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Abstract Themainpurpose of this article is todefine thenotionofDuBois singularities
for pairs and prove a vanishing theorem by using this new notion. The main vanishing
theorem specializes to a new vanishing theorem for resolutions of log canonial singular-
ities.

1. Introduction

The class of rational singularities is one of the most important classes of singu-
larities. Their essence lies in the fact that their cohomological behavior is very
similar to that of smooth points. For instance, vanishing theorems can be easily
extended to varieties with rational singularities. Establishing that a certain class
of singularities is rational opens the door to using very powerful tools on varieties
with those singularities.

Du Bois (DB) singularities are probably somewhat harder to appreciate at
first, but they are equally important. Their main importance comes from two
facts. They are not too far from rational singularities, that is, they share many
of their properties, but the class of DB singularities is more inclusive than that
of rational singularities. For instance, log canonical singularities are DB, but
not necessarily rational. The class of DB singularities is also more stable under
degeneration.

Recently there has been an effort to extend the notion of rational singularities
to pairs. There are at least two approaches: Schwede and Takagi [ST] are dealing
with pairs (X,Δ), where �Δ� = 0, while Kollár and Kovács [KK2] are studying
pairs (X,Δ), where Δ is reduced.

The main goal of this article is to extend the definition of DB singularities
to pairs in the spirit of the latter approach.

Here is a brief overview.
In Section 2 some basic properties of rational and DB singularities are

reviewed, a few new ones are introduced, and the DB defect is defined. In
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Section 3 I recall the definition and some basic properties of pairs, generalized
pairs, and rational pairs. I define the notion of a DB pair and the DB defect of a
generalized pair and prove a few basic properties. In Section 4 I recall a relevant
theorem from Deligne’s Hodge theory and derive a corollary that is needed later.
In Section 5 one of the main results is proven. A somewhat weaker version is the
following. See Theorem 5.4 for the stronger statement.

THEOREM 1.1

Rational pairs are DB pairs.

This generalizes [Kov1, Theorem S] and [Sai, 5.4] to pairs. In Section 6 I prove a
rather general vanishing theorem for DB pairs and use it to derive the following
vanishing theorem for log canonical pairs.

THEOREM 1.2

Let (X,Δ) be a Q-factorial log canonical pair, and let π : X̃ → X be a log reso-
lution of (X,Δ). Let Δ̃ = (π−1

∗ �Δ� + Excnklt(π))red. Then

Riπ∗O
X̃

(−Δ̃) = 0 for i > 0.

A philosophical consequence one might draw from this theorem is that log canon-
ical pairs are not too far from being rational. One may even view this as a
vanishing theorem similar to the one in the definition of rational singularities
(cf. (2.1), (3.4)) with a correction term as in vanishing theorems with multi-
plier ideals. Notice, however, that this is in a dual form compared with Nadel’s
vanishing and hence does not follow from that, especially since the target is not
necessarily Cohen-Macaulay.

Theorem 1.2 is also closely related to Steenbrink’s characterization of nor-
mal isolated DB singularities [Ste1, 3.6] (cf. [DB, Proposition 4.13], [KS, Theo-
rem 6.1]).

A weaker version of this theorem was the cornerstone of a recent result on
extending differential forms to a log resolution (see [GKKP]). For details on how
this theorem may be applied, see the original article. It is possible that the
current theorem will lead to a strengthening of that result.

DEFINITIONS AND NOTATION 1.3

Unless otherwise stated, all objects are assumed to be defined over C, all schemes
are assumed to be of finite type over C, and a morphism means a morphism
between schemes of finite type over C.

If φ : Y → Z is a birational morphism, then Exc(φ) denotes the exceptional
set of φ. For a closed subscheme W ⊆ X , the ideal sheaf of W is denoted by
IW ⊆X or, if no confusion is likely, then simply by IW . For a point x ∈ X , κ(x)
denotes the residue field of OX,x.

For morphisms φ : X → B and ϑ : T → B, the symbol XT denotes X ×B T

and φT : XT → T denotes the induced morphism. In particular, for b ∈ B we
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write Xb = φ−1(b). Of course, by symmetry, we also have the notation ϑX :
TX � XT → X , and if F is an OX -module, then FT denotes the OXT

-module
ϑ∗

XF .
Let X be a complex scheme (i.e., a scheme of finite type over C) of dimen-

sion n. Let Dfilt(X) denote the derived category of filtered complexes of OX -
modules with differentials of order ≤ 1, and let Dfilt,coh(X) denote the subcat-
egory of Dfilt(X) of complexes K•, such that for all i, the cohomology sheaves
of Gri

filt K• are coherent (see [DB], [GNPP]). Let D(X) and Dcoh(X) denote
the derived categories with the same definition except that the complexes are
assumed to have the trivial filtration. The superscripts +, −, b carry the usual
meaning (bounded below, bounded above, bounded). Isomorphism in these cat-
egories is denoted by �qis. A sheaf F is also considered as a complex F • with
F 0 = F and F i = 0 for i 	= 0. If K• is a complex in any of the above categories,
then hi(K•) denotes the ith cohomology sheaf of K•.

The right derived functor of an additive functor F , if it exists, is denoted by
RF , and RiF is short for hi ◦ RF . Furthermore, Hi, Hi

c, Hi
Z , and H i

Z denote RiΓ,
RiΓc, RiΓZ , and RiHZ , respectively, where Γ is the functor of global sections,
Γc is the functor of global sections with proper support, ΓZ is the functor of
global sections with support in the closed subset Z, and HZ is the functor of the
sheaf of local sections with support in the closed subset Z. Note that according
to this terminology, if φ : Y → X is a morphism and F is a coherent sheaf on
Y , then Rφ∗F is the complex whose cohomology sheaves give rise to the usual
higher direct images of F .

We often use the notion that a morphism f : A → B in a derived category has
a left inverse. This means that there exists a morphism f � : B → A in the same
derived category such that f � ◦ f : A → A is the identity morphism of A. That is,
f � is a left inverse of f .

