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Let X be a normal projective variety defined over the complex field. The
homology class of a curve d on X will be denoted by [d]. Let

n
NE(X) = {Zai[c,-]|c,- is an irreducible proper curve on X,a; € R, 2 0}
i=1

NE (X) is the cone of curves of X. The closed cone of curves of X — denoted
by NE(X) — is the closure of NE(X) in Hy(X,IR). NE (X)° and ONE (X)
denote the interior and the boundary of NE(X) in the vector space it spans in
Hy(X,IR).

The aim of this article is to prove the following:

Theorem 1. Let X be a smooth algebraic K3 surface with Picard number at
least three. Then one of the following conditions is satisfied:

(*) X does not contain any curve of negative self-intersection.

(**) NE(X) = Y_IR.[/] where the sum runs over all smooth rational curves
on X.

In the next section after introducing the necessary notations, a complete
classification of the possible cases will be given.
1 Notations and statement of the main results
Let X be a projective surface and 4 be an ample class on X. Let

2(X) = {¢ € HH(X,R)[(£-&) =0,(¢+h) = 0}

A Q-divisor on X is a @-linear combination of divisors on X. NS(X) denotes
the Néron-Severi group, that is, the image of Pic(X) in H 2(X,Z). The Picard



682 S.J. Kovacs

number of X, denoted by p(X), is the rank of NS(X), i.e. the dimension of
NS(X)® Q.

A homology class that can be represented by an effective (resp. irreducible,
ample) divisor is called effective (resp. irreducible, ample). An effective class
is indecomposable if it is not the sum of two other effective classes. Note,
that by definition an indecomposable class can be represented by an effective
divisor. & will always mean an ample class.

A K3 surface is a two-dimensional compact complex Kéhler manifold with
trivial canonical class and such that its first Betti number is zero.

An algebraic K3 surface is a normal algebraic surface such that its minimal
smooth resolution is a K3 surface.

Let X be a smooth algebraic K3 surface. The classes of the (—2)-curves —
smooth rational curves of self-intersection —2 — are called the nodal classes.
The set of (—2)-curves is denoted by .4#'(X) and the set of irreducible rational
curves of self-intersection zero is denoted by &(X).

Now with these definitions and notations the main result can be stated.

Theorem 2. Let X be a smooth algebraic K3 surface. Then
2.1 One of the following statements holds:
(i) p(X) =1 and NE(X) = R h, where h is an ample class.
(ii) p(X) =2 and NE(X) = R, [e] + R, [/], where e € &(X) and { € N (X).
(iii) 2 < p(X) £ 4, NE(X) = Conv(2(X))) and ONE(X) does not contain
any effective class, i.e. X contains neither smooth rational nor smooth elliptic
curves.
(iv) 2 £ p(X) £ 11, NE(X) = Conv(2(X))) = Zeeﬁ()() R [e] in particular
X does not contain a smooth rational curve.
(v) 2 £ p(X) £ 20 and NE(X) = Z/e 1"(X) R [/]
2.2 All of these cases do occur for every indicated value of p(X).

Corollary 1. Let X be a smooth algebraic K3 surface. Then NE(X) is either
circular or has no circular part at all.

Corollary 2. Let X be a smooth algebraic K3 surface such that p(X) = 2.
Then either ONE(X) does not contain any Q-divisor class (i.e. there are no
rational curves of self-intersection 0 or —2) or NE(X) is generated by the
homology classes of rational curves of self-intersection 0 or —2.

Corollary 3. Let Y be a singular algebraic K3 surface, then NE(Y) is gener-
ated by rational curves.

Throughout the article X will denote a smooth algebraic K3 surface.

X will be called of type (i)—(v) according to which case occurs for it in
Theorem 2.

The rest of this section is devoted to fixing some notation and recalling an
important result.

