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Small saturated sets in finite projective planes

S.J. KOVACS

RIASSUNTO - Un sottoinsieme ~ di un piano proiettivo di ordine q dicesi saturato
se le rette che incontrano ~ in almeno due punti costituiscono un ricoprimento del
piano. Attraverso l'uso di metodi probabilistici si dimostra l'esistenza di insiemi saturati
di cardinalitd al piu 6y13q log q.

ABSTRACT - A subset ~ of a projective plane of order q is said to be saturated
if the lines meeting ~ in at least two points cover the whole plane. Using probabilistic
methods we prove the existence of saturated sets with cardinality at most 6y'3q log q.
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1- Introduction

We recall some well known notions (see [3]). A k-arc is a set of k
points no three of which are collinear. A k-arc is said to be complete if it
is not contained in a k + l-arc. As it is well known the maximum value of
k such that a projective plane of order q may contain k-arcs is k = q + 1
or k = q + 2 according as q is odd or even. A k-arc with this maximum
number of points is called an oval. A k-sei will mean a set of k points.

DEFINITION 1.1. In a recent paper U. Bartocci [1] introduced the
study of saturated configurations: a subset I:of a projective plane of order
q is said to be saturated if the lines meeting I: in at least two points cover
the whole plane.
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Clearly every set containing a saturated set is itself saturated. So we
are mostly interested in minimal saturated sets (ie: saturated sets which
do not contain proper saturated subsets). We note that every complete
k-arc is a minimal saturated set.

We define the function a(q) as the smallest possible value for which
there exists a saturated a(q)-set in the projective plane of order q.

PROPOSITION 1.2. [7] If there exists a minimal saturated k-set in a
projective plane of order q, then k satisfies

3+ V1 + 8q < k < + 2 .2 - - q

REMARK 1.3. The lower bound here is exactly the same as in the
corresponding inequality established by M. See for complete k-arcs.

We observe that the upper bound is effectively attained as it is shown
in the following way.

EXAMPLE 1.4. ([7]). The set consisting of all points of a line L in a
projective plane of order q plus another point not on the line is obviously
a q + 2-set which is saturated and minimal.

On the other hand the lower bound seems unsatisfactory, since the
known examples of complete k-arcs or of saturated sets all have a number
of points whose order of magnitude is too large compared to this lower
bound.

EXAMPLE 1.5. ([7]). Assume that q is a square. Take all the points
in three independent lines in a Baer subplane PG(2,y'Q) C PG(2,q). This
set is a minimal saturated 3y'Q-set in PG(2,q).

In general, whitout assuming q being a square, no minimal saturated
sets of magnitude O( y'Q) are known. In the present paper we give some
examples of size not far from the lower bound we have seen.

According to the connections between saturated sets and complete
arcs, it may be interesting to mention the following result of T. Sz6nyi.

PROPOSITION 1.6. Let ~ ::; 0: < 1 be fixed. Then there exist c,d
constants, such that there is a complete k-arc in PG(2,q) with cq" S k::;
dq" if q > qo(O:).
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The purpose of this paper is to show the existence of a saturated set
containing at most 6y'3q log q points in an arbitrary projective plane of
order q (including non-desarguesian planes, too).

2 - Small minimal saturated sets

We will make use of the following more or less known lemma from
probability theory.

LEMMA 2.1. If Xi i= 1,2, ... ,n are arbitrary events, then

n
PROOF. Define the events YI= Xl - n Xi and Yi = Xi for 2 ~ i~n.

i=l
We see that

n n n

Prob(n Xi) - IT Probfzv) 2: - ITProb(Yi)
i=l i=l i=l

and

so
n

I:Prob(Yi) ~ n -1.
i=l

The assertion follows from the inequality between geometric and arith-
metic means. 0

Our main result is the following.