Finally, we also make the following simplification in notation. First, observe
that if ι : Σ ↪→ X is a closed embedding of schemes, then ι∗ is exact and hence
Rι∗ = ι∗. This allows one to make the following harmless abuse of notation: If
A ∈ ObD(Σ), then, as usual for sheaves, we drop ι∗ from the notation of the
object ι∗A. In other words, without further warning, we consider A an object in
D(X).

2. Rational and DB singularities

DEFINITION 2.1

Let X be a normal variety, and let φ : Y → X be a resolution of singularities. X

is said to have rational singularities if Riφ∗OY = 0 for all i > 0 or, equivalently,
if the natural map OX → Rφ∗OY is a quasi-isomorphism.

DB singularities are defined via Deligne’s Hodge theory. We need a little prepa-
ration before we can define them.

The starting point is Du Bois’s construction, following Deligne’s ideas, of
the generalized de Rham complex, which we call the Deligne–Du Bois complex.
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Recall that if X is a smooth complex algebraic variety of dimension n, then
the sheaves of differential p-forms with the usual exterior differentiation give
a resolution of the constant sheaf CX . That is, one has a filtered complex of
sheaves,

OX

d
Ω1

X

d
Ω2

X

d
Ω3

X

d
. . .

d
Ωn

X � ωX ,

which is quasi-isomorphic to the constant sheaf CX via the natural map CX →
OX given by considering constants as holomorphic functions on X . Recall that
this complex is not a complex of quasi-coherent sheaves. The sheaves in the
complex are quasi-coherent, but the maps between them are not OX -module
morphisms. Notice, however, that this is actually not a shortcoming; as CX is
not a quasi-coherent sheaf, one cannot expect a resolution of it in the category
of quasi-coherent sheaves.

The Deligne–Du Bois complex is a generalization of the de Rham complex
to singular varieties. It is a complex of sheaves on X that is quasi-isomorphic to
the constant sheaf CX . The terms of this complex are harder to describe, but its
properties, especially cohomological properties, are very similar to the de Rham
complex of smooth varieties. In fact, for a smooth variety the Deligne–Du Bois
complex is quasi-isomorphic to the de Rham complex, so it is indeed a direct
generalization.

The construction of this complex, Ω•
X , is based on simplicial resolutions.

The reader interested in the details is referred to the original article [DB]. Note
also that a simplified construction was later obtained in [Car] and [GNPP] via
the general theory of polyhedral and cubic resolutions. An easily accessible
introduction can be found in [Ste2]. Other useful references are the recent book
[PS] and the survey [KS]. We actually do not use these resolutions here. They are
needed for the construction, but if one is willing to believe the listed properties
(which follow in a rather straightforward way from the construction), then one
should be able follow the material presented here. The interested reader should
note that recently Schwede found a simpler alternative construction of (part of)
the Deligne–Du Bois complex that does not need a simplicial resolution (see
[Sch1]). For applications of the Deligne–Du Bois complex and DB singularities
other than the ones listed here, see [Ste1], [Kol, Chapter 12], [Kov1], [Kov3],
[KSS], and [KK1].

The word “hyperresolution” refers to either a simplicial, polyhedral, or cubic
resolution. Formally, the construction of Ω•

X is the same regardless of the type
of resolution used, and no specific aspects of either type are used.

The next theorem lists the basic properties of the Deligne–Du Bois complex.

THEOREM 2.2 ([DB, 3.2, COROLLAIRE 3.10, THÉORÈME 4.5, PROPOSITION 4.11])

Let X be a complex scheme of finite type. Then there exists a functorially defined
object Ω•

X ∈ ObDfilt(X) such that using the notation

Ωp
X := Grp

filtΩ
•
X [p],
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it satisfies the following properties.

(2.2.1) Ω•
X �qis CX .

(2.2.2) Ω•
( ) is functorial; that is, if φ : Y → X is a morphism of complex

schemes of finite type, then there exists a natural map φ∗ of filtered complexes

φ∗ : Ω•
X → Rφ∗Ω•

Y .

Furthermore, Ω•
X ∈ Ob(Db

filt,coh(X)), and if φ is proper, then φ∗ is a morphism
in Db

filt,coh(X).
(2.2.3) Let U ⊆ X be an open subscheme of X. Then

Ω•
X |U �qis Ω•

U .

(2.2.4) If X is proper, then there exists a spectral sequence degenerating at
E1 and abutting to the singular cohomology of X:

Epq
1 = Hq(X,Ωp

X) ⇒ Hp+q(X,C).

(2.2.5) If ε• : X• → X is a hyperresolution, then

Ω•
X �qis Rε• ∗Ω•

X• .

In particular, hi(Ωp
X) = 0 for i < 0.

(2.2.6) There exists a natural map, OX → Ω0
X , compatible with (2.2.2).

(2.2.7) If X is a normal crossing divisor in a smooth variety, then

Ω•
X �qis Ω•

X .

In particular,

Ωp
X �qis Ωp

X .

(2.2.8) If φ : Y → X is a resolution of singularities, then

ΩdimX
X �qis Rφ∗ωY .

(2.2.9) Let π : X̃ → X be a projective morphism, and let Σ ⊆ X be a reduced
closed subscheme such that π is an isomorphism outside of Σ. Let E denote the
reduced subscheme of X̃ with support equal to π−1(X). Then for each p one has
an exact triangle of objects in the derived category,

Ωp
X

Ωp
Σ ⊕ Rπ∗Ωp

X̃

−
Rπ∗Ωp

E

+1
.

(2.2.10) Suppose that X = Y ∪ Z is the union of two closed subschemes and
denote their intersection by W := Y ∩ Z. Then for each p one has an exact
triangle of objects in the derived category,

Ωp
X Ωp

Y ⊕ Ωp
Z

−
Ωp

W

+1
.
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It turns out that the Deligne–Du Bois complex behaves very much like the
de Rham complex for smooth varieties. Observe that (2.2.4) says that the Hodge-
to-de Rham (also known as Frölicher) spectral sequence works for singular vari-
eties if one uses the Deligne–Du Bois complex in place of the de Rham complex.
This has far-reaching consequences, and if the associated graded pieces Ωp

X turn
out to be computable, then this single property leads to many applications.

