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Doubly transitive permutation groups with abelian stabilizers

Gy. KARoLYI, S. J. KovAcs AND P. P. PALFY

Summary. We prove that any doubly transitive permutation group with abelian stabilizers is the group
of linear functions over a suitable field. The result is not new: for finite groups it is well known, for
infinite groups it follows from a more general theorem of W. Kerby and H. Wefelscheid on sharply
doubly transitive groups in which the stabilizers have finite commutator subgroups. We give a direct and
elementary proof.

The sharply doubly transitive groups of finite degree were determined by H.
Zassenhaus [S5] in 1936. They are the groups of linear functions over near-fields.
Under additional assumptions the result has been extended to infinite groups, see
M. Hall [1, p. 382]. In this note we will consider the case when the stabilizers are
abelian.

In a somewhat more general situation, namely if the stabilizers have finite
commutator subgroups, W. Kerby and H. Wefelscheid [2, Corollary 3] proved that
the group must be the group of linear functions over a near-field. Although our
result is a special case of theirs, we think our short proof might be of some interest.

THEOREM. Let G be a doubly transitive permutation group. If the stabilizer of a
point is abelian then G is the group of linear functions over a field.

The same result has been obtained independently by V. D. Mazurov [4].

Observe that a transitive abelian group is regular, hence G is sharply doubly
transitive, i.e., if two permutations from G agree at two points, they are equal.

As a corollary to our theorem we obtain that the stabilizers in G are isomorphic
to the multiplicative group of a field. That group cannot be an infinite cyclic group,
so we get a negative answer to a problem of Ja. P. Sysak from the Kourovka
Notebook [3, 10.63].
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We introduce some notation. Let F be the set of permuted elements, and fix two
elements 0, 1 € F. Let 4 = G,, the stabilizer of 0, which is abelian by assumption.
A acts regularly on the set of nonzero elements of F, hence we can identify any
a € A with a(1) e F.

We are going to define a field structure on F. First we define the multiplication
in the obvious way, namely xy =z for nonzero x, y, z € F iff this holds for the
corresponding elements in 4, and Ox = x0 =0 for all x € F. Now, under the above
mentioned identification, we have a(x) = ax for all a € A, x € F.

We will distinguish two cases.

Case I. A contains a permutation of order 2. Since any two permutations of
order 2 are conjugate in G (see [1, Lemma 20.7.2]), 4 contains a unique such
element. We will denote this permutation, and also the corresponding element of F,
by —1. We will write —x for (—1)x.

Case II. A contains no permutations of order 2. (This will correspond to the
case when F has characteristic 2.) For notational convenience we will write —1 =1,
—x = Xx in this case.

By double transitivity, there exists a ¢ € G interchanging 0 and 1. Our definition
of the addition is motivated by the fact that in the group of linear functions
t(x) =1—x. So let

ﬂ(_Z)’ifx¢0;
x+y= x

y, if x=0

for all x,y e F.

LEMMA 1. For every x,y € F, x #0, 1, we have

1) =, )
_ BVAL(E))

1) = 169 -5 ). e
1 1

’(@)zt(l/x)’ )

1
1(xy) = t(x) - t<t(y) : 1(7(35)) (4
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Proof. (1) Since G is sharply doubly transitive and ¢ fixes both 0 and 1, it
follows that ¢ has order two.

(2) Using the identification of F\{0} and A we can define 1(x) € 4 for all x € 4,
x # 1. We show that

tex=tx)t-tx"H 't

holds in G. Indeed, it is easy to check that these permutations both map 1 to #(x)
and x~! to 0, and as G is sharply doubly transitive, they should be equal.
Evaluating the two permutations for an arbitrary y € F we obtain (2).

(3) For y =0, Equation (2) turns into

1
1=1(x) - t<m>,

which, by substituting 1/x for x, immediately implies (3).
(4) Combining (2) and (3) we get the last equation.

LEMMA 2. For every x € F, x # 0, we have

t(x)=—x" t(l) (5
X

Proof. The equation trivially holds for x = —1. First we prove (5) in Case L.
Let u, ve F, u, v #0, 1. Applying (4) twice, we obtain by (1), (2), and (3)

Huv) = 1(u) - t(t(u) : z(ﬁ))
1 1
=tu) v t(t—(u-) I(;))

(1 /uv)
f(1/u)

=tu) v

Now let u = —1, v = —x, then the previous equation turns into (5).
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Now assume that the Case II occurs. Let x € F, x # 0, 1. Then

x2=t(t(x - x))—t(t(x) t(t(x) t<( ))))
1
= (o1 (i) 1)
_ , I
=1 '(t( )) (x '(t(x)-t(l/t@z))))
2
[""’ ’(t<l))]

Since 4 does not contain any element of order two, this implies that

x =1t(x) - t(t( )>

and then (5) follows using (3), as we have —1 =1 in this case.

PROPOSITION. F is a field under the operations + and -
Proof. The axioms for multiplication are obviously satisfied, since 4 is an
abelian group. It is easy to check that x +0=x and x + (—x) =0 for all x e F.

Hence, in proving the commutativity of addition, we may assume that x, y #0.
Then (5) yields

x+y=x.t(_2)=x.z.,<_f)=y.,(_f)=y+x.
X X y Y

Now let us show that + is associative. The equation
x+(y+2)=(x+y)+z

trivially holds if x =0 or y =0, and it is also straightforward to check it if y = —x.
Hence we may assume that x #0, y #0, x + y # 0. Now applying (2), (1), and (5)
we obtain
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x+(y+z)=x+y‘t<—i>=x-t(—z~t<—z>)
y X y
U B A Y et 7
- ’( x) ’(z(—x/y))
y) =y

<t

(-
_x ,(
(-

I
>-<

RCA ST

( )
“(—y/x)

)+z—(x+y)+z

><I‘<

=Xx-1

RI‘<

Showing distributivity is again an easy task.

Proof of the Theorem. Now
—X
l—x=14+(-x)=1 -t(——r>=t(x).

Also, for a € A a(x) = ax holds. These linear functions generate the group of all
linear functions over F, as for a, b € F\{0} we have

ax+b=b-t<—§x>.

This group is sharply doubly transitive, hence it is equal to G.
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