂ A

N+1 and Z =
C(V × H) ⊂ Y and let v ∈ Z ⊂ Y denote the common vertex of Y
and Z. If dimW = 0, then H = ∅. In this case let Z = {v} the vertex
of Y . Finally let mv denote the ideal of v in the affine coordinate ring
of Y . It is generated by all the variables zij .

Proposition 3.3. Let f : X → Y be the blowing up of Y along Z.
Then f is an isomorphism over Y \{v} and the scheme theoretic preim-
age of v (whose support is the exceptional locus) is isomorphic to V :

f−1(v) ≃ V.

Proof. As Z is of codimension 1 in Y and Y \ {v} is smooth, it follows
that Z \ {v} is a Cartier divisor in Y \ {v} and hence f is indeed an
isomorphism over Y \ {v}.
To prove the statement about the exceptional locus of f , first assume

that V = P
n, W = P

m, p = [1 : 0 : · · · : 0], and {p} × H = (z0m =
0) ∩ ({p} × W ). Then H = (ym = 0) ⊆ W and hence I = I(Z), the
ideal of Z in the affine coordinate ring of Y , is generated by {zim|i =
0, . . . , n}. Then by the definition of blowing up, X = Proj⊕d≥0I

d and
f−1v ≃ Proj⊕d≥0I

d/Idmv.
Notice that Id/Idmv is a k-vector space generated by the degree

d monomials in the variables {zim|i = 0, . . . , n}. It follows that the
graded ring ⊕d≥0I

d/Idmv is nothing else but k[zim|i = 0, . . . , n] and
hence f−1v ≃ P

n = V , so the claim is proved in this case.
Next consider the case when V ⊆ P

n is arbitrary, but W = P
m. In

this case the calculation is similar, except that we have to account for
the defining equations of V . They show up in the definition of the
coordinate ring of Y in the following way: If a homogenous polynomial
g ∈ k[x0, . . . , xn] vanishes on V (i.e., g ∈ I(V )h), then define gγ ∈ k[zij ]
for any 0 ≤ γ ≤ m by replacing xα with zαγ for each 0 ≤ α ≤ n. Then
{gγ|0 ≤ γ ≤ m, g ∈ I(V )h} generates the ideal of Y in the affine
coordinate ring of C(Pn × P

m). It follows that the above computation
goes through the same way, except that the variables {zim|i = 0, . . . , n}
on the exceptional Pn are subject to the equations {gm|g ∈ I(V )h}.
However, this simply means that the exceptional locus of f , i.e., f−1v,
is cut out from P

n by these equations and hence it is isomorphic to V .
Finally, consider the general case. The way W changes the setup

is the same as what we described for V . If a homogenous polynomial
h ∈ k[y0, . . . , ym] vanishes on W (i.e., h ∈ I(W )h), then define hα ∈
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k[zij ] for any 0 ≤ α ≤ n by replacing yγ with zαγ for each 0 ≤ γ ≤ m.
Then {hα|0 ≤ α ≤ n, h ∈ I(W )h} generates the ideal of Y in the affine
coordinate ring of C(V × P

m).
However, in this case, differently from the case of V , we do not get

any additional equations. Indeed, we chose the coordinates so that
H = (ym = 0) and hence ym 6∈ I(W ), which means that we may choose
the rest of the coordinates such that [0 : · · · : 0 : 1] ∈ W . This implies
that no polynomial in the ideal of W may have a monomial term that
is a constant multiple of a power of ym. It follows that, since I = I(Z)
is generated by the elements {zim|i = 0, . . . , n}, any monomial term
of any polynomial in the ideal of Y in the affine coordinate ring of
C(V × P

m) that lies in Id for some d > 0, also lies in Idmv. Therefore
these new equations do not change the ring ⊕Id/Idmv and so f−1v is
still isomorphic to V . �

Notation 3.4. We will use the notation introduced in (3.3) for X, Y ,
Z, and f . We will also use XP, YP, ZP, and fP : XP → YP to denote the
same objects in the caseW = P

m, i.e., YP = C(V ×P
m), ZP = C(V ×H)

where H ⊂ P
m is such that {p}×H ⊂ {p}×P

m is a hyperplane section
of {p} × P

m in P
N .