Notice that (2.2.6) gives a natural map OX → Ω0
X ; we are interested in

situations when this map is a quasi-isomorphism. When X is proper over C,
such a quasi-isomorphism implies that the natural map

Hi(Xan,C) → Hi(X,OX) = Hi(X,Ω0
X)

is surjective because of the degeneration at E1 of the spectral sequence in (2.2.4).
Notice that this is the condition that is crucial for Kodaira-type vanishing theo-
rems (cf. [Kol, Section 9]).

Following Du Bois, Steenbrink was the first to study this condition, and he
christened this property after Du Bois. It should be noted that many of the ideas
that play important roles in this theory originated from Deligne. Unfortunately
the now-standard terminology does not reflect this.

DEFINITION 2.3

A scheme X is said to have DB singularities if the natural map OX → Ω0
X from

(2.2.6) is a quasi-isomorphism.

REMARK 2.4

If ε : X• → X is a hyperresolution of X , then X has DB singularities if and only
if the natural map OX → Rε• ∗OX• is a quasi-isomorphism.

EXAMPLE 2.5

It is easy to see that smooth points are DB, and Deligne proved that normal
crossing singularities are DB as well (cf. (2.2.7), [DJ, lemme 2(b)]).

In applications it is very useful to be able to take general hyperplane sections.
The next statement helps with that.

PROPOSITION 2.6

Let X be a quasi-projective variety, and let H ⊂ X be a general member of a very
ample linear system. Then Ω•

H �qis Ω•
X ⊗L OH.

Proof
Let ε• : X• → X be a hyperresolution. Since H is general, the fiber product
X• ×X H → H provides a hyperresolution of H. Then the statement follows
from (2.2.5) applied to both X and H. �
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We saw in (2.2.5) that hi(Ω0
X) = 0 for i < 0. In fact, there is a corresponding

upper bound by [GNPP, Section III.1.17], namely, that hi(Ω0
X) = 0 for i > dimX .

It turns out that one can make a slightly better estimate.

PROPOSITION 2.7 (CF. [GKKP, LEMMA 13.5], [KSS, LEMMA 4.9])

Let X be a positive-dimensional variety (i.e., reduced). Then the ith cohomology
sheaf of Ωp

X vanishes for all i ≥ dimX; that is, hi(Ωp
X) = 0 for all p and for all

i ≥ dimX.

Proof
For i > dimX or p > 0, the statement follows from [GNPP, Proposition III.1.17].
The case when p = 0 and i = n := dimX follows from either [GKKP, 13.5] or
[KSS, Lemma 4.9]. �

Another, much simpler fact that is used later is the following.

COROLLARY 2.8

If dimX = 1, then hi(Ωp
X) = 0 for i 	= 0. In particular, X is DB if and only if it

is seminormal.

Proof
The first statement is a direct consequence of (2.7). For the last statement, recall
that the seminormalization of OX is exactly h0(Ω0

X), and so X is seminormal
if and only if OX � h0(Ω0

X) (see [Sai, Proposition 5.2]; cf. [Sch3, 5.4.17], [Sch1,
Remark 4.8], [Sch2, Lemma 5.6]). �

DEFINITION 2.9

The DB defect of X is the mapping cone of the morphism OX → Ω0
X . It is

denoted by Ω×
X . As a simple consequence of the definition, one has an exact

triangle,

OX Ω0
X Ω×

X

+1
.

Notice that h0(Ω×
X) � h0(Ω0

X)/OX and hi(Ω×
X) � hi(Ω0

X) for i > 0.

PROPOSITION 2.10

Let X be a quasi-projective variety, and let H ⊂ X be a general member of a very
ample linear system. Then Ω×

H �qis Ω×
X ⊗L OH .

Proof
This follows easily from the definition and Proposition 2.6. �

The next simple observation explains the name of the DB defect.
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LEMMA 2.11

A variety X is DB if and only if the DB defect of X is acyclic; that is, Ω×
X �qis 0.

Proof
This follows directly from the definition. �

PROPOSITION 2.12

Let X = Y ∪ Z be a union of closed subschemes with intersection W = Y ∩ Z.
Then one has an exact triangle of the DB defects of X,Y,Z, and W :

Ω×
X Ω×

Y ⊕ Ω×
Z

−
Ω×

W

+1
.

Proof
Recall that there is an analogous exact triangle (also known as a short exact
sequence) for the structure sheaves of X,Y,Z, and W , which forms a commutative
diagram with the exact triangle of (2.2.10),

OX OY ⊕ OZ

−
OW

+1

Ω0
X Ω0

Y ⊕ Ω0
Z

−
Ω0

W

+1

Then the statement follows by the (derived category version of the) 9-lemma. �

3. Pairs and generalized pairs

3.A. Basic definitions
For an arbitrary proper birational morphism, φ : Y → X , Exc(φ) stands for the
exceptional locus of φ. A Q-divisor is a Q-linear combination of integral Weil
divisors: Δ =

∑
aiΔi, ai ∈ Q, Δi (integral) a Weil divisor. For a Q-divisor Δ, its

round-down is defined by the formula �Δ� =
∑

�ai�Δi, where �ai� is the largest
integer not larger than ai.

A log variety or pair (X,Δ) consists of an equidimensional variety (i.e.,
a reduced scheme of finite type over a field k) X and an effective Q-divisor
Δ ⊆ X . A morphism of pairs φ : (Y,B) → (X,Δ) is a morphism φ : Y → X such
that φ(suppB) ⊆ suppΔ.

Let (X,Δ) be a pair with Δ a reduced integral divisor. Then (X,Δ) is said
to have simple normal crossings or to be an snc pair at p ∈ X if X is smooth at
p, and there are local coordinates x1, . . . , xn on X in a neighborhood of p such
that suppΔ ⊆ (x1 · · · xn = 0) near p. (X,Δ) is snc if it is snc at every p ∈ X .

