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DiscLAIMER. In order to understand and follow this article the readiges nomneed to
know what a stack is. In fact, the sole point of using the wath¢k” is to make it easier
to talk about subvarieties of moduli spaces that are indbgefdmilies that belong to the
corresponding moduli problem. This is what | mean by “sutetas of moduli stacks”
and this is the only aspect of the theory of stacks that wiliddevant.

1. INTRODUCTION

Moduli theory strives to understand how algebraic vargeetleform and degenerate.
Studying a moduli stack tells us a lot about these properti&dasic question one is
interested in is whether a given moduli stack is proper, iisfnot, then how far it is from
being proper. An even more simple question one may ask abewggometry of a given
moduli stack is whether it contains any proper subvarietieis does, what kind can that
proper subvariety be?

Naturally, the same questions may be asked about modulespathe difference
between the two is whether one is interested in any subyasféhe moduli space or only
those that come from a family that belongs to the correspaniioduli problem. The latter
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ones provide subvarieties of the moduli stack and in thislanve are mainly interested in
those.

ConsideV,, the moduli space of smooth projective curves of genus3. M, admits
a projective compactification, the Satake compactificatwith a boundary of codimen-
sion two. Taking general hyperplane sections on this cofiffzation one finds thai,
contains a proper curve through any general point. Unfatily, this does not give ex-
plicit families of smooth projective curves that induce afamnstant map from a proper
curve toM,. On the other hand Kodaira constructed such families in fRadcf. [Kas68],

BHPV04, V.14], [Zaa95], [GDH99]. However, the images oé#e curves in the corre-
sponding moduli stacRt, (or in the moduli spacé,) are confined to the special locus
of curves that admit non-trivial automorphisms.

These results naturally imply the following question: Aherte higher dimensional
proper subvarieties contained in sofie,? The answer is positive. Kodaira’s construction
can be used to prove the following: For ailye N there exists & = g(d) € N such
that91, contains a proper subvariety of dimensinFor details on this construction see

Mil86], [FL99, pp.34-35],[[Zaa99]. These examples arebased on the aforementioned
construction of Kodaira and hence the proper subvarietesteucted this way all lie in
the locus of curves that admit a morphism onto another pesienus curve.

One may argue that the really interesting question is whetteze are higher dimen-
sional proper subvarieties 8ft, that contain a general point 8ft,. Unfortunately this
is still an open question even for surfaces, i.e., it is naivkm whether there are proper
surfaces through a general pointdi,, for anyg > 3.

Naturally, sincelim 9t, = 3¢ — 4, there is an obvious upper bound on the dimension
of a proper subvariety dbt, for a fixedg, but one may ask whether there is a better upper
bound tharBg — 3. Actually this is one of those questions when finding the arsior
the moduli space,, implies the same for the moduli stacki,, and not the other way
around. The celebrated theorem of Diaz-Looijenga [Dia848D, Loo95] says that any
proper subvariety oM, has dimension at mogt— 2. This estimate is trivially sharp for
g = 2,3, but it is not known to be sharp for any other valueg;ofThe known examples
are very far from this bound. Recently, Faber and van der (Fe€iG04] pointed out that
in char p there exists a natural subvariety Idf, of expected dimension — 2, and hence
seems a good candidate for a proper subvariety of maximatriion. However, they
also show that this subvariety has non-proper componemtfance itself is not proper.
On the other hand, Faber and van der Geer express hope thigthit aso have proper
components. This would be enough to prove that the uppercbgun2 is sharp.

Similar questions may be asked about other moduli spaeeksstfor instance, re-
placing curves by abelian varieties. The reader intereistéldis question could start by
consulting [Oor74], [KS03], and [VZ05c].

In this article we are interested in somewhat more sophigt questions. On one
hand, we are not only asking whether a given moduli stackatoesifproper subvarieties,
but we would like to know what kind of proper subvarietiesahtains. For instance, does
it contain proper rational or elliptic curves? Furthermose are also interested in non-
proper subvarieties. For instance, if it does not contaimoggr rational curve, does it
contain one that’s isomorphic to the affine line?

Interestingly, already the question of containing progional curves differentiates
between the moduli stacf)t,, and the moduli spacé/],: Parshin/[Par68] proved that,,
does not contain proper rational curves for anwhile Oort [Oor74] showed that there
exists somg such thatM, does contain proper rational curves.
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Our starting point in this article is Shafarevich's conjget(2.1). This leads us to in-
vestigate related questions and eventually to a recentgéeagion, Viehweg's conjecture
(5.6), which states that any subvariety of the moduli staakiog general type.

The topic of this article has gone through an enormous toameftion during the last
decade and consequently it is impossible to cover all the sewelopments in as much
detail as they deserve it. Hence the reader is encourageasollt other surveys of related
interest([Vie01], [Kov03a], [MVZ05].

The following notation will be preserved throughout theimnarticle:

NOTATION AND DEFINITIONS 1.1. Letk be an algebraically closed field of characteristic
0, B a smooth variety ovek, andA C B a closed subset. Unless otherwise stated, all
objects will be assumed to be defined oker

A family over B is variety X together with a flat projective morphisnfs X — B
with connected fibers.

For a morphismt”™ — S and another morphisi — S, the symbolY will denote
Y xg T. Inparticular, fory = X, S = B andb € B we write X;, = f~1(b). In addition,
if T'= Spec F', thenYr will also be denoted by .

Let ¢ € N. Thendn,, respectivelyM,, denotes thenoduli stack respectively the
coarse moduli spac®f smooth projective curves of genys Similarly 91, respectively
M,, denotes thenoduli stack respectively theoarse moduli spaceof stable projective
curves of genug. Furthermoret;,, respectivelyM;,, denotes thenoduli stack respec-
tively thecoarse moduli spac®f smooth canonically polarized varietes with Hilbertyol
nomialkh. We will say thatVl;, admits ageometric compactificatioifithere exists a moduli
stack9t;, with a coarse moduli spadd;, such thatVl,, is projective and containsl;, as
an open subscheme.

Afamily f: X — Bisisotrivial if X, ~ X, for any pair of general points, b € B.
The family f: X — B will be called admissible(with respect to(B, A)) if it is not
isotrivial andA contains the discriminant locus ¢fi.e., the magf: X\ f~1(A) — B\A
is smooth.