The rank of a cone is the dimension of the vector space it spans. A cone
of rank 1 is called a ray. A vector of a convex cone v € C is extremal if
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u+weRiv and u,w € C imply, that u,w € Ryv. Extremal ray is a ray
generated by an extremal vector. Let C C IR” be a closed convex cone. Let
0C denote the boundary of C in R? and let v € 0C. C is locally finitely
generated at v if there exists a closed subcone B of C and finitely many
vectors vy,...v, € C such that v € B and C is generated by B and {v,...,0,}.
Let U be a nonempty open subset of dC. R, U is a circular part of C, if
C is not locally finitely generated at any point of U. C is circular if 6C is a
circular part of C. By abuse of language, a cone will be said to be contained
in an open half space if the cone minus the origin is contained in an open
half space given by a hyperplane, that contains the origin. If 4 is a subset of
a real vector space, Conv(A4) will denote the convex hull of 4.

A lattice (A, <,>) is a free Z-module of finite rank equipped with a Z-
valued symmetric bilinear form <, >. The discriminant of A, denoted discr(A)
is the determinant of the matrix of its bilinear form. A is non-degenerate
if discr(A)#0. A is wunimodular if discr(A) = 1. A is even if for every
x € A, {x,x) € 2Z and it is odd otherwise. Let (A, <,>) be a lattice. —A1
shall mean the same module A, equipped with a bilinear form that is —1 times
the one of A.

An embedding X — A of lattices is primitive if A/2 is free. A sublattice
is called primitive if it is the image of a primitive embedding.

Example 1.1 U denotes the hyperbolic plane, that is U is a free Z-module of
rank 2 whose bilinear form has matrix

0 1
1 0
Example 1.2. Eg denotes the unique even unimodular positive definite lattice

of rank 8. For the explicit description of its bilinear form see [BPV, 1.2.7] or
[Ser, V.1.4.2].

From standard results it is easy to see, that H?(X,Z) is torsion-free of rank
22 and, when equipped with the cupproduct pairing, isometric to U* @ (—Eg ),
which is a unimodular lattice of signature (3, 19) and p(X) ranges from 1 to
20.

The transcendental lattice of X, denoted by Ty, is the orthogonal com-
plement of NS(X) in H*(X,Z). Then the Hodge Index Theorem implies, that
NS(X) and Ty has signature (1,p(X)— 1) and (2,20 — p(X)) respectively.

To prove the existence of certain K3 surfaces the following result of
D. Morrison will be needed.

Theorem 1.3 [Mor, 1.9]. Suppose S is a primitive sublattice of L = Ul
(—Eg)? of signature (1,p — 1). Then there exists an algebraic K3 surface X
such that NS(X) = S.

Corollary 1.4 [Mor, 2.9(i), 2.11]. If p < 11, then every even lattice S of

signature (1,p — 1) occurs as the Néron-Severi group of some algebraic K3
surface.
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2 Convex cones and sets

Lemma 2.1. 2.1.1 If C is a closed convex cone in RRP, then every vector in
C is the sum of vectors which are extremal in C.

2.12 If A is a cone in R? such that Conv(A) is contained in an open half
space, then Conv(d) = Conv(A)

2.1.3 Every effective class can be written as a sum of indecomposable
classes.

2.14 If A and B are subcones of NE(X),C = A+ B and 4,B C C, then
C is closed.

Proof. (i) and (ii) are easy exercises. For (iii) and (iv) one can use Kleiman’s
criterion for ampleness which guarantees the necessary compactness of a cross
section of the cone. Q.E.D.

Lemma 2.2. 2.2.1 Let ¢, € /'(X), 2y € Ry, & € NE(X) such that Jn{n — C.
Assume that{/,|n € N} is an infinite set, then

(£-9)=0.
222

S R./C Y Ri[/]+ Com(2(X))
rEA(X) eV (X)

Proof. Let ¢ be an arbitrary nodal class. For infinitely many n,/, =/, so
(¢4+¢) = 0 and then (¢-7) = 0. Apply this for every ¢, to see, that in fact
(6-&) = 0, but it is also < 0, since (4,/n-Asfn) < 0. This proves 2.2.1 and
that

ol U R c U ReaJaw).

reN(X) teN(X)

Lemma 2.1(ii) finishes the proof. Q.E.D.