A morphism of pairs φ : (Y,ΔY ) → (X,Δ) is a log resolution of (X,Δ) if
φ : Y → X is proper and birational, ΔY = φ−1

∗ Δ, and (ΔY )red +Exc(φ) is an snc
divisor on Y .
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Note that we allow (X,Δ) to be snc and still call a morphism with these
properties a log resolution. Also, note that the notion of a log resolution is not
used consistently in the literature.

If (X,Δ) is a pair, then Δ is called a boundary if �(1 − ε)Δ� = 0 for all
0 < ε < 1; that is, the coefficients of all irreducible components of Δ are in the
interval [0,1] (for the definition of klt, dlt, and lc pairs, see [KM]). Let (X,Δ) be
a pair, and let μ : Xm → X be a proper birational morphism. Let E =

∑
aiEi

be the discrepancy divisor, that is, a linear combination of exceptional divisors
such that

KXm + μ−1
∗ Δ ∼Q μ∗(KX + Δ) + E,

and let Δm := μ−1
∗ Δ +

∑
ai ≤ −1 Ei. For an irreducible divisor F on a birational

model of X , we define its discrepancy as its coefficient in E. Notice that as
divisors correspond to valuations, this discrepancy is independent of the model
chosen; it depends only on the divisor. A non-klt place of a pair (X,Δ) is an
irreducible divisor F over X with discrepancy at most −1, and a non-klt center
is the image of any non-klt place. Excnklt(μ) denotes the union of the loci of all
non-klt places of φ.

Note that in the literature, non-klt places and centers are often called log
canonical places and centers (for a more detailed and precise definition, see [HK,
p. 37]).

Now if (Xm,Δm) is as above, then it is a minimal dlt model of (X,Δ) if it
is a dlt pair and the discrepancy of every μ-exceptional divisor is at most −1
(see [KK1]). Note that if (X,Δ) is lc with a minimal dlt model (Xm,Δm), then
KXm + Δm ∼Q μ∗(KX + Δ).

3.B. Rational pairs
Recall the definition of a log resolution from Section 3.A: A morphism of pairs
φ : (Y,ΔY ) → (X,Δ) is a log resolution of (X,Δ) if φ : Y → X is proper and
birational, ΔY = φ−1

∗ Δ, and (ΔY )red + Exc(φ) is an snc divisor on Y .

DEFINITION 3.1

Let (X,Δ) be a pair, and let Δ be an integral divisor. Then (X,Δ) is called a
normal pair if there exists a log resolution φ : (Y,ΔY ) → (X,Δ) such that the
natural morphism φ# : OX(−Δ) → φ∗OY (−ΔY ) is an isomorphism.

DEFINITION 3.2

A pair (X,Δ) with Δ an integral divisor is called a weakly rational pair if there is
a log resolution φ : (Y,ΔY ) → (X,Δ) such that the natural morphism OX(−Δ) →
Rφ∗OY (−ΔY ) has a left inverse.

LEMMA 3.3

Let (X,Δ) be a weakly rational pair. Then it is a normal pair.
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Proof
The 0th cohomology of the left inverse of OX(−Δ) → Rφ∗OY (−ΔY ) gives a left
inverse of φ# : OX(−Δ) → φ∗OY (−ΔY ). As the morphism φ is birational, the
kernel of the left inverse of φ# is a torsion sheaf. However, since φ∗OY (−ΔY ) is
torsion free, this implies that φ# is an isomorphism. �

DEFINITION 3.4 ([KK2])

Let (X,Δ) be a pair where Δ is an integral divisor. Then (X,Δ) is called a
rational pair if there exists a log resolution φ : (Y,ΔY ) → (X,Δ) such that

(3.4.1) OX(−Δ) � φ∗OY (−ΔY ); that is, (X,Δ) is normal,
(3.4.2) Riφ∗OY (−ΔY ) = 0 for i > 0, and
(3.4.3) Riφ∗ωY (ΔY ) = 0 for i > 0.

LEMMA 3.5

Let (X,Δ) be a pair where Δ is an integral divisor. Then it is a rational pair if
and only if it is a weakly rational pair and Riφ∗ωY (ΔY ) = 0 for i > 0.

Proof
This follows directly from [KK2, 105]. �

REMARK 3.6

Note that the notion of a rational pair describes the “singularity” of the relation-
ship between X and Δ. From the definition it is not clear, for instance, whether
(X,Δ) being rational implies that X has rational singularities.

REMARK 3.7

If Δ = ∅, then (3.4.3) follows from the Grauert-Riemenschneider vanishing theo-
rem, and X is weakly rational if and only if it is rational by [Kov2].

3.C. Generalized pairs
DEFINITION 3.8

A generalized pair (X,Σ) consists of an equidimensional variety (i.e., a reduced
scheme of finite type over a field k) X and a subscheme Σ ⊆ X . A morphism of
generalized pairs φ : (Y,Γ) → (X,Σ) is a morphism φ : Y → X such that φ(Γ) ⊆ Σ.
A reduced generalized pair is a generalized pair (X,Σ) such that Σ is reduced.

The log resolution of a generalized pair (X,W ) is a proper birational mor-
phism π : X̃ → X such that Exc(π) is a divisor and π−1W + Exc(π) is an snc
divisor.

Let X be a complex scheme, and let Σ be a closed subscheme whose comple-
ment in X is dense. Then (X•,Σ•) → (X,Σ) is a good hyperresolution if X• → X

is a hyperresolution and if U• = X• ×X (X \ Σ) and Σ• = X• \ U•; then, for all
α, either Σα is a divisor with normal crossings on Xα or Σα = Xα. Notice that
it is possible that X• has components that map into Σ. These component are
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contained in Σ• (for more details and the existence of such hyperresolutions, see
[DB, 6.2], [GNPP, Sections IV.1.21, IV.1.25, IV.2.1]; for a primer on hyperreso-
lutions, see the appendix of [KS]).

Let (X,Σ) be a reduced generalized pair. Consider the Deligne–Du Bois complex
of (X,Σ) defined by Steenbrink [Ste2, Section 3].