Let Z be a line bundle on a schend&. It is said to begenerated by global sections
if for every pointz € X there exists a global sectian. € H°(X,.Z) such that the germ
o, generates the stalle, as and'x-module. If.Z is generated by global sections, then
the global sections define a morphigig: X — PV = P (H(X,.%)). £ is called
semi-amplaf ™ is generated by global sections for > 0. .Z is calledampleif it
is semi-ample ang o~ is an embedding forn > 0. A line bundle.# on X is called
big if the global sections of#™ define a rational map ¢m : X --» P¥ such thatX is
birational tog = (X) for m > 0. Note that in this cas&’™ is not necessarily generated
by global sections, s¢ ¢ is not necessarily defined everywhere.

A smooth projective varietX is of general typéf wx is big. It is easy to see that this
condition is invariant under birational equivalence betwemooth projective varieties. An
arbitrary projective variety is ajeneral typéf so is a desingularization of it.

2. SHAFAREVICH’S CONJECTURE
Let B be a smooth projective curve of genpandA C B a finite subset.

2.A. The original conjecture
Let us start with the aforementioned conjecture of Shafeln&ha63]:
2.1. HAFAREVICH'S CONJECTURE Let (B, A) be fixed and, > 2 an integer. Then
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(2.1.1) There exist only finitely many isomorphism classes of adlotesfamilies of
curves of genus.
(2.1.2) If 29 — 2 + #A <0, then there exist no such families.

REMARK 2.2. The inequality in (2.1.2) can be satisfied onlifs either a rational or an
elliptic curve:

g=0 and #A <2,
g=1 and A =0.

Shafarevich showed a special case of|(2.1.2): There ex®hooth families of curves
of genusg overP!. (2.1.1) was confirmed by Parshin [Par68] fdr= () and by Arakelov
[Ara71] in general.

Our main goal is to generalize this statement to higher dgiosal families. In order
to do that we will have to reformulate the statement as Paestd Arakelov did, but before
doing so, we need a little bit of background on deformations garameter spaces.

20 -2+ #A <0 < {

2.B. Deformations and Parameter Spaces

In general, deforming an object means to include that olijegtfamily. There is a poten-
tially confusing point here. Our main objects of study anmifees, that is, deformations
of their members. However, we do not want to consider ourlfasas deformations. We
want to look at deformationsf these families. This works just the same way as defor-
mations of other objects. In addition, we want to fix the basthese families, so we are
interested in deformations leaving the base fixed, whichawsddoth the notation and the
theory easier.

A deformationof a family f: X — B with the base fixed is a familz™ — B x T,
whereT is connected and for sontg € 1" we have(2;, — B x {to}) ~ (X — B):

X~ 2, 7

]

B~Bx{ty}—=BxT.

We say that two familieX;, — B andX, — B have the samdeformation typé they can
be deformed into each other, i.e., if there exists a condéctend a family2™ — B x T
such that for somey, t; € T, (2, — B x {t;}) ~ (X; — B) fori =1, 2.

We will consider deformations of admissible families. Itivie advantageous to re-
strict to deformations of the family oves \ A. Doing so potentially allows more defor-
mations than over the original ba#e it can easily happen that a deformation oY A,
thatis, a family2™ — (B \ A) x T, cannot be compactified to a (flat) family ovBrx T,
because the compactification could contain fibers of hidieat expected dimension. This
however, will not cause any problems because of the natusarahquiry.

Given afamilyf: X — B, we say thaiB parametrizeshe members of the family. If
all members of a class of varieties appear as fibers pfand all fibers are members 6éf
then we say thaB is aparameter spacéor the classt. Note that we do not require that
the members of appear only once in the family.

A very useful parameter space is tHigbert schemea parameter space for subschemes
of P". The Hilbert scheme dP”, Hilb(P"), decomposes as the disjoint union of Hilbert
schemes of subschemes with a given Hilbert polynomidlhe components of this union,
Hilby, (P™), are projective schemes (in particular of finite type). Whee & hoping to
parametrize the members of a class of varieties, then thelikely way to succeed is to
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try to find the parameter space as a subscheme of an appedgiila¢rt scheme. For more
details on Hilbert schemes see [Kol96] and [Vie95]. For momeparameter spaces see
Harr95, Lectures 4, 21].

2.C. The Parshin-Arakelov reformulation

With regard to Shafarevich'’s conjecture, Parshin madedhefing observation. In order
to prove that there are only finitely many admissible farsjliene can try to proceed the
following way. Instead of aiming for the general stateméinst try to prove that there
are only finitely many deformation types. The next step tlsetoiprove that admissible
families are rigid, that is, they do not admit non-trivialfoienations. Notice that if we
prove these statements for families oven A, then they also follow for families over
B. Now since every deformation type contains only one fanaihy since there are only
finitely many deformation types, the original statemeniofok.

The following is the reformulation of Shafarevich’s corjge that was used by Par-
shin and Arakelov:

2.3. HAFAREVICH'S CONJECTURE(VERSION TWO). Let(B,A) be fixed andy > 2 an
integer. Then the following statements hold.

(B) (BOUNDEDNESS There exist only finitely many deformation types of admis-
sible families of curves of gengwith respect taB \ A.

(R) (RIGIDITY) There exist no non-trivial deformations of admissible fasiof
curves of genug with respect taB \ A.

(H) (HYyPERBOLICITY) If 29 — 2 + #A < 0, then no admissible families of
curves of genug exist with respect t@® \ A.

REMARK 2.4. As we discussed abov@3) and (R) together imply[(2.1.1) andH) is
clearly equivalent tg (2/1.2).

2.D. Shafarevich’s conjecture for number fields

Shafarevich’s conjecture has an analogue for number fielde number field version
played a prominent role in Faltings’ proof of the Mordell geeture. This section is a brief
detour to this very exciting area, but it is disconnecteanfithe rest of the article. The
reader should feel free to skip this section and continuk thi¢ next one.

DEFINITION 2.5. Let(R,m) be a DVR,F' = Frac(R), andC a smooth projective curve
over . C'is said to havegood reduction over if there exists a schem#&, smooth and
projective ovelSpec R, such thatC ~ Zp,

C——Zp A
Spec F —— Spec R

DEFINITION 2.6. LetR be a Dedekind ringF" = Frac(R), andC a smooth projective
curve overF'. C hasgood reduction at the closed pointe Spec R if it has good reduction
overR,,.

2.7. HAFAREVICH'S CONJECTURE(NUMBER FIELD CASE). Letq > 2 be an integer.

(2.7.1) Let F' be a number fieldR c F' the ring of integers of', andA C Spec R a
finite set. Then there exists only finitely many smooth pliggcurves over
F of genug; that have good reduction outside.
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(2.7.2) There are no smooth projective curves of geposerSpec Z.
REMARK 2.8. Shafarevich’s Conjecture in the number field case has lsenfirmed:

(2.7.1) by Faltings [Fal83b, Fal84] and (2.7.2) by FontgFen85].
One can reformulate (2.1.1) to resemble the above statement

2.9. SHAFAREVICH'S CONJECTURE(FUNCTION FIELD CASE VERSION THREE. Let

q > 2 be an integer and” = K (B) the function field o3. LetA C B afinite subset such
that B\ A = Spec R for a (Dedekind) ringk. Then there exist only finitely many smooth
projective non-isotrivial curves of genysover F' having good reduction over all closed
points ofSpec R.