Corollary 3.5. fP is an isomorphism over YP \ {v} and the scheme
theoretic preimage of v (whose support is the exceptional locus) via fP
is isomorphic to V :

f−1
P

v ≃ V.

Proof. This was proven as an intermediate step in, and is also straight-
forward from (3.3) by taking W = P

m. �

Proposition 3.6. Assume that V and W are both positive dimensional,
W ⊆ P

m is a complete intersection, and the embedding V × P
r ⊂ P

N

for any linear subvariety P
r ⊆ P

m induced by the Segre embedding of
P
n × P

m is projectively normal. Then X is Gorenstein.

Proof. First note that the projective normality assumption implies that
YP = C(V × P

m) is normal and hence we may consider divisors and
their linear equivalence on it.
Let H ′ ⊂ P

m be an arbitrary hypersurface (different from H and
not necessarily linear). Observe that H ′ ∼ d · H with d = degH ′, so
V ×H ′ ∼ d · (V ×H), and hence C(V ×H ′) ∼ d ·C(V ×H) as divisors
on YP.
Since fP is a small morphism it follows that the strict transforms

of these divisors on XP are also linearly equivalent: f−1
∗ C(V × H ′) ∼

d · f−1
∗ C(V × H) (where by abuse of notation we let f = fP). By
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the basic properties of blowing up, the (scheme-theoretic) pre-image of
C(V ×H) is a Cartier divisor on X which coincides with f−1

∗ C(V ×H)
(as f is small). However, then f−1

∗ C(V ×H ′) is also a Cartier divisor
and hence it is Gorenstein if and only if XP is. Note that f−1

∗ C(V ×H ′)
is nothing else but the blow up of C(V ×H ′) along C(V × (H ′ ∩H)).
By assumption W is a complete intersection, so applying the above

argument for the intersection of the hypersurfaces cutting out W shows
that X is Gorenstein if and only if XP is Gorenstein. In other words, it
is enough to prove the statement with the additional assumption that
W = P

m. In particular, we have X = XP, etc.
In this case the same argument as above shows that the statement

holds for m if and only if it holds for m−1, so we only need to prove it
for m = 1. In that case H ∈ P

1 is a single point. Choose another point
H ′ ∈ P

1. As above, f−1
∗ C(V ×H ′) is a Cartier divisor in X and it is the

blow up of C(V ×H ′) along the intersection C(V ×H ′) ∩ C(V ×H).
We claim that this intersection is just the vertex of C(V ).
To see this, view Y = YP = C(V ×P

1) as a subscheme of C(Pn×P
1).

Inside C(Pn ×P
1) the cones C(Pn ×H) and C(Pn ×H ′) are just linear

subspaces of dimension n+1 whose scheme theoretic intersection is the
single reduced point v. Therefore we have that

C(V ×H ′) ∩ C(V ×H) ⊆ C(Pm ×H ′) ∩ C(Pm ×H) = {v}

proving the same for this intersection.
Finally then f−1

∗ C(V × H ′), the blow up of C(V × H ′) along the
intersection C(V × H ′) ∩ C(V × H) is just the blow up of C(V ) at
its vertex and hence it is smooth and in particular Gorenstein. This
completes the proof. �

Lemma 3.7. Let V ⊆ P
n and W ⊆ P

m be two normal complete in-
tersection varieties of positive dimension. Assume that either dimV +
dimW > 2 or if dimV = dimW = 1, then n = m = 2. Then the
embedding V ×W ⊂ P

N induced by the Segre embedding of Pn × P
m is

projectively normal.