DEFINITION 3.9

The Deligne–Du Bois complex of the reduced generalized pair (X,Σ) is the map-
ping cone of the natural morphism � : Ω•

X → Ω•
Σ twisted by (−1). In other words,

it is an object Ω•
X,Σ in Dfilt(X) such that it completes � to an exact triangle:

(3.9.1) Ω•
X,Σ Ω•

X Ω•
Σ

+1
.

The associated graded quotients of Ω•
X,Σ are denoted as usual:

Ωp
X,Σ := Grp

filt Ω•
X,Σ[p].

Notice that the above triangle is in Dfilt(X) and hence for all p ∈ N we obtain
another exact triangle:

(3.9.2) Ωp
X,Σ Ωp

X Ωp
Σ

+1
.

EXAMPLE 3.10

Let (X,Σ) be an snc pair. Then Ω•
X,Σ �qis Ω•

X(logΣ)(−Σ).

The Deligne–Du Bois complex of a pair is functorial in the following sense.

PROPOSITION 3.11

Let φ : (Y,Γ) → (X,Δ) be a morphism of generalized pairs. Then there exists a
filtered natural morphism Ω•

X,Σ → Rφ∗Ω•
Y,Γ.

Proof
There exist compatible filtered natural morphisms Ω•

X → Rφ∗Ω•
Y and Ω•

Σ →
Rφ∗Ω•

Γ by (2.2.2). They induce the following morphism between exact trian-
gles:

Ω0
X,Σ Ω0

X Ω0
Σ

+1

Rφ∗Ω0
Y,Γ Rφ∗Ω0

Y Rφ∗Ω0
Γ

+1

and thus one obtains the desired natural morphism. �
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It follows easily from the definition and Proposition 2.7 that we have the following
bounds on the nonzero cohomology sheaves of Ωp

X,Σ.

PROPOSITION 3.12

Let X be a positive-dimensional variety. Then the ith cohomology sheaf of Ωp
X,Σ

vanishes for all i ≥ dimX; that is, hi(Ωp
X,Σ) = 0 for all p and for all i ≥ dimX.

Proof
This follows directly from Proposition 2.7 using the long exact cohomology
sequence associated to (3.9.2). �

3.D. DB pairs and the DB defect
DEFINITION 3.13

Recall the short exact sequence for the restriction of regular functions from X

to Σ:

0 IΣ⊆X OX OΣ 0.

By (2.2.6), there exist compatible natural maps OX → Ω0
X and OΣ → Ω0

Σ,
and they induce a morphism between exact triangles,

(3.13.1) IΣ⊆X OX OΣ

+1

Ω0
X,Σ Ω0

X Ω0
Σ

+1

A reduced generalized pair (X,Σ) is called a DB pair if the natural morphism
IΣ⊆X → Ω0

X,Σ from (3.13.1) is a quasi-isomorphism.

REMARK 3.14

Note that just like the notion of a rational pair, the notion of a DB pair describes
the “singularity” of the relationship between X and Σ. From the definition it
is not clear, for instance, whether (X,Σ) being DB implies that X has DB
singularities.

PROPOSITION 3.15

Let φ : (Y,Γ) → (X,Σ) be a morphism of generalized pairs. Then there exists a
natural morphism Ω0

X,Σ → Rφ∗Ω0
Y,Γ and a commutative diagram,

IΣ⊆X Ω0
X,Σ

Rφ∗IΓ⊆Y Rφ∗Ω0
Y,Γ
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Proof
Similarly to (3.13.1), one obtains a commutative diagram for (Y,Γ):

IΓ⊆Y OY OΓ

+1

Ω0
Y,Γ Ω0

Y Ω0
Γ

+1

Then φ induces a morphism between these diagrams:

IΣ⊆X OX OΣ

+1

Ω0
X,Σ Ω0

X Ω0
Σ

+1

Rφ∗IΓ⊆Y Rφ∗OΓ Rφ∗OY

+1

Rφ∗Ω0
Y,Γ Rφ∗Ω0

Y Rφ∗Ω0
Γ

+1

The front face of this diagram provides the one claimed in the statement. �

Similarly to Definition 2.9, we introduce the DB defect of the pair (X,Σ).

DEFINITION 3.16

The DB defect of the pair (X,Σ) is the mapping cone of the morphism IΣ⊆X →
Ω0

X,Σ. It is denoted by Ω×
X,Σ. Again, one has the exact triangles

IΣ⊆X Ω0
X,Σ Ω×

X,Σ

+1

(3.16.1)

and

Ω×
X,Σ Ω×

X Ω×
Σ

+1
.(3.16.2)

And, again, one has

h0(Ω×
X,Σ) � h0(Ω0

X,Σ)/IΣ⊆X and
(3.16.3)

hi(Ω×
X,Σ) � hi(Ω0

X,Σ) for i > 0.

LEMMA 3.17

Let (X,Σ) be a reduced generalized pair. Then the following are equivalent.

(3.17.1) The pair (X,Σ) is DB.
(3.17.2) The DB defect of (X,Σ) is acyclic; that is, Ω×

X,Σ �qis 0.
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(3.17.3) The induced natural morphism Ω×
X → Ω×

Σ is a quasi-isomorphism.
(3.17.4) The induced natural morphism hi(Ω×

X) → hi(Ω×
Σ) is an isomorphism

for all i ∈ Z.
(3.17.5) The induced natural morphism hi(Ω0

X) → hi(Ω0
Σ) is an isomorphism

for all i 	= 0 and a surjection with kernel isomorphic to IΣ⊆X for i = 0.

REMARK 3.17.1

This statement also applies in the case when Σ = ∅, so it implies Lemma 2.11.

Proof
The equivalence of (3.17.1) and (3.17.2) follows from (3.16.1), the equivalence of
(3.17.2) and (3.17.3) follows from (3.16.2), the equivalence of (3.17.3) and (3.17.4)
follows from the definition of quasi-isomorphism, and the equivalence of (3.17.4)
and (3.17.5) follows from the definition of the DB defect Ω×

X,Σ, Definition 3.16,
and (3.16.3). �

Cutting by hyperplanes works the same way as in the absolute case.