DEFINITION 2.10. IfC is a smooth projective curve ovér(an arbitrary field), then there
exists a morphisn@’ — Spec F'. SectionsSpec ' — C, of this morphism correspond
in a one-to-one manner tB-rational pointsof C, points that are defined over the figid
F-rational points of”' will be denoted byC'(F').

ExXAMPLE 2.11.

e The R-rational points of the curve? + y? — 22 = 0 form a circle, itsC-
rational points form a sphere.

e The curver? + 32 + 22 = 0 has naR-rational points.

e Let C, be the curve defined by the equatioh + ¢y — 2" = 0. If n > 3,
then according to Wiles’ Theorem (Fermat's Last Theorem),

{[1:0:1],[0:1:1],[1:-=1:0]}, if nisodd,

Cn(@)z{{[1:0:1]’[0;1;1]’[1305—1]’[0:1:—1]} if nis even.

As mentioned earlier, Faltings useéd (2.7) to prove:

2.12. FALTINGS' THEOREM (MORDELL' S CONJECTURH [Fal83b, Fal84].Let F' be a
number field and” a smooth projective curve of genys> 2 defined overf'. ThenC(F)
is finite.

The function field version of this conjecture was provedieally Manin:
2.13. MANIN'STHEOREM(MORDELL CONJECTURE FOR FUNCTION FIELD}B[Man63].
Let F' be a function field (i.e., the function field of a variety o%¥emwherek is an alge-
braically closed field of characteristi¢) and letC' be a smooth projective non-isotrivial
curve overF of genusy > 2. ThenC'(F) is finite.

REMARK 2.14. The essential case to settle is whedeg, F' = 1, i.e., FF = K(B),
whereB is a smooth projective curve over

2.E. From Shafarevich to Mordell: Parshin’s trick

Shafarevich’s conjecture implies Mordell’s in both the dtian field and the number field

case by an argument due to Parshin. The first step is a cleyetonsssociate different

(families of) curves to different sections:

2.15. RRSHIN's COVERING TRICK. For everyF-rational point, P € C'(F'), or equiva-
op

lently, for every sectioX 5 B, there exists a finite cover &f, Wp =2 X such that

the degree ofrp is bounded in terms af,

the projectioniVp — B is smooth oveB \ A,

the mapr p is ramified exactly over the image @f,

the genus of the fibers & p — B is bounded in terms af.
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For details on the construction of the covéiig, —— X, see [Lan97, IV.2.1] and [Cap02,
84]. The second step is an old result:

2.16. DE FRANCHIS'S THEOREM [dF13,/dF91].Let C' and D be smooth projective
curves of genus at least two. Then there exist only finitelyyng@minant rational maps
D — C.

Shafarevich’s Conjecture implies that there are only fipiteany differentiWWp'’s.
Viewing Wp and X as curves ovef’, de Franchis’s theorem implies that a fixéd> can
admit only finitely many different maps t&.

Since those maps are ramified exactly over the image of thresmndings p, this
means that there are only finitely many’s, i.e., C(F) is finite, and therefore Mordell’s
conjecture follows from that of Shafarevich.

We end our little excursion to the number field case here. drréist of the article we
work in the function field case and use the notation and assongpof (1.1).

3. HYPERBOLICITY AND BOUNDEDNESS
3.A. Hyperbolicity

DEFINITION 3.1. [Bro78] A complex analytic spack is calledBrody hyperbolidf every
holomorphic magC — X is constant.

REMARK 3.2. Another important, related notionk®bayashi hyperbolicityFor its defi-
nition and relation to Brody hyperbolicity the reader isareéd to [Kob70] and [Lan87].

REMARK 3.3. LetT be a complex torus. IX is Brody hyperbolic, then since every
holomorphic mafC* — X is constant, it follows that every holomorphic mép— X is
also constant.

We would like to define the algebraic analogue of hyperhtylionotivated by this
observation. Algebraic maps are more restrictive thanrholphic ones. For instance the
universal covering mag; — FE, of an elliptic curve,F, is not algebraic. In particular,
excluding algebraic maps frofd to X does not exclude maps froid to X. The same
argument goes for abelian varieties. Since there existlsimpelian varieties (i.e., such
that do not contain other abelian varieties) of arbitranpetsion, we have to take into
consideration arbitrary dimensional abelian varieties.

The following definition ofalgebraic hyperbolicityis an algebraic version of Brody
hyperbolicity and perhaps it should be called “algebraied§rhyperbolicity” to emphasize
that fact. However, this is not the established terminalogy

Complicating the matter is that there are some related, iffereht definitions that
are used with the same name [Dem97], [Che04]. As usual ilasicases, these different
variants were introduced around the same time and henchatdsto go back and change
the terminology. In the next section we will introduce theion of weak boundedness
which is closer in spirit to Demailly’s notion of hyperbaliz As the reader will see,
the known results of hyperbolicity (as used in this artié¢télow from weak boundedness
(3.8), hence the statements actually remain true even itisese Demailly’s definition of
algebraic hyperbolicity.

One major advantage of the definition used here is that inest@aturally to stacks,
which is exactly the context we would like to use it.

DEFINITION 3.4. An algebraic stack is calledalgebraically hyperboligf

—every morphismi! \ {0} — X is constant, and
—every morphismd — X is constant for an abelian variety,
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REMARK 3.5. The first row in the following diagram is the statementofdition (H).
The last row shows equivalent conditions for both the assiommnd the conclusion.
Recall thatt, stands for the moduli stack (of curves of gerisso maps of the form
B\ A — M, are exactly the ones that are induced by families @&rA.

29— 24+ #A <0 — # f: X — B admissible
B\ A DA {0} or, 3B\ A —M,
A = () andB is an elliptic curve. non-constant

This implies that provingdH) is equivalent to proving that there does not exist a non-
constant morphism of the form! \ {0} — 9, or E — <M, whereE is an arbitrary
elliptic curve.

Corollary 3.6. If 9, is algebraically hyperbolic, the(H) holds.

3.B. Weak Boundedness

In addition to propertie$B), (R), and(H), there is another important property to study.
Its importance lies in the fact that it impli€§I) and if some additional conditions hold it
also implies(B).