Corollary 2.3. 2.3.1 NE(X) = ¥ ¢ ) R[]+ Conv(2(X))
232 NE(X)N{¢ € Hy(X,R)|(&- &) < 0} is locally finitely generated.
233 If & is extremal in NE(X), but it is not a multiple of a nodal class,
then (£:&) = 0.
Proof. By [BPV, VIIL.3.6] and [CKM, (4.4), (4.5)]

NEX)C 3. R4 [/]+ Conv(2(X)).
' reN(X)

Then Lemma 2.2 and Lemma 2.1(iv) implies 2.3.1.
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Let 4 be a fixed ample class and ¢ > 0. By 2.2.1 there are only finitely
many nodal classes that are not contained in Conv(Z2,(X)), where 2,(X) =
{ € HaX,R)|(E-&) = —e(&-h)*,(E-h) > 0}. Then by 2.3.1

NE(X) = z R..[/i] + NE(X) N Conv(2:(X)) . QED.

i=1

If an effective class is extremal, then it is clearly indecomposable, but not vice
versa. However if it is indecomposable and of negative self-intersection, then
it is a nodal class, so it is extremal, too. The next result shows that the same
happens if it is of self-intersection zero.

Proposition 2.4. Let e be an effective divisor class of self-intersection zero.
Then e is indecomposable if and only if it is extremal.

Proof. Let e be an indecomposable divisor class of self-intersection zero. |e|
defines an elliptic pencil that covers X, so if d is any other irreducible class,
(e-d) will be positive, which means that e is numerically effective and an
effective Q-divisor class can have zero intersection product with e if and only if
it is a multiple of it. Let (e = 0) = {& € Hy(X,R)|(e- &) = 0}. Now (e =0) is
a supporting hyperplane that contains no other effective class than the multiples
of e. Then (e =0)N2(X) =R, e.

Suppose now that e = Y., 6;,0; extremal. Since (e = 0) is a supporting
hyperplane, o; € (e = 0). (e =0) contains no other effective class than the
multiples of e, so by Corollary 2.3 0; € 2(X). Then g, € (e =0)N 2(X) =
IR, e and e is extremal. Q.E.D.

Corollary 2.5. Let a € ONE(X) be indecomposable. Then a is extremal.

The next lemma is true in some greater generality, but this is the form that
will be needed later.

Lemma 2.6. Let Q C R? be a smooth compact quadratic hypersurface and
C C R? be a compact convex set. Assume, that Q ¢ C, then there exists a
U nonempty subset of Q such that U C 0Conv(Q U C).

Proof. Let g € Q\C and L be a hyperplane in R?, that separates ¢ and C.
There exists a u € Q\C such that the tangent hyperplane of QO at u is parallel
to L and then it is disjoint from C, so u € 0Conv(Q U C). It is easy to see,
that there is a neighborhood U of u such that the tangent hyperplane of any
point of U is disjoint from C, so U C 0Conv(Q U C). Q.E.D.

3 Subcones of NE (X) of rank 2

The following lemma will play a very important role. Among other conse-
quences it implies, that if the Picard number is two, then either none of the
rays on the boundary or both of them can be generated by effective classes. It



686 S.J. Kovacs

also implies that if NE(X) has a circular part and X contains a—2-curve, then
it contains an effective divisor of self-intersection zero.

Lemma 3.1. Let e,d be effective classes such that e € ONE(X ) and (d-d) > 0.
Let ©t be the plane generated by e and d in Hy(X,IR).

3.1.1 If (e-e) =0, then there exists an f € n N NE(X), such that f is
effective of self-intersection 0 and e and [ are on opposite sides of d.

3.1.2 If (e-e) = —2, then there exists an f € n N\ NE(X), such that f is
effective of self- intersection 0 or —2 and e and f are on opposite sides of d.

Proof. Let a,b,c be (d-d),(d-e),(e-e) respectively and let x = {d + ne. Since
e € ONE(X), if n < 0, then x ¢ NE(X) and

(x-x) = al® + 2b&n + cn* .