PROPOSITION 3.18

Let (X,Σ) be a reduced general pair, where X is a quasi-projective variety and
H ⊂ X is a general member of a very ample linear system. Then Ω•

H,H∩Σ �qis

Ω•
X,Σ ⊗L OH and Ω×

H,H∩Σ �qis Ω×
X,Σ ⊗L OH .

Proof
This follows directly from Proposition 2.6, (3.9.1), and Proposition 2.10. �

We also have the following adjunction-type statement.

PROPOSITION 3.19

Let X = (Y ∪ Z)red be a union of closed reduced subschemes with intersection
W = (Y ∩ Z)red. Then the DB defects of the pairs (X,Y ) and (Z,W ) are quasi-
isomorphic. That is,

Ω×
X,Y �qis Ω×

Z,W .

Proof
Consider the following diagram of exact triangles,

Ω×
X,Y

α

Ω×
X

β

Ω×
Y

γ

+1

Ω×
Z,W Ω×

Z Ω×
W

+1
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where β and γ are the natural restriction morphisms and α is the morphism
induced by β and γ on the mapping cones. Then by [KK1, Lemma 2.1], there
exists an exact triangle

Q Ω×
Y ⊕ Ω×

Z Ω×
W

+1

and a map σ : Ω×
X → Q compatible with the above diagram such that α is an iso-

morphism if and only if σ is one. On the other hand, σ is indeed an isomorphism
by Proposition 2.12, and so the statement follows. �

4. Cohomology with compact support

Let X be a complex scheme of finite type, and let ι : Σ ↪→ X be a closed sub-
scheme. Deligne’s Hodge theory applied in this situation gives the following
theorem.

THEOREM 4.1 ([Del])

Let X be a complex scheme of finite type, let ι : Σ ↪→ X be a closed subscheme,
and let j : U := X \ Σ ↪→ X.

(4.1.1) The natural composition map j!CU → IΣ⊆X → Ω•
X,Σ is a quasi-

isomorphism; that is, Ω•
X,Σ is a resolution of the sheaf j!CU .

(4.1.2) The natural map H•
c (U,C) → H•(X,Ω•

X,Σ) is an isomorphism.
(4.1.3) If in addition X is proper, then the spectral sequence

Ep,q
1 = Hq(X,Ωp

X,Σ) ⇒ Hp+q
c (U,C)

degenerates at E1 and abuts to the Hodge filtration of Deligne’s mixed Hodge
structure.

Proof
Consider an embedded hyperresolution of Σ ⊆ X :

Σ•
�•

ε•

X•

ε•

Σ
�

X

Then by (2.2.5) and by definition, Ω•
X,Σ �qis Rε• ∗Ω•

X•,Σ•
. The statements then

follow from [Del, Sections 8.1, 8.2, 9.3] (see also [GNPP, Section IV.4]). �

COROLLARY 4.2

Let X be a proper complex scheme of finite type, let ι : Σ ↪→ X be a closed sub-
scheme, and let j : U := X \ Σ ↪→ X. Then the natural map

Hi(X,IΣ⊆X) → Hi(X,Ω0
X,Σ)
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is surjective for all i ∈ N.

Proof
By (4.1.3), the natural composition map

Hi
c(U,C) → Hi(X,IΣ⊆X) → Hi(X,Ω0

X,Σ)

is surjective. This clearly implies the statement. �

5. DB pairs in nature

PROPOSITION 5.1

Let (X,Σ) be a reduced generalized pair. If either X or Σ is DB, then the other
one is DB if and only if (X,Σ) is a DB pair.

Proof
Consider the exact triangle (3.16.2):

Ω×
X,Σ Ω×

X Ω×
Σ

+1
.

Clearly, if one of the objects in this triangle is acyclic, then it is equivalent that the
other two are acyclic. Then the statement follows by Lemmas 2.11 and 3.17. �

As one expects from a good notion of singularity, smooth points are DB. For
pairs, being smooth is replaced by being snc.

COROLLARY 5.2

Let (X,Δ) be an snc pair. Then it is also a DB pair.

Proof
This follows directly from Proposition 5.1 (cf. (2.2.7), [Ste2, Example 3.2]). It
also follows from Corollary 5.3. �

COROLLARY 5.3

Let (X,Δ) be a log canonical pair, and let Λ ⊂ X be an effective integral Weil
divisor such that suppΛ ⊆ supp�Δ�. Then (X,Λ) is a DB pair.

Proof
By choice, Λ is a union of non-klt centers of the pair (X,Δ), and hence by [KK1,
Theorem 1.4], both X and Λ are DB. Then (X,Λ) is a DB pair by Proposi-
tion 5.1. �

THEOREM 5.4

Let (X,Σ) be a reduced generalized pair. Assume that the natural morphism
IΣ⊆X → Ω0

X,Σ has a left inverse. Then (X,Σ) is a DB pair.
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Proof
We mimic the proof of [Kov3, Corollary 1.5]. The statement is local, so we may
assume that X is affine and hence quasi-projective.

LEMMA 5.5

Assume that there exists a finite subset P ⊆ X such that (X \ P,Σ \ P ) is a DB
pair. Then the induced morphism

Hi
P (X,IΣ⊆X) → Hi

P (X,Ω0
X,Σ)

is surjective for all i ∈ N.

Proof
Let X be a projective closure of X , and let Σ be the closure of Σ in X . Let
Q = X \ X , Z = P

•
∪ Q, and U = X \ Z = X \ P . Consider the exact triangle of

functors,

(5.5.1) H0
Z(X, ) H0(X, ) H0(U, )

+1
,

and apply it to the morphism IΣ⊆X → Ω0
X,Σ. One obtains a morphism of two

long exact sequences:

Hi−1(U,IΣ⊆X)

αi−1

Hi
Z(X,IΣ⊆X)

βi

Hi(X,IΣ⊆X)

γi

Hi(U,IΣ⊆X)

αi

Hi−1(U,Ω0
X,Σ) Hi

Z(X,Ω0
X,Σ) Hi(X,Ω0

X,Σ) Hi(U,Ω0
X,Σ)

By assumption, αi is an isomorphism for all i. By Corollary 4.2, γi is surjective
for all i. Then by the 5-lemma, βi is also surjective for all i.