Proof. It follows easily from the definition of the Segre embedding, that
it is itself projectively normal and hence it is enough to prove that

(3.7.1) H0(Pn × P
m,OPN (d)|Pn×Pm) → H0(V ×W,OPN (d)|V×W )

is surjective for all d ∈ N.
We prove this by induction on the combined number of hypersurfaces

cutting out V and W . When this number is 0, then V = P
n and

W = P
m so we are done.
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Otherwise, assume that dimV ≤ dimW and if dimV = dimW = 1
then deg V = e ≥ degW . Let V ′ ⊆ P

n be a complete intersection
variety of dimension dimV + 1 such that V = V ′ ∩H ′ where H ′ ⊂ P

n

is a hypersurface of degree e. Then V × W ⊂ V ′ × W is a Cartier
divisor with ideal sheaf I ≃ π∗

1OV ′(−e) where π1 : V ′ × W → V ′ is
the projection to the first factor. It follows that for every d ∈ N there
exists a short exact sequence,

0 → OPN (d)|V ′×W ⊗ π∗
1OV ′(−e) → OPN (d)|V ′×W → OPN (d)|V×W → 0,

and hence an induced exact sequence of cohomology

H0(V ′ ×W,OPN (d)|V ′×W ) → H0(V ×W,OPN (d)|V×W ) →

→ H1(V ′ ×W,π∗
1OV ′(d− e)⊗ π∗

2OW (d)),

where π2 : V
′ ×W → W is the projection to the second factor.

Since by assumption V ′ is a complete intersection variety of dimen-
sion at least 2, it follows that H1(V ′,OV ′(d− e)) = 0.
If dimW > 1, then it follows similarly that H1(W,OW (d)) = 0.
If dimW = 1, then since 0 < dimV ≤ dimW we also have dimV =

1. By assumption V and W are normal and hence regular, and in this
case we assumed earlier that deg V = e ≥ degW . It follows that as
long as e > d, thenH0(V ′,OV ′(d−e)) = 0 and if e ≤ d, then d ≥ degW
and hence H1(W,OW (d)) = 0.
In both cases we obtain that by the Künneth formula (cf. [EGAIII2,

(6.7.8)], [Kem93, 9.2.4]),

H1(V ′ ×W,π∗
1OV ′(d− e)⊗ π∗

2OW (d)) = 0,

and hence

H0(V ′ ×W,OPN (d)|V ′×W ) → H0(V ×W,OPN (d)|V×W )

is surjective. By induction we may assume that

H0(Pn × P
m,OPN (d)|Pn×Pm) → H0(V ′ ×W,OPN (d)|V ′×W )

is surjective, so it follows that the desired map in (3.7.1) is surjective
as well and the statement is proven. �

Corollary 3.8. Let V ⊆ P
n and W ⊆ P

m be two positive dimensional
normal complete intersection varieties and assume that if dimV = 1,
then n = 2. Then X is Gorenstein.

Proof. Follows by combining (3.6) and (3.7). Note that in (3.6) the
embedding V × W →֒ P

N does not need to be projectively normal,
only V × P

r →֒ P
N does, which indeed follows from (3.7). �
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Example 3.9. Let k be an algebraically closed field. We will construct
a birational projective morphism f : X → Y such that X is Gorenstein
(and log canonical) and R1f∗ωX 6= 0.
Let E1, E2 ⊆ P

2 be two smooth projective cubic curves. Consider the
construction in (3.2) with V = E1, W = E2. As in that construction
let f : X → Y be the blow up of Y = C(E1×E2) along Z = C(E1×H)
where H ⊆ E2 is a hyperplane section. The common vertex of Y and
Z will still be denoted by v ∈ Z ⊂ Y . The map f is an isomorphism
over Y \ {v} and f−1v ≃ E1 by (3.3).

Proposition 3.10. Both X and Y are smooth in codimension 1 with
trivial canonical divisor and X is Gorenstein and hence Cohen-Macaulay.

Proof. By construction Y \ {v} ≃ X \ f−1v is smooth, so the first
statement follows. Furthermore, Y \{v} ≃ X \f−1v is an affine bundle
over E1 × E2, so by the choice of E1 and E2, the canonical divisor of
Y \ {v} ≃ X \ f−1v is trivial. However, the complement of this set
has codimension at least 2 in both X and Y and hence their canonical
divisors are trivial as well. Since E1, E2 ⊂ P

2 are hypersurfaces, X is
Gorenstein by (3.8). �

Let E denote f−1v. So we have that E ≃ E1 and there is a short
exact sequence

0 → IE → OX → OE → 0.