(WB) (WEAK BOUNDEDNESS For an admissible family: X — B, the degree of
f+w¥,  is bounded above in terms ofB), #A, g(Xgen), m. In particular,
the bound is independent ¢f

The traditional proof of hyperbolicity for curves proceeda some form of weak
boundedness. The key point is that the upper bound obta'rmédgof*w}g/B has the form
of

(2g(B) -2 + #A) : 0(9(3)7 #A7g(Xg6n)a m)a
wherec(g(B), #A, g(Xgen),m) > 0. This proves hyperbolicity. Sincget f.w?, ; is
ample, its degree is positive, so any upper bound of it istpesas well.

In higher dimensions, the bounds obtained are not alwayssrfarm. However, per-
haps somewhat surprisingly, hyperbolicity follows alnefm the fact of weak bounded-
ness, not only from the explicit bound.

Theorem 3.7. (WB) = (H)
A more precise and somewhat more general formulation isaffeafing:

Theorem 3.8 ([Kov02, 0.9], cf. [Par68]).Let § be a collection of smooth varieties of
general type B a smooth projective curve anl C B a finite subset of3. Let

Fam(B,A,§) ={f: X — B | X is smooth is flat and
fHt)egforallte B\ A}.

Assume thaFam(B, A, §) contains non-isotrivial families and that there exigt m € N
such thatforall(f: X — B) € Fam(B, A, §),

deg (f*w)"(‘/B) < M.

Then2g(B) — 2 + #A > 0.
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3.C. From Weak Boundedness to Boundedness

By [Par68, Theorem 1] there exists a schev¢hat parametrizes admissible families of
curves of genug. Hence(B) is equivalent to the statement thEt has finitely many
components. Therefore, in order to pri®), it is enough to prove thdtl is a scheme of
finite type.

V is naturally embedded infdom((B, B\ A), (M,, M,)). For a familyf: X — B,
let uys: B — M, be the moduli map. If for a fixed ample line bundt on M,, one can
establish thadleg 13 is bounded omB, the bound perhaps dependingBnA andg, but

not on f, then one may conclude that the imagelofn Hom((B, B \ A), (M4, M,)) is
contained in finitely many components and hence is of finpety
The final piece of the puzzle is provided by the constructibig. For p sufficiently

large and divisible there exist line bundleg’ onM, such that for a family of stable curves
f: X — B,if iy: B— M, is the induced moduli map, then

(det (fowltyn)) = mpAD.

Hence(WB) gives exactly the above required boundedness result ance subtain the
following statement.

Theorem 3.9. For families of curve§WB) implies(B).

4. HIGHER DIMENSIONAL FIBERS

Next we turn to higher dimensional generalizations. As & ftep, we will keep
the base of the family be a curve and allow higher dimensi@ibats. Independently,
or simultaneously, one can study families over higher disimral bases. Furthermore,
generalizing the conditions on the fibers naturally leadhécstudy of families of singular
varieties. We will discuss all of these directions.

In order to generalize Shafarevich’s conjecture to the cddamilies of higher di-
mensional varieties the first task is to generalize both theesment and the conditions.
The condition that a curve has genus at |@aste., our assumption thai{ X,e,) > 2, is
equivalent to the condition thaty, , is ample. In higher dimensions, the role of the genus
is played by the Hilbert polynomial, so fixing X,...) will be replaced by ﬁXinngXgen,
the Hilbert polynomial otvx,_, . Therefore we have the following starting data:

e a fixed smooth curvés of genusy,
o a fixed finite subsef C B, and
e afixed polynomiah.

DEFINITION 4.1. Anadmissible familywith respect toB, A andh is a non-isotrivial
family f: X — B, such thatX is a smooth projective variety and for alle B \ A, the
variety X, is smooth and projective withx, ample andh,,, = h. Two such families are
equivalentf they are isomorphic oveB \ A.

Having made this definition, the various parts of Shafatégiconjecture make sense
in any dimension.

4.2. HGHER DIMENSIONAL SHAFAREVICH CONJECTURE Fix B, A andh. Then

(B) (BOUNDEDNESS there exist only finitely many deformation types of admis-
sible families of canonically polarized varieties withpest toB, A and h,

(R) (RIGIDITY) there exist no non-trivial deformations of admissible fieesiof
canonically polarized varieties with respect/ A andh,
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(H) (HYyPERBOLICITY) if 29(B) — 2 + #A < 0, then no admissible families of
canonically polarized varieties with respect A andh exist, and
(WB) (WEAK BOUNDEDNESS for an admissible family: X — B, the degree
of f*wg/B is bounded in terms af(B), #A, h andm.

Next we will discuss the state of affairs with regard to thesajectures and the many
results obtained during the past decade. Because of thelépiendency of the various
results it makes more sense to follow a different order thay are listed in the conjecture.

4.A. Rigidity
LetY — B be an arbitrary non-isotrivial family of curves of genus2, andC a smooth
projective curve also of genus 2. Thenf: X =Y x C — B is an admissible family,
and a deformation of’ gives a deformation of. Therefore(R) fails as stated.

This leads naturally to the following question.

QUESTION4.3. Under what additional conditions dod®) hold?
A possible answer to this question will be given in Sectids. 8.

4.B. Hyperbolicity

Migliorini [Mig95] showed that for families of minimal suates a somewhat weakened
hyperbolicity statement holds, namely that= § if ¢ < 1. The same conclusion was
shown in [Kov96] for families of minimal varieties of arbétry dimension. Late(H) for
families of minimal surfaces was proved in [Kov97b], andrtle general for families of
canonically polarized varieties in [Kov0Oa].

Theorem 4.4 [Kov0Oa]. Let X — B be an admissible families of canonically polarized
varieties with respect t®, A andh. Then2g(B) — 2 + #A > 0.

Finally, Viehweg and Zuo [VZ03b] proved the analytic versiof (H):
Theorem 4.5 [VZ03b]. 9, is Brody hyperbolic.

4.C. Weak Boundedness

Bedulev and Viehweg [BV0O0] proved the following:

Theorem 4.6 [BVOQ]. Let f: X — B be an admissible family witlB, A,  fixed. Let
d =#A, g=g(B),andn = dim Xgen = dim X — 1. If few g #0, then there exists a
positive integee = e(m, h) such that

deg fuw)p < m-e -tk LW g (n(29 —2+6) +9).

This clearly implieSWB) and as a byproduct of the explicit bound it also impliEF).
Viehweg and Zuo [VZ01] extendgdV B) to families of varieties of general type and
of varieties admitting a good minimal model. [n [Kov02] slariresults were obtained
with different methods allowing the fibers to have rationaréhstein singularities, but
restricting to the case of families of minimal varietes ofigel type.
The proof of (3.8) still works in this generality, 8V B) implies (H) in all dimen-
sions [Kov02, 0.9].