If (e-e) =0, then
(x+x)=al +2bén =10

has two rational solutions and since (d-d) > 0, they must be different, on
different sides of d.
If (e-e) = —2, then

&y £\’
(x-x):aéz+2bén—2n2:——2 ((bi—n) —(2a + b%) (5) ) .

Now if (2a + b?) is not a square, then this equation has infinitely many
integral solutions for (x-x) = —2 [IR, Pell’s equation 17.5.2]. So there exist
positive integers u,v such that

W — Qa+ by =1.

Since a = (d-d) > 0,u> > b*?, so u > bv. Set ¢ =2v and n =bv —u and
let f = &d +ne. Then (f-f) = —2 and by Riemann-Roch either f* or —fis
effective. e € NE(X) and by construction ¢ > 0 and n < 0, so —f cannot be
effective and e and f are on opposite sides of d.

If (2a + b*) is a square, then it has two rational solutions for (xx)=0
and they are on different sides of d. Q.E.D.

Remark 3.2. 3.1.1 implies, that if NS(X) represents zero, then the Q-divisors
in 2(X) form a dense subset of 2(X).

4 K3 surfaces with a circular cone

If X does not contain a smooth rational curve, then the cone will be generated
by 2(X) and it will be circular. This section is devoted to the investigation of
the circumstances under which this situation may take place.

The following result is an easy consequence of Nikulin’s work on integral
symmetric bilinear forms.
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Lemma 4.1. Let p(X) = 12, then X contains a smooth rational curve.

Proof. Let t4) =2,y =20—p(X) < 8,/;)=2 and /)= 18, then the
conditions of [Nik 1, 1.12.4] are satisfied. By [Ser, V.2.2] U?® (—Eg)? is
the only unimodular lattice of signature (2, 18), so Tx admits an embedding
¢o into U? @ (—Eg)*.

Let ¢ = 0® ¢y be the embedding of Ty into L = U? @ (—Ejg)? that is the
extension of ¢¢ by zero to U. By [Ser, V.2.2] and [Nik 1, 1.14.4] the embed-
ding of Ty into L is unique, so ¢ is isomorphic to the canonical embedding,
in particular

U< T{ = NS(X) = Pic(X).

Thus there is a divisor class of self-intersection —2 and that implies the exis-
tence of a nodal class. Q.E.D.

Theorem 4.2. 4.2.1 If p(X) = 5 and X does not contain any (—2)-curve Le.
ONE(X) = 2(X), then the Q-divisor classes of self-intersection zero form a
dense subset of ONE(X).

422 If NE(X) = 2(X), then p(X) < 11

423 If p € {2,3,4}, then there exists a K3 surface with p(X) = p and
such that ONE(X) = 2(X) does not contain any Q-divisor class.

424 If p € {2,3,...,11}, then there exists a K3 surface with p(X)=p
and such that ONE(X) = 2(X) and the Q-divisor classes of self-intersection
zero form a dense subset of ONE(X).

Proof. 1If p(X) = 5, then the Hasse-Minkowski Theorem [Ser, IV.3.2] implies
that there are effective classes of self-intersection zero and then Remark 3.2
proves 4.2.1.

4.2.2 follows directly from Lemma 4.1.

Let p € {2,3,4}. It is easy to see — looking at it modulo 8 - that
q(x1,...,%p) = Tx? — f:z x? does not represent zero, so 4q is an even quadratic
form of rank p and of signature (1,p — 1), that represents neither 0 nor —2.
By Corollary 1.4 this implies 4.2.3.

To prove 4.2.4, take 4(x? — >_7_,x?) and use Corollary 1.4, Corollary 2.3
and Remark 3.2. Q.E.D.

5 K3 surfaces with Picard number two

Theorem 5.1. Let p(X) =2 and let NE(X) = R¢ + Rin. Then one of the
following statements holds:

(a) Neither R & nor Ryn contains any effective classes.

(b) Both R.¢ and R.in contains an effective class of 0 or —2 self-
intersection.