Pushing this forward via f we obtain a homomorphism φ : R1f∗OX →
R1f∗OE. Since the maximum dimension of any fiber of f is 1, we
have R2f∗IE = 0. It follows that R1f∗ωX = R1f∗OX 6= 0, because
R1f∗OE 6= 0 (it is a sheaf supported on v of length h1(OE) = 1).

Example 3.11. Let k be an algebraically closed field of characteristic
p 6= 0. Then there exists a birational morphism f : X → Y of varieties
(defined over k) such that X is smooth of dimension 7 and Rif∗ωX 6= 0.
for some i ∈ {1, 2, 3, 4, 5}.
Let Z be a smooth 6-dimensional variety and L a very ample line

bundle such that H1(Z, ωZ ⊗ L) 6= 0. (such varieties exist by [LR97]).
By Serre vanishing H i(Z, ωZ ⊗ Lj) = 0 for all i > 0 and j ≫ 0. Let m
be the largest positive integer such that H i(Z, ωZ ⊗ Lm) 6= 0 for some
i > 0.
After replacing L by Lm we may assume that there exists a q > 0 such

that Hq(Z, ωZ⊗L) 6= 0, but H i(Z, ωZ⊗Lj) = 0 for all i > 0 and j ≥ 2.
Note that q < 6, because H6(Z, ωZ ⊗ L) is dual to H0(Z,L−1) = 0.
Let Y be the cone over the embedding of Z given by L, f : X → Y

the blow up of the vertex v ∈ Y , and E = f−1v the exceptional divisor
of f . Note that E ≃ Z and ωE(−jE) ≃ ωZ ⊗ Lj for any j.
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For j ≥ 1 consider the short exact sequence

0 → ωX(−jE) → ωX(−(j − 1)E) → ωE(−jE) → 0.

Claim 3.11.1. Rif∗ωX(−E) = 0 for all i > 0 and Rif∗ωX = 0 for all
i > 0, such that H i(Z, ωZ ⊗ L) = 0.

Proof of Claim. As −E is f -ample we have, by Serre vanishing again,
that Rif∗ωX(−jE) = 0 for all i > 0 and some j > 0. If either j > 1 or
j = 1 and H i(Z, ωZ⊗L) = 0, then Rif∗ωE(−jE) = H i(Z, ωZ⊗Lj) = 0
by the choice of L. Therefore, the exact sequence

0 = Rif∗ωX(−jE) → Rif∗ωX(−(j − 1)E) → Rif∗ωE(−jE) = 0

gives that Rif∗ωX(−(j−1)E) = 0. The claim follows by induction. �

From the above claim it follows that

0 = Rqf∗ωX(−E) → Rqf∗ωX → Rqf∗ωE(−E) → Rq+1f∗ωX(−E) = 0

Since Rqf∗ωE(−E) = Hq(Z, ωZ ⊗ L) 6= 0, we obtain that Rqf∗ωX 6= 0
as claimed. �

Remark 3.12. The above example is certainly well known (see for
example [CR11b, 4.7.2]) and one can easily construct examples in di-
mension ≥ 3 (using for example the results of [Ray78] and [Muk79]).
We have chosen to include the above example because of its elementary
nature.

Proposition 3.13. There exists a variety T and a generically finite
projective separable morphism to an abelian variety λ : T → A defined
over an algebraically closed field k such that:

• If char k = 0, then T is Gorenstein (and hence Cohen-Macaulay)
with a single isolated log canonical singularity, and R1λ∗ωT 6= 0, and

• If char k = p > 0, then T is smooth, and Riλ∗ωT 6= 0 for some i > 0.