THEOREM 2.2. In every projective plane of order q there exists a
saturated 6y'3q log q-set, ie:

0"( q) ~ 6V3q log q .
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PROOF. We will apply the probabilistic method (see [2]).
Let IT be a projective plane of order q and h, l2' l3 be three differ-

ent lines in 11 through a common point P and set ~ = II U l2 U h =
{P, Rl, ••• , R3q}. Moreover, let p be a real number, 0 < p < 1. Let
Xl,"" X3q be independent random variables with Probl.X, = {Ri}) =P
and ProbfX, = 0) = 1 - p for all 1 ::; i ::;3q - 3. Finally define

3q

E = U Xi U {P, R3q-2, R3q-l, R3q}.

i=l

Pick a point A E 11\ ~ and let P, F, ... ,lq be the lines of 11 through
A except the one containing P. We will say that A is covered if A lies on
at least one line meeting E in at least two points. Thus

~= Prob(lli n E 1< 2) ~ (1 - p?(1 + 2p)

and
Prob(A is covered) = 1 - ~q ,

since the events Ai: 1 v n E 1< 2 are independent for 1 ::; i ::;q by the
definition of E. Then by Lemma 2.1

Prob( n A is covered) ~ IIProb(A is covered) - ~.
AEll AEll e

Note that

Prob(E is a saturated set) = Prob( n A is covered).
AEll

It is easy to see that

IIProb(A is covered) = 1
AELl

and
II Prob(A is covered) = (1- ~q)q2_2q

AEll\Ll
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so

Probff is a saturated set) 2:: (1 _ ~q)q2_2q - ~.
e

Let us choose now -r:
Substituting the value of p and ~ we obtain

Prob(Eis a saturated set) 2:: ~ •

Now let X be the size of E. It is a random variable with binomial
distribution, hence its expectation is:

E(X) = 3y'3q log q

and its variaance is

D2(X) = 3qp(1- p) ::;3y'3q log q .

By the Chebyshev inequality (cf. [4]) we obtain

1
Prob(1 X - E(X) I> 2D(X)) < 4'

Therefore

1
Prob(I:is a saturated set and the size orE ::; 6y'3q log q) > 4

and the theorem is proved. o
REMARK 2.3. The theorem is valid for non-desarguesian planes, too.
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3 - Saturated sets wich are 'almost arcs'

The saturated sets we obtained in the previous section contain many
points on the same line. The next theorem gives a saturated set :Ewith
the following property: each line of the plane meets :E in at most four
points. So:E is not too far from being an arc. Our construction works
in every projective plane having two ovals which intersect in at most
cJ q log q points with a certain constant c. For example, it works for
every Galois plane, but also for some non-desarguesian planes.

THEOREM 3.1. Let II be a projective plane of order q. Assume
there exist two ovals in II inters ecting in at most cJ q log q points (c is a
constant). Then there exists a saturated set :E of size at most dJq log q
(where d < c+ 12) with the property that every line of II intersects :E in
at most four points.

PROOF. Let n be an oval in II. Similarly to the proof of Theorem
2.2 we choose each point of n with probability p (0 < P < 1) to make up
the set :E.

Pick a point A E II \ n. There are at least k = [q/2] lines ll' l2" .. ,h
which contain A and two different points of n..Thus

Prob(lli n:E 1< 2) = 1 - p

and

Prob(A is covered g 1 -- (1 _ p)k .

Let us now choose

1
Prob(Y) ;:::'2'

where Y is the following event: each point in II \ n lies on at least one
line meeting :E in at least two points.
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Now let X be the size of :E. It is a random variable with binomial
distribution, so

E(X) ~ V7qlogq

D2(X) ~ V7qlogq

and just like in the proof of Theorem 2.2 we see that there exists an
:E C 0, such that

I :E I~ 6J q log q
and each point in II \ 0 lies on at least one line meeting :E in at least two
points.

Now by the assumption there are two ovals 01, O2 such that

Let :Ei C Oi (i = 1,2) be the sets defined above. Then

has the desired properties. D
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