4.D. Boundedness

Using the existence of moduli spaces of canonically podarizarieties and the description
of ample line bundles on them, Bedulev and Viehweg [BV00) aisoved a boundedness-
type statement:
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Theorem 4.7 [BVOQ]. Let B, A andh be fixed and assume thit;, admits a geometric
compactificationM;. Then there exists a subschemdlofn((B, B \ A), (Mp, My,)) of
finite type that contains the classes of all morphisths— M, induced by admissible
families.

Unfortunately this statement does not imgB). However, a recent result of Kovacs
and Lieblich does.

Theorem 4.8 [KL06]. Let B, A andh be fixed. Then there exist only finitely many defor-
mation types of admissible families of canonically poledizarieties with respect tB, A
andh.

4.E. Shafarevich’s conjecture for other types of varieties

One may ask whether the Shafarevich problem holds for famif other types of varieties.
There are some known results in this setting as well.

Faltings [Fal83a] studied the Shafarevich problem for feamiof abelian varieties and
proved tha{B) holds, while(R) fails in general. He also gave an equivalent condition for
(R) to hold in this case.

Oguiso and Viehweg [OVO01] consideré#l) for families of non-general type sur-
faces. Their work combined with the previous results shaat tH) holds for families of
minimal surfaces of non-negative Kodaira dimension.

Recent results have been obtained by Jorgensen and Toddrog]] Liu, Todorov,
Yau and Zuo/[LTYZ05] and Viehweg and Zuo [VZ05b] for familie Calabi-Yau vari-
eties.

5. HIGHER DIMENSIONAL BASES

The next natural generalization is to alldwto have arbitrary dimension. Lé? be
a smooth projective varietyh C B a divisor with normal crossings arida polynomial.
The definition of an admissible family is formally the samera¢4.1). As before, for an
admissible familyf: X — B, the moduli map — [X;] is denoted by:;: B\ A — 9My,.

Since B is now allowed to be higher dimensional, the notion of isadlity is no
longer the best one to consider. Observe that isotrivial if and only if 1 is constant.
Saying thatf is not isotrivial would allow the family to be isotrivial inectain directions.
What we want to assume is that the family “truly” changes in dimgction onB. To
express this we define the family’s variation in moduli.

DEFINITION 5.1 cf. [Vie83a], [Vie83b], [Kol87a].Var f:= dim(u;(B)) (< dim B).

We are interested in the ca¥er f = dim B. In (3.6), we observed that hyperbolicity
follows if we know that the stacit, is algebraically hyperbolic. In fact, for hyperbolicity
over al-dimensional base, we only needed the corresponding fyopet;, for curves.
However, we would also like to know that every morphigm- 91, induced by a family
is constant, wherel is an arbitrary abelian variety. This is the extra contenthef next
theorem.

Theorem 5.2. [Kov97a], [Kov0Oa]9n,, is algebraically hyperbolic.

REMARK 5.3. This statement also follows from boundedness by amaggtisimilar to
the one used in the proof of (3.8). It also follows fram (4.5).

As before, this implies that if : X — P! is an admissible family, theftA > 2.
More generally, for an admissible familf: X — P™ with Var f = m, this implies that
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deg A > 2. However, we expect that in this casez A should be larger tham + 1. This
is indeed the case.

Theorem 5.4 [VZ02],[Kov03c]. Let f: X — P be an admissible family. Them (A)
is ample, or equivalentlgeg A > m + 1.

REMARK 5.5. Viehweg and Zuo actually prove a lot more than this inQ2F Please see
the article for details.

It is now natural to suspect that a more general statemenicghold. The following
statement to this effect is part of a more general conjedfixéehweg [VieO01].

5.6. VIEHWEG'S CONJECTURE If f: X — B is an admissible family, theng(A) is
big.

Fordim B = 1, this is simply(H). Fordim B > 1, it is known to be true for
families of curves by [Vie0O1, 2.6] and faB = P" and various other special cases by
[VZ02], [Kov03b] and [Kov03c]. It was recently confirmed fdim B = 2 by Kebekus
and Kovacs in [KK05]. However, this question is far from kgitompletely settled. The
reader is encouraged to read Viehweg’s discussion of thi#rer related open questions

in [VieO1].

6. UNIFORM AND EFFECTIVE BOUNDS
6.A. Families of curves

A finiteness result such as (2.1.1) naturally leads to thestipre whether the obtained
bound dependends on the actual curve, or only on its genuwthém words, is it possible
to give auniform boundhat works for all base curves of genusg?

This question is actually more subtle than it might seemsit fi€onsider the argument
before [(3.9). That proves th&WB) implies (B), but it does not shed any light on the
obtained bound. Even if the bound appearing WB) depends only on the genus, it
might happen that the number of deformation types still ddpen the actual curve. The
argument uses the fact that a subscheme of a scheme of fipitatself is of finite type.
That means that the subscheme has finitely many componéhits) is what is needed for
(B), but it says nothing about how big that finite numner is. Theber of components
of a subscheme has nothing to do with the number of componoéttie ambient scheme.

Despite these difficulties, uniform boundedness is knowhe first such result was
obtained by Caporaso:

Theorem 6.1 [Cap02, Cap03] cf. [Cap04]There exists a constantq, d, §) such that for
any smooth irreducible varieti C P" of degreel and for any closed subschemdeC B
of degree), the number of admissible families of curves of genwith respect tq B, A)
is at moste(q, d, d).

REMARK 6.2. If B is one dimensional, then one may writgy, d,§) = ¢'(q, g,0) using
g = g(B) the genus of3 instead ofd.

The next question is whether the constafit, d, §) (or in the case of a base curve
d(q,g,9))is computable. In other words, is it possible to giveeffiectiveuniform bound?
For families over a base curve this was achieved by Heier:

Theorem 6.3 [Hei04]. Let B be a smooth projective curve of genuand A C B a finite
subset. Ther'(q, g, ) can be expressed as an explicit functioryof andJ.

REMARK 6.4. The expression itself is rather complicated and caoted in the original
article.
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6.B. Higher dimensional families

For higher dimensional families rigidity fails and so we sahexpect a similar finiteness
statement as above. However, one may still ask whethiéorm boundednedsolds and
if so, whether there is an effective bound on the number drdedition types over a base
with a fixed Hilbert polynomial.

Uniform boundedness was recently proved by Kovacs and ickebl

Theorem 6.5 [KLO6]. Leth be a fixed polynomial. Then the set of deformation types of
admissible families of canonically polarized varietieshuHilbert polynomialh is finite
and uniformly bounded in any quasi-compact family of basetias B°.