By construction, P ∩ Q = ∅, and hence

Hi
Z(X,IΣ⊆X) � Hi

P (X,IΣ⊆X) ⊕ Hi
Q(X,IΣ⊆X),

Hi
Z(X,Ω0

X,Σ) � Hi
P (X,Ω0

X,Σ) ⊕ Hi
Q(X,Ω0

X,Σ).

It follows that the natural map (which is also the restriction of βi),

Hi
P (X,IΣ⊆X) → Hi

P (X,Ω0
X,Σ),

is surjective for all i.
Now, by excision on local cohomology, one has

Hi
P (X,IΣ⊆X) � Hi

P (X,IΣ⊆X) and Hi
P (X,Ω0

X,Σ) � Hi
P (X,Ω0

X,Σ),

and so Lemma 5.5 follows. �

It is now relatively straightforward to finish the proof of Theorem 5.4.
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By taking repeated hyperplane sections and using Proposition 3.18, we may
assume that there exists a finite subset P ⊆ X such that (X \ P,Σ \ P ) is a DB
pair. Therefore we may apply Lemma 5.5.

By assumption, the natural morphism IΣ⊆X → Ω0
X,Σ has a left inverse. This

implies that applying any cohomology operator on this map induces an injective
map on cohomology. In particular, this implies that the natural morphism

Hi
P (X,IΣ⊆X) → Hi

P (X,Ω0
X,Σ)

is injective for all i ∈ N. By Lemma 5.5, they are also surjective and hence an
isomorphism. Thus the DB defect Ω×

X,Σ is such that all of its local cohomology
groups are zero:

Hi
P (X,Ω×

X,Σ) = 0 for all i.

On the other hand, by assumption, Ω×
X,Σ is supported entirely on P , so Hi(X \

P,Ω×
X,Σ) = 0 as well. However, then Hi(X,Ω×

X,Σ) = 0 by the long exact sequence
induced by (5.5.1). Now dimP ≤ 0, so the spectral sequence that computes
hypercohomology from the sheaf cohomology of the cohomology of the complex
Ω×

X,Σ degenerates and gives that for any i ∈ N, Hi(X,Ω×
X,Σ) = H0(X,hi(Ω×

X,Σ)),
so, since we assumed that X is affine, it follows that hi(Ω×

X,Σ) = 0 for all i.
Therefore Ω×

X,Σ �qis 0, and thus the statement is proven. �

COROLLARY 5.6

Let (X,Δ) be a weakly rational pair. Then it is a DB pair.

Proof
Let φ : (Y,ΔY ) → (X,Δ) be a log resolution such that γ admits a left inverse γ�.
Then by Proposition 3.15, one has the commutative diagram

OX(−Δ)

γ

Ω0
X,Δ

α

Rφ∗OY (−ΔY )
δ

�qis

γ�

Rφ∗Ω0
Y,ΔY

Recall that as (Y,ΔY ) is an snc pair, it is also DB by Corollary 5.2, and hence δ

is a quasi-isomorphism. Then γ� ◦ δ−1 ◦ α is a left inverse to OX(−Δ) → Ω0
X,Δ,

so the statement follows from Theorem 5.4. �

COROLLARY 5.7

A rational pair is a DB pair.

Proof
As a rational pair is also a weakly rational pair, this is straightforward from
Corollary 5.6. �
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COROLLARY 5.8

Let (X,Δ) be a dlt pair, and let Λ ⊂ X be an effective integral Weil divisor such
that suppΛ ⊆ supp�Δ�. Then (X,Λ) is a DB pair.

Proof
A dlt pair is also an lc pair, so this follows from Corollary 5.3. �

6. Vanishing Theorems

The following is the main vanishing result of this article. Note that a weaker
version of it appeared in [GKKP, Corollary 13.4].

THEOREM 6.1

Let (X,Σ) be a DB pair, and let π : X̃ → X be a proper birational morphism
with E := Exc(π). Let Σ̃ = E ∪ π−1Σ and Υ := π(E) \ Σ, both considered with
their induced reduced subscheme structure. Further, let s ∈ N, s > 0 be such that
hi(Ω◦

Υ,Υ∩Σ) = 0 for i ≥ s. Then

Riπ∗Ω0
X̃,Σ̃

= 0 for all i ≥ s.

Proof
Let Γ = Σ ∪ Υ, and consider the exact triangle (2.2.9),

(6.1.1) Ω0
X Ω0

Γ ⊕ Rπ∗Ω0
X̃

Rπ∗Ω0
Σ̃

+1
,

which induces the long exact sequence of sheaves

hi(Ω0
X)

(αi,σi)

hi(Ω0
Γ) ⊕ Riπ∗Ω0

X̃
Riπ∗Ω0

Σ̃ hi+1(Ω0
X) .

By Remark 3.17, the natural morphism γi : hi(Ω0
X) → hi(Ω0

Σ) is an isomor-
phism for i > 0. By Proposition 3.19 and the assumption, we obtain hi(Ω◦

Γ,Σ) = 0
for i ≥ s > 0, and hence the natural morphism βi : hi(Ω0

Γ) → hi(Ω0
Σ) is an isomor-

phism for i ≥ s. Using the fact that γi = βi ◦ αi, we obtain that the morphism
αi : hi(Ω0

X) → hi(Ω0
Γ) is an isomorphism for i ≥ s > 0, and hence the natural

restriction map

�i : Riπ∗Ω0
X̃

→ Riπ∗Ω0
Σ̃

is an isomorphism for i ≥ s. This in turn implies that Riπ∗Ω0
X̃,Σ̃

= 0 for i ≥ s, as
desired. �

As a corollary, a slight generalization of [GKKP, Corollary 13.4] follows.

COROLLARY 6.2

Let (X,Σ) be a DB pair, and let π : X̃ → X be a log resolution of (X,Σ) with
E := Exc(π). Let Σ̃ = E ∪ π−1Σ and Υ := π(E) \ Σ, both considered with their
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induced reduced subscheme structure. Then

Riπ∗I
Σ̃⊆X̃

= 0 for all i ≥ max(dimΥ,1).