Furthermore, all of these cases do occur.
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Proof. By Lemma 3.1 it is easy to see, that there is no other possibility. By
Theorem 4.2 there are K3 surfaces of type (a) and type (b) of both self-
intersection being zero. Now take the following two quadratic forms: —2x3 +
8x1x; — 2x§ and —2xf + 6x1x,2. By Corollary 1.4 they give rise to K3 surfaces
of type (b) of both self-intersection being —2 and of self-intersection 0 and
—2 respectively. Q.E.D.

The two quadratic forms and corresponding cones, mentioned in the proof
can be realized easily. For the first one take a general degree four surface in
IP? containing a smooth conic. The second one is the cone of a general degree
four surface in IP*> containing a line.

6 K3 surfaces containing a —2 curve

In this section p(X) will be assumed to be at least three and .#"(X) to be not
empty i.e. X contains a smooth rational curve #. This will imply the existence
of several other smooth rational curves.

Theorem 6.1. Let p(X) = 3, suppose X contains a smooth rational curve and
let ¢ be extremal in NE(X). Then
6.1.1 NE(X) has no circular part.
6.1.2 There exists a sequence {{,} C N'(X) such that R [/,] — R,¢.
6.13 NE(X) = ,c, o R[]

Proof. Let ¢ denote the class of the smooth rational curve, that is guaranteed
by the assumption. Let ¢ : X — X; be the map that contracts / to a point
P. Since p(X) = 3,p(Xo) = 2. Let & be ample on Xy and d be a divisor on
Xy, independent from k. Replacing d with d +nh d may be assumed to be
base point free. So 4 and d can be represented in Xo\{P} ~ X\/. Then they
give two divisors dy,d, on X such that (£-d;)=({+d2)=0 and d,,d,,/ are
independent in Pic(X).

Suppose U is a nonempty open subset of ONE(X) such that R, U is a
circular part of NE(X). By Corollary 2.3 U C 2(X). Then in a neighborhood
of any point of R, U every effective class is of nonnegative self-intersection.

By Lemma 3.1 find an effective divisor e € IR, U N 2(X). e is extremal and
as in the proof of Proposition 2.4, (e = 0) contains no other effective classes
than the multiples of e, in particular (£-e)+0.

Let d be d, or d, such that e,d,/ be independent. Let 6 = (d-d),a = (d-e)
and B = (/-e), then a=+0,f+0 and (d-£)=0.

Suppose 202 — B> =0. Let f=3fe—aPpd+o*/. Then (f-f)=
«2(8f* —242) =0 and (f-e) = 0. By Riemann-Roch f or —f is effective
and then since (e = 0) contains no other effective classes than the multiples of
e,af = > =0 so (d - e) = a = 0 which is impossible. So 2a* — 6% +0.

Let n € N and let

+d, = (2(20% — 0p%)pn* — dan)e + (2f*n)d + (1 — 2apn)’ .



The cone of curves of a K3 surface 689

Easy computation shows that (d,-d,) = —2, so by Riemann-Roch either d,
or —d, is effective. Let d,, be effective. Since (20> — %) +0,R d, — R, e.

Since in a neighborhood of IR, e every effective class is of nonnegative
self-intersection, this is a contradiction and 6.1.1 is proven.

Let ¢ € 2(X) be extremal and H = {n € Hy(X,R)|(n-h) = (¢-h)}, where
h is an ample class. Q = H N 2(X) is a smooth compact quadratic hypersurface
and ¢€Q. Let N={veH|3/ € /(X),ve€ R,[/]} and C = Conv(N)=
Conv(N).

It is easy to see, that if there were a U C Q nonempty open subset such
that U C 0Conv(Q U C), then R, U would be a circular part of NE(X), so by
6.1.1 and Lemma 2.6 Q is a subset of C. Then ¢ € C = Conv(N) and since ¢
is extremal, ¢ € N. This implies 6.1.2.

If n € NE(X) arbitrary, let n# = 7, n;,n; extremal. Then

ne 5. RL[/]. QE.D.
(€14 (X)

Corollary 6.2. Theorem 1 holds true.