On the other hand, no effective (uniform) bound is known &t time.

7. TECHNIQUES

7.A. Positivity of direct images
One of the most important ingredients in the proofs of theskmeoesults is an appropriate
variant of a fundamental positivity result due to the workFofita, Kawamata, Kollar and
Viehweg. In this section we will assume, for simplicity, thlam B = 1.
DEFINITION 7.1. Alocally free shea, is ampleif 0p4) (1) onP(&£) is ample.
Theorem 7.2 [Fuj78], [Kaw82b], [Kol87a], [Kol90], [Vie83a], [Vie83h] Let f: X — B
be an admissible family and > 1. If f*w}’;/B #0, thenf*wgg/B is ample onB.
Corollary 7.3. Let f: X — B be an admissible family and > 1. If f*w)”g/B # 0, then
deg f*wg’(”/B > 0.

The methods used to prove (7.2) give a more precise estirhtite positivity of these
push-forwards as shown by Esnault and Viehweg:
Theorem 7.4 [EV90, 2.4]. Let f: X — B be an admissible family, an@” a line bundle
on B. Assume that there exists an integer> 1 such thatdeg .#Z < deg f*w;’g/B. Let
r denote the rank of*w;’g/B. Then there exists a positive integer= e(m, k), such that

(fow,p)?“" @ .4~ is ample onB.

Corollary 7.5 [Kov96, 2.15], [Kov00a, 2.1], [Kov02, 7.6]. (foA = @) Let.# be a line
bundle onB such thatdeg .4 " < deg f.w'y, 5. Themwy, s ® f* A ~1is ample onX.

Ke-r
PROOF(SKETCH). As (f*(w)";/B ® f*/,m)) ~ (f*wgg/B)cae.r Q N Tmer
we obtain that/(7.4) implies thaf. (W, ® f*A4"~™) is ample onB. Furthermore,
by assumption one has thag/B ® f*JV*m|Xgen ~ Wy is ample onX,.,. Hence

wx/p @ f*4 ~!is ample both “horizontally” and “vertically”, so it is amel For details
about the last step see [Kov02, 7.6]. O

This allows us to reduce the proof 6WB) to finding an appropriate line bundle on
B according to the following plan.
PLAN 7.6. First, find a line bundle#” on B, depending only om3 and A, such that
wx/p @ f* " is not ample onX. Then one hadeg /™" £ deg few g by (7.5).
In other words one has that
deg fiw¥/)p <m-e-r-deg. A .

We find such an/#” using vanishing theorems. The main idea is the following: we
want to find a line bundle such that twisting with the relativelizing sheaf does not yield



14 SANDOR J. KOVACS

an ample line bundle. Ample line bundles appear in many hémstheorems, so one way
to prove that a given line bundle is not ample is to prove thatteomology group does not
vanish that would if the line bundle were ample. Next we ar@ag®o look at the needed
vanishing theorems.

7.B. Vanishing theorems

Vanishing theorems have played a central role in algebracrgptry for the last couple of
decades, especially in classification theory. Kollar [RddBgives an introduction to the
basic use of vanishing theorems as well as a survey of remudtapplications available at
the time. For more recent results one should consult [EV&h97], [Kol97], [Smi9T],
[Kov00c], [Kov02], [Kov03a], [Kov03b]. Because of the alability of those surveys,
we will only recall statements that are important for thespre article. Nonetheless, any
discussion of vanishing theorems should start with the domehtal vanishing theorem of
Kodaira.

Theorem 7.7 [Kod53]. Let X be a smooth complex projective variety agtian ample
line bundle onX. Then

H (X,wx ®.Z)=0fori>0.
This has been generalized in several ways, but as noted aiweill restrict to a

select few. The original statement of Kodaira was genezdlin allow semi-ample and big
line bundles in place of ample ones by Grauert and Riemeesbéin

Theorem 7.8 [GR70]. Let X be a smooth complex projective variety afftia semi-ample
and big line bundle orX. Then
H (X,wx ®.Z)=0fori>0.

“Semi-ample” was later replaced by “nef” in the statemeniKayamata and Viehweg.
Theorem 7.9 [Kaw82a],[Vie82]. Let X be a smooth complex projective variety a@tla
nef and big line bundle oX'. Then

H (X,wx ® %) =0fori>0.

Akizuki and Nakano extended Kodaira’s vanishing theorenmt¢tude other exterior
powers of the sheaf of differential forms.

Theorem 7.10 (Akizuki-Nakano/AN54]). Let X be a smooth complex projective variety
and.Z an ample line bundle oX'. Then

HI(X, 0% @ Z)=0forp+¢>dimX.
REMARK 7.11. Ramanujam [Ram72] gave a simplified proof of (7.10)simalved that it
does not hold if one only require®’ to be semi-ample and big.

In order to proceed we will need more delicate vanishing ri@s than before. Our
starting point is the theorem of Esnault and Viehweg thaemoks [(7.10) to sheaves of
logarithmic differential forms.

Theorem 7.12 [EV90, 6.4]. Let X be a smooth complex projective variey, an ample
line bundle andD a normal crossing divisor oiX. Then

HY(X,0% (log D) ® Z) =0forp+¢q > dim X.

REMARK 7.13. Extending the known vanishing theorems in a diffedinetction, Navarro-
Aznaret al. proved a version of the Kodaira-Akizuki-Nakano vanishihgdrem for sin-
gular varieties that implies our previous statements:)(178), and[(7.10) cf [Nav88] in
GNPP88] and Theorem 8.5 in the next section.
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As mentioned earlier, in order to proy8 B) we need a suitable vanishing theorem.
The following is a somewhat weaker statement than that iy/reeeded, but shows the
main idea of the proof and how to apply it.

Theorem 7.14 [Kov97b], [Kov00a]. Let f: X — B be a family such thaB is a smooth
projective curve. Assume that = f*A is a normal crossing divisor. Let = dim Xgen
and.Z an ample line bundle oiX such that? @ f*wg(A)™ " is also ample. Then

H" (X, Z @ ffwp(A)) =0.

PROOF After taking exterior powers of the sheaves of logarithdifterential forms,

one has the following short exact sequence for gachl, ... n + 1:
0 — Q% 5(log D) ® fwp(A) — Q% (log D) — Q% (log D) — 0.

Define.Z, = .Z@f*wB(A)l_p forp =0,...,n+1. Then the above short exact sequence
yields:

0 — QF 5(log D) ® %, — Q% (log D) @ %, — QF z(log D) @ %, — 0.