In particular, if X is normal of dimension n ≥ 2, then Rn−1π∗I
Σ̃⊆X̃

= 0.

Proof
Let s = max(dimΥ,1). Then hi(Ω◦

Υ,Υ∩Σ) = 0 for i ≥ s by Proposition 3.12. As
the pair (X̃, Σ̃) is snc, it is also DB, and hence Ω0

X̃,Σ̃
�qis I

Σ̃⊆X̃
. Therefore the

statement follows from Theorem 6.1. �

We have a stronger result for log canonical pairs and for that we need the following
definition.

DEFINITION 6.3

A log resolution of a dlt pair (Z,Θ), g : (Y,Γ) → (Z,Θ) is called a Szabó-resolution,
if there exist A,B effective Q-divisors on Y without common irreducible compo-
nents, such that supp(A + B) ⊂ exc(g), �A� = 0, and

KY + Γ ∼Q g∗(KZ + Θ) − A + B.

REMARK 6.4

Every dlt pair admits a Szabó-resolution by [Sza] (cf. [KM, 2.44]).

COROLLARY 6.5

Let (X,Δ) be a Q-factorial log canonical pair, and let π : X̃ → X be a log reso-
lution of (X,Δ). Let Δ̃ = (π−1

∗ �Δ� + Excnklt(π))red. Then

Riπ∗O
X̃

(−Δ̃) = 0 for i > 0.

Proof
First note that the statement is true if (X,Δ) is an snc pair and π is the blowup
of X along a smooth center. Indeed, if the center is a non-klt center, then the
statement is a direct consequence of the Kawamata-Viehweg vanishing theorem
and if the center is not a non-klt center, then this is a Szabó-resolution and the
statement follows as in the proof of [KK2, 111]. This implies the following.

LEMMA 6.5.1

Let πi : (Xi,Δi) → (X,Δ) for i = 1,2 be two log resolutions of (X,Δ), and let
Δ̃i = ((π−1

i )∗ �Δ� + Excnklt(πi))red ⊂ Xi. Then

R(π1)∗OX1(−Δ̃1) � R(π2)∗OX2(−Δ̃2).
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Proof
By [AKMW, Theorem 0.3.1(6)] (cf. [BL, Theorem 3.8]) the induced birational
map between X1 and X2 can be written as a sequence of blowing ups and blow-
ing downs along smooth centers. Then the statement follows from the above
observation and the definition of the Δ̃’s. �

Now we turn to proving the general case. Consider the minimal dlt model μ :
(Xm,Δm) → (X,Δ) [KK1, Theorem 3.1]. Let Σ := �Δ� ∪ μ(Exc(μ)) considered
with the induced reduced subscheme structure. From the definition of a minimal
dlt model, it follows that Σ is a union of non-klt centers of (X,Δ). Then by
[KK1, Theorem 1.4], both X and Σ are DB, and hence (X,Σ) is a DB pair by
Proposition 5.1.

Since (Xm,Δm) is dlt, (Xm, �Δm�) is a DB pair by Corollary 5.3. Therefore,

Ω0
Xm,�Δm	 �qis OXm(−�Δm�).

By the definition of a minimal dlt model, �Δm� = (π−1Σ)red ⊇ Exc(μ), and then
it follows from Theorem 6.1 that Riμ∗OXm(−�Δm�) = 0 for i > 0. Hence

(6.5.2) Rμ∗OXm(−�Δm�) �qis OX(−�Δ�).

Next let τ : X̂ → Xm be the Szabó-resolution of (Xm,Δm), σ = μ ◦ τ , Δ̂ =
τ −1

∗ �Δm� = (σ−1
∗ �Δ� + Excnklt(σ))red, and λ = π−1 ◦ σ.

Then by [KK2, 111], we have that

Rτ∗O
X̂

(−Δ̂) �qis OXm(−�Δm�),

and hence, by (6.5.2),

Rσ∗O
X̂

(−Δ̂) �qis Rμ∗Rτ∗O
X̂

(−Δ̂) �qis

Rμ∗OXm(−�Δm�) �qis OX(−�Δ�).

The proof is finished by applying (6.5.1) to X̂ and X̃ . �

Finally, observe that Corollary 6.5 implies that log canonical singularities are not
too far from being rational.

COROLLARY 6.6

Let X be a variety with log canonical singularities, and let π : X̃ → X be a reso-
lution of X with Elc := Excnklt(π). Then

Riπ∗O
X̃

(−Elc) = 0 for i > 0.
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[KSS] S. J. Kovács, K. Schwede, and K. E. Smith, The canonical sheaf of Du

Bois singularities, Adv. Math. 224 (2010), 1618–1640.

[PS] C. A. M. Peters and J. H. M. Steenbrink, Mixed Hodge structures,

Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 52, Springer,

Berlin, 2008.

[Sai] M. Saito, Mixed Hodge complexes on algebraic varieties, Math. Ann. 316

(2000), 283–331.

[Sch1] K. Schwede, A simple characterization of Du Bois singularities, Compos.

Math. 143 (2007), 813–828.

[Sch2] , F -injective singularities are Du Bois, Amer. J. Math. 131

(2009), 445–473.

[Sch3] , On Du Bois and F-injective singularities, Ph.D. thesis,

University of Washington, Seattle, 2006.

[ST] K. Schwede and S. Takagi, “Rational singularities associated to pairs” in

Special Volume in Honor of Melvin Hochster, Michigan Math. J. 57,

Univ. Michigan Press, Ann Arbor, 2008, 625–658.

[Ste1] J. H. M. Steenbrink, “Mixed Hodge structures associated with isolated

singularities” in Singularities, Part 2 (Arcata, Calif., 1981), Proc.

Sympos. Pure Math. 40, Amer. Math. Soc., Providence, 1983, 513–536.

[Ste2] , “Vanishing theorems on singular spaces” in Differential Systems

and Singularities (Luminy, France, 1983), Astérisque 130, Soc. Math.
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