7 Proof of Theorem 2

Lemma 7.1. Let e € 2(X) be an indecomposable class. Then there is an
irreducible rational curve on X that represents e.

Proof. e defines an elliptic fibration of X, : X — IP'. If this fibration had only
non-singular fibres then e(X) would be zero by the formula [BPV, III.11.4].
Since it is 24 ([BPV, VIIL3.1]), there must be a singular fibre, too. Its arith-
metic genus is one and it is singular, so it must be rational and since e is
indecomposable, it must be irreducible. Q.E.D.

Proof of Theorem 2. 2.1 If p(X)=1 then X is of type (i). If p(X)=2,
then by Theorem 5.1 X is of type (ii), (iii), (iv) or (v). If p(X) =2 3 and X
contains a smooth rational curve, then by Theorem 6.1 it is of type (v). If
p(X) = 3 and X does not contain a smooth rational curve, then by Theorem
4.2 and Lemma 7.1 it is of type (iii) or (iv).

2.2 By the Noether-Lefschetz Theorem a general degree four surface in IP?
is of type (i). By Theorem 4.2 and Theorem 5.1 types (ii), (iii), (iv) and (v)
with p(X) =2 do occur.

If 3 < p < 11 let M be any primitive sublattice of (—Eg)? of rank p — 2.
Then U@ M and Lemma 4.1 shows that for any 3 < p < 20 there exists
a primitive sublattice of L of signature (1,p — 1) containing a vector x with
(x -x) = —2. Then by Corollary 1.4 there exists a K3 surface with p(X) = p
containing a divisor of self-intersection —2 and then X contains a smooth
rational curve. Therefore by the first part of the Theorem it is of type (v).

Q.E.D.
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Proof of Corollary 1. Assume, that p(X) = 3. If X is of type (iii) or (iv),
then NE(X) is circular. If X is of type (v), then it follows from 6.1.1. Q.E.D.

Proof of Corollary 2. If X is of type (ii) or (iii), then the statement is true.
If X is of type (iv) or (v), then

NEX) =y R,/

SEN(X)UEX)

Now let d be an effective class. It can be written as a sum of indecomposable
classes and by Riemann-Roch they are of self-intersection at least —2. So
d =d, +d, such that (d,-d;) > 0 and

de Y, RS

FEN(XIUEWX)

Then by [CKM, (4.4), (4.5)] d| € NE(X)°.

> 1R+[f]\ > RyfIc 5( > 1R+[f]> ,
FeNHVEX) SENELEX) FENEUE)

0 di € 3 e yixyusr) R+[f] since if C is a convex set, then 0C = oC.
Q.E.D.

Proof of Corollary 3. Let X be the minimal smooth resolution of Y. Then it
contains a smooth rational curve so NE(X) is generated by rational
curves. Q.E.D.

Remark 7.2. 1t is well known, that for p(X) = 3, NE(X) is polyhedral if and
only if Aut(X) is finite ([PS-S, Ste]). Nikulin has classified the lattices that
occur as the Picard group of a K3 surface that has finite automorphism group
([Nik 2, Nik 3, Nik 4]). Shioda and Inose proved that a K3 surface of Picard
number 20 has an infinite automorphism group ([Sh-In]).

Using these facts one can see easily, that there exists a K3 surface X such
that p(X) = p and X contains finitely many —2-curves i.e. NE(X) is a closed
polyhedral cone if and only if 1 < p < 19 and for every p,3 < p < 20 there
exists a K3 surface X such that p(X) = p and X contains infinitely many —2-
curves i.e. NE(X) is non-polyhedral of type (v). In particular every Kummer
surface gives such an example.

Acknowledgement. 1 would like to express my appreciation to Prof. Janos Kollar for the
useful conversations with him and his helpful comments. He called my attention to Corollary
2. Prof. Yujiro Kawamata pointed out that [CKM, (4.4), (4.5)] combined with Theorem 5.7
of [Kaw] also implies Corollary 2.3. Dr. Endre Szabd’s remark helped to simplify the proof
of Lemma 2.6.
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