Proof. First assume that char k = 0 and let f : X → Y be as in (3.9).
We may assume that X and Y are projective. Let X ′ → X and Y ′ →
Y be birational morphisms that are isomorphisms near f−1(v) and v
respectively such that there is a birational morphism f ′ : X ′ → Y ′ and
a generically finite morphism g : Y ′ → P

n. We let v′ ∈ Y ′ be the inverse
image of v ∈ Y and p ∈ P

n its image. We may assume that there is an
open subset Pn

0 ⊂ P
n such that g|Y ′

0
is finite where Y ′

0 = g−1(Pn
0 ). Note

that if we let X ′
0 be the inverse image of Y ′

0 and g′ = g ◦ f ′, then we
have Rig′∗ωX′

0
= g∗R

if ′
∗ωX′

0
.

Let A be an n-dimensional abelian variety, A′ → A a birational mor-
phism of smooth varieties and A′ → P

n a generically finite morphism.
We may assume that there are points a′ ∈ A′ and a ∈ A such that
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(A′, a′) → (A, a) is locally an isomorphism and (A′, a′) → (Pn, p) is
locally étale.
Let U be the normalization of the main component of X ′×Pn A′ and

h : U → X ′ the corresponding morphism. We let E ⊂ (f ′◦h)−1(v′) ⊂ U
be the component corresponding to (v′, a′) ∈ Y ′ ×Pn A′. Then, the
morphism (U,E) → (Y ′ ×Pn A′, (v′, a′)) → (A, a) is étale locally (on
the base) isomorphic to (X, f−1(v)) → (Y, v) → (Pn, p).
Let ν : T → U be a birational morphism such that ν is an isomor-

phism over a neigborhood of E ⊂ U and T \ ν−1(E) is smooth. Let
λ : T → A be the induced morphism. It is clear from what we have
observed above that λ(E) is one of the components of the support of
R1λ∗ωT 6= 0 and T has the required singularities.
Assume now that the char k = p > 0 and let f : X → Y be a

birational morphism of varieties such thatX is smooth and Rif∗ωX 6= 0
for some i > 0. This i will be fixed for the rest of the proof. The
existence of such morphisms is well-known (see (3.12)) and an explicit
example in dimension 7 is given in (3.11). Further let A be an abelian
variety of the same dimension as X and Y and set n = dimA =
dimX = dimY . There are embeddings Y ⊂ P

m1 , A ⊂ P
m2 and

P
m1×P

m2 ⊂ P
M . Let H be a very ample divisor on P

M and U ⊂ Y ×A
the intersection of n general members H1, . . . , Hn ∈ |H| with Y × A.
By choice the induced maps h : U → Y and a : U → A are generically
finite, U intersects v × A transversely so that V = U ∩ (v × A) is a
finite set of reduced points and U\V is smooth by Bertini’s theorem (cf.
[Har77, II.8.18] and its proof). It follows that any singular point u ∈ U
is a point in V and (U, u) is locally isomorphic to (Y, v). We claim that
a is finite in a neighborhood of u ∈ U . Consider any contracted curve
i.e. any curve C ⊂ U ∩ (Y × a(u)). We must show that u 6∈ C. Let
ν : T → U be the blow up of U along V and C̃ the strict transform
of C on T . We let µ : BlV P

M → P
M , E = µ−1(u) ∼= P

M−1 and we
denote hi = µ−1

∗ Hi|E the corresponding hyperplanes. To verify the
claim it suffices to check that ν−1(u) ∩ C̃ = ∅. But this is now clear
as ν−1(u) ∼= Z ⊂ P

M−1 and the hi are general hyperplanes so that
Z ∩ h1 ∩ . . . ∩ hn = ∅ as Z is (n− 1)-dimensional.
Let λ = a◦ν : T → A be the induced morphism. By construction the

support of the sheaf Riν∗ωT is V . Since a is finite on a neighborhood of
u ∈ U , it follows that 0 6= a∗R

iν∗ωT ⊂ Riλ∗ωT and hence Riλ∗ωT 6= 0
for the same i > 0. �
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4. Main result

Proposition 4.1. Assume that λ : X → A is generically finite on
to its image where X is a projective Cohen Macaulay variety and A
is an abelian variety. If char(k) = p > 0, then we assume that there
is an ample line bundle L on A whose degree is not divisible by p. If
RiπÂ∗

L = 0 for all i < n, then Riλ∗ωX = 0 for all i > 0.