%, isample forp = 1,...,n + 1 since eithetwg(A) orwp(A) ™" is nef. Then by((7.12)
H ==Y (X 0% (log D) ® .%,) = 0 (recall thatdim X = n + 1). Hence the map

Hﬂ,-‘rl—p ()(7 Qp (log D) X gp) e Hn+1_(p_1) (X.Qp_l (10g D) &® gp—l)

X/B X/B
is surjective forp = 1,...,n + 1. Observe that these maps form a chaip asns through
p=n-+1,n,...,1. Hence the composite map,
HY (X,0374(108 D) @ L1 ) — H™ (X, %),
is also surjective. Howeveﬂ)l(/B (log D) is of rankn, soQ}éjé (log D) = 0, and therefore
H"™Y (X, %) = H'""Y(X, 2 @ ffwp(A)) = 0 as well. O

We are finally able to provéWB), at least forA = (), by combining positivity and
vanishing:((7.3) and (7.5) with¥” = &'z imply thatwy, 5 is ample. Since
H" (X, wx/p ® [fwp) # 0,
———
wx

this and((7.14) imply that x5 ® f*wz" cannot be ample. Then (7.5) with” = f*w}
implies that

deg fuw' p < deg ffwg™e =m-e-r-dim Xgen - (29 — 2).

REMARK 7.15. For a complete proof dfWB) without the assumptiol\ = (), see
[BVO0O], [Kov02], or [VZ02].

7.C. Kernels of Kodaira-Spencer maps

The germ of the method described above was first used in [J@rabthen it was polished
through several articles [Kov97b, Kov97a, Kov00a, BV00,@2YKov02]. Then Viehweg
and Zuo [VZ01], VZ02] combined some of the ideas of this methitd Zuo’s discovery of
the negativity of kernels of Kodaira-Spencer maps [ZuoQiis negativity is essentially
a dual phenomenon of the positivity results mentioned &affi.2), [(7.4).

The Viehweg-Zuo method has a great advantage over the pewiethod. The lat-
ter uses global vanishing theorems which limits the scopiefapplications, while the
Viehweg-Zuo method uses local arguments and hence is mptieape. Unfortunately
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this method is rather technical and so we cannot presentst rdowever, it is discussed
in many places. The interested reader should start by Viglsvexcellent survey [Vie0O1]
and then read the full account in [VZ01, VZ02].

8. FURTHER RESULTS AND CURRENT DIRECTIONS
8.A. More general fibers

In the pursuit of more general results somewhat differept@gches were taken in [VZ02]
and [Kov02]. Both of these approaches led to several furtbsults and these results, in
accordance with the different approaches, were somewfiatatit. Here we discuss the
latter approach and the related results. For a survey orotheef, the reader is referred to
Vie01] and the references therein.

Our starting point is a principle that has been applied wittagysuccess in birational
geometry.

PRINCIPLE 8.1. Studying an ample line bundle on a singular varietynslar to studying
a semi-ample and big line bundle on a smooth variety.

The traditional way to use this principle is the following.h& goal is to prove a
statement for a paif,X, .¥), whereX is possibly singular, an is ample onX. Instead
of working on X one works on a desingularizatigit Y — X, and consider the semi-
ample and big line bundlez” = f*.#. A prominent example of this trick is the use of the
Kawamata-Viehweg vanishing theorém (7.9) in the MinimalddbProgram.

Here we will turn the situation upside-down. Our goal is aesteent for(Y, %),
whereY is smooth and’#” is a semi-ample and big line bundle &h Instead of working
onY we construct a paifX,.¥) and amap: Y — X, whereX is possibly singular.?
is ample onX, f is birational, and?” = f*.%.

The motivation for this approach is that we would like to extehe previous results
to the case whewx,, is not necessarily ample but only semi-ample and big. Howeve
a crucial ingredient of the proof is an appropriate versibthe Kodaira-Akizuki-Nakano
vanishing theorem (7.10), and as Ramanujam (7.11) point&d(0.10) fails if the line
bundle in question is only assumed to be semi-ample and btgad of ample. On the
other hand, Navarro-Aznat al. proved a singular version of the Kodaira-Akizuki-Nakano
vanishing theorem (see Remark 7.13), so one hopes thatalyithe proof can be made to
work.

In order to state the singular version of the Kodaira-AkizNkkano vanishing theo-
rem, we need to use derived categories. The reader unfamitiathe basics may wish to
consult [Hart66] and [Con00Q] for definitions and details.

8.2. Du Bois’s compLEX. We also need Du Bois’s generalized De Rham complex. The

original construction of Du Bois's comple® x (log D), is based on simplicial resolutions.
The reader interested in the details is referred to thermalgirticle [DB81]. Note also that
a simplified construction was later obtained in [Car85] #@8IPP88] and via the general
theory of polyhedral and cubic resolutions. An easily asit®#s introduction can be found
in [Ste85].

Recently Schwede found an alternative construction of Dis'Bacomplex that does
not need a simplicial resolution [Sch06], however we wilé ibe original construction
here. For more on recent applications of Du Bois’s complekan Bois singularities see

Ste83], [Kol95, Chapter 12], [Kov99], [Kov00b], [Kov0O0c]
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The word “hyperresolution” will refer to either simplicigdolyhedral, or cubic resolu-

tion. Formally, the construction @t i (log D) is the same regardless the type of resolution
used and no specific aspects of either types will be used.

The following definition is included to make sense of theestagnts of some of the
forthcoming theorems. It can be safely ignored if the re&leot interested in the detailed
properties of Du Bois’s complex and is willing to accept thast a very close analogue of
the De Rham complex of smooth varieties.

DEFINITION 8.3. LetX be a complex scheme aidla closed subscheme whose comple-
ment inX is dense. TheX,, D,) — (X, D) is agood hyperresolutioif X, — X is a
hyperresolution, and I/, = X, xx (X \ D) andD, = X_ \ U,, thenD; is a divisor with
normal crossings oX; for all 4.

Let X be a complex scheme of dimension n. It (X ) denote the derived category
of filtered complexes o’y -modules with differentials of ordet 1 andD iy o, (X) the
subcategory oDy (X)) of complexesk™, such that for all, the cohomology sheaves of
Gri, K" are coherent cf. [DB81], [GNPP88]. L&(X) and D..,(X) denote the derived
categories with the same definition except that the complaxeassumed to have the triv-
ial filtration. The superscripts-, —, b carry the usual meaning (bounded below, bounded
above, bounded). Isomorphism in these categories is d¢bgte-,;; . A sheaf.Z is also
considered a complesf* with 7% = .7 and.Z’ = 0 fori # 0. If K" is a complex in any
of the above categories, théf( K*) denotes the-th cohomology sheaf ok ™.

The right derived functor of an additive functér, if it exists, is denoted by? F' and
R'F is short forh! o RF. FurthermoreH’, HY, , and.»#; will denote R‘T", R'T', and
R, respectively, wher& is the functor of global section§, is the functor of global
sections with support in the closed subgetand.77 is the functor of the sheaf of local
sections with support in the closed sub&etNote that according to this terminology, if
¢: Y — X is a morphism and” is a coherent sheaf oni, then R¢...# is the complex
whose cohomology sheaves give rise to the usual highertdineges of% .

Theorem 8.4 [DB81, 6.3, 6.5].Let X be a proper complex scheme of finite type dnhd
a closed subscheme whose complement is den&e ifihen there exists a unique object

Q% (log D) € Ob Dy (X) such that using the notation
Q% (log D): = Grg Qx (log D)[p],

it satisfies the following properties
(8.4.1) Letj: X \ D — X be the inclusion map. Then

Qi (log D) ~y;s Rj.Cx\p.

(8.4.2) Q(  (log(L)) is functorial, i.e., if¢: Y — X is a morphism of proper com-
plex schemes of finite type, then there exists a natural giapf filtered
complexes

¢ : Q% (log D) — R¢.Qy (log ¢* D).

Furthermore Q% (log D) € Ob (D}m,wh(X)) and if ¢ is proper, thenp*

is a morphism inD%, ., (X).
(8.4.3) LetU C X be an open subschemeXf Then

Q% (log D)’U ~qis Qp (log D) .



18 SANDOR J. KOVACS

(8.4.4) There exists a spectral sequence degenerating,and abutting to the sin-
gular cohomology o \ D:
EY =H?(X,0Q%(log D)) = H’*9(X \ D,C).
(8.45)If ¢,: (X,,D,) — (X, D) is a good hyperresolution, then

Qx (log D) ~ys Re, QO (log D,).

In particular, h* (2% (log D)) = 0 for i < 0.
(8.4.6) There exists a natural mag;x — Q% (log D), compatible with/ (8.4.2).
(8.4.7) If X is smooth andD is a normal crossing divisor, then

Q% (log D) 22455 Q (log D).
In particular,
Q% (log D) 24, Q% (log D).
(8.4.8) If ¢: Y — X is aresolution of singularities, then
QL™ (log D) ~gis Rpuwy (67 D).
Naturally, one may choosB = () and then it is simply omitted from the notation. The

same applies t@% : = G}, Q' [p]. We are now able to state the aforementioned singular
version of the Kodaira-Akizuki-Nakano vanishing theorem.

Theorem 8.5[Nav88], [GNPP88].Let X be a complex projective variety add an ample
line bundle onX. Then

HY(X,0f ® £)=0forp+¢ > dim X.

Since Du Bois’s complex agrees with the De Rham complex faratmvarieties, this
theorem reduces to the Kodaira-Akizuki-Nakano theorenhengmooth case. However,
this theorem is still not strong enough in our original sitor if A # (). We need a
singular version of Esnault-Viehweg’s logarithmic vamightheorem((7.12).

Theorem 8.6 [Kov02]. LetX be a complex projective variety ade an ample line bundle
on X. Further letD be a normal crossing divisor oX. Then

HY(X, Q% (log D) ® £) = 0for p+ ¢ > dim X.

To adapt the proof of WB) to the singular case we need a singular versioh of {7.14).
Besides the above vanishing theorem we also need an anadbgie sheaf of relative
logarithmic differentials.

THEOREM-DEFINITION 8.7 [Kov02], cf. [Kov96, Kov97c, KovO5a]let f: X — B be
a morphism between complex varieties such thatX = n 4+ 1 and B is a smooth
curve. LetA C B be a finite set and) = f*A. For every non-negative integer p
there exists a natural map,,: Q% (log D) ® f*wp(A) — Q2" (log D) and a complex
Q}}/B(log D) € Ob (D(X)) with the following properties.
(8.7.1) The natural map\,, factors throughQ}'}/B(log D) ® f*wp(A), i.e., there
exist maps:

w8 (log D) ® frfwp(A) —>Q§/B(logD) ® f*fwp(A) and

P
wy, QQ/B(logD) @ frwp(A) — Q2T (log D)

— / "
such thath, = w, o wy,.
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(8.7.2) If wy, = w) ®idgey,(a)-1: Q% (log D) — Q;}/B(logD), then

* w; Wp 1
Q% p(log D) @ f*wp(A) = Q%™ (log D) =5 QLT L (log D) —

is a distinguished triangle i (X).
(8.7.3) wy, is functorial, i.e., if¢: Y — X is a B-morphism, then there are natural
maps inD(X) forming a commutative diagram:

Q% (log D) — Q;}/B(bg D)

R0y (log¢*D) —  R.Qy p(log¢™D).

(8.7.4) Qx/p(log D) = 0 forr > n.

(8.7.5) If f is proper, therﬂf}/B(log D) € Ob (D%, (X)) for everyp.

(8.7.6) If fis smooth ove3 \ A, thengﬁ/B(log D)~y Qﬁ(/B(log D).
Using these objects one can make the proof work to obtainolf@ing theorem. It is in
a non-explicit form. For more precise statements 'see [Kof8), (7.10), (7.11), (7.13)].
Theorem 8.8. Fix B, A C B. Then weak boundedness holds for families of canon-
ically polarized varieties with rational Gorenstein sirlgtities and fixed Hilbert poly-
nomial admitting a simultaneous resolution of singul@stioverB \ A. In particular,
2g — 2 + #A > 0 for these families by3.8).

As a corollary, one obtains weak boundedness for non-biraliy-isotrivial families
of minimal varieties of general type.

8.B. Ilterated Kodaira-Spencer mayps and strong non-isotriviality

Let us finish by revisiting rigidity. We have seen in (4.A) t&® ) fails as stated in the
original conjecture and we asked

QUESTION 8.9 = QUESTION4.3. Under what additional conditions do@) hold?

This question was partially answered lin [VZ03a] and [Kov05Both papers gave
essentially the same answer that we will discuss below. Mewene must note that this
is not the only case when rigidity holds as it was shown in [¥Zp In other words we do
not have a sufficient and necessary criterion for rigidity.

8.10. MERATED KODAIRA-SPENCER MAPS CASE |: ONE-DIMENSIONAL BASES. Let

f: X — B be a smooth projective family of varieties of general typéiaiensionn, B a

smooth (not necessarily projective) curve andllgt: = A™T'x andT;?/ gi=N"Tx/p.
Let1 < p < n and consider the short exact sequence,

040