Proof. By Theorem A of [PP11], RiΦ(OX) = RiπÂ∗
L = 0 for all i < n,

is equivalent to

H i(X,ωX ⊗RgΨ(L∨)) = 0 ∀ i > 0,

where L is sufficiently ample on Â and RgΨ(L∨) = λ∗L̂∨ (cf. (2.2)). It
is easy to see that this is in turn equivalent to

H i(X,ωX ⊗ λ∗(t̂∗âL
∨)) = 0 ∀ i > 0, ∀ â ∈ Â,

where L is sufficiently ample on Â. By [Muk81, 3.1], we have t̂∗âL
∨ =

L̂∨ ⊗ P−â and hence H i(X,ωX ⊗ λ∗(L̂∨ ⊗ P−â)) = 0. Thus, by coho-
mology and base change, we have that

RŜ(Rλ∗ωX ⊗ L̂∨) =(2.1.2) RΦ(ωX ⊗ λ∗L̂∨) = R0Φ(ωX ⊗ λ∗L̂∨).

In particular Rλ∗ωX ⊗ L̂∨ is WIT-0.

Claim 4.2. For any ample line bundle M on A, we have that

H i(X,ωX ⊗ λ∗(L̂∨ ⊗M ⊗ P−â)) = 0 ∀ i > 0, ∀ â ∈ Â.

Proof. We follow the argument in [PP03, 2.9]. For any P = P−â, we
have

H i(X,ωX ⊗λ∗(L̂∨⊗M ⊗P )) = RiΓ(X,ωX ⊗λ∗(L̂∨⊗M ⊗P )) =P.F.

RiΓ(A,Rλ∗ωX⊗L̂∨⊗M⊗P ) = ExtiD(A)((M⊗P )∨,Rλ∗ωX⊗L̂∨) =(2.1.1)

Exti+g

D(Â)
(RgŜ((M ⊗ P )∨), R0Φ(ωX ⊗ λ∗L̂∨)) =

H i+g(Â, R0Φ(ωX ⊗ λ∗L̂∨)⊗RgŜ((M ⊗ P )∨)∨) = 0 i > 0.

(The third equality follows as M ⊗ P is free, the fifth follows since

RgŜ(M ⊗ P )∨ is free and the last one since i+ g > g = dim Â.) �

Let φL : Â → A be the isogeny induced by φL(x̂) = t∗x̂L ⊗ L∨,

then φ∗
LL̂

∨ = L⊕h0(L). We may assume that the characteristic does not

divide the degree of L so that φL is separable. Let X ′ = X ×A Â,

φ : X ′ → X and λ′ : X ′ → Â the induced morphisms. Note that
φ∗OX′ = λ∗(φL∗OÂ) = λ∗(⊕Pαi

) where the αi are the elements in
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K ⊂ Â, the kernel of the induced homomorphism φL : Â → A. By the
above equation and flat base change

H i(X ′, ωX′ ⊗λ′∗φ∗
L(L̂

∨⊗M)) =
⊕

α∈K

H i(X,ωX ⊗λ∗(L̂∨⊗M ⊗Pα)) = 0

for all i > 0. But then H i(X ′, ωX′ ⊗ λ′∗(L ⊗ φ∗
LM)) = 0 for all i > 0.

Note that if M is sufficiently ample on A then so is L ⊗ φ∗
LM on Â.

It follows by an easy (and standard) spectral sequence argument that
Riλ′

∗ωX′ = 0 for i > 0. Since ωX is a summand of φ∗ωX′ = Rφ∗ωX′ ,
and Rλ∗Rφ∗ωX′ = RφL∗Rλ′

∗ωX′ , it follows that Riλ∗ωX is a summand
of Riλ∗φ∗ωX′ = φL∗R

iλ′
∗ωX′ and hence Riλ∗ωX = 0 for all i > 0. �

Proof of (1.3). Immediate from (3.13) and (4.1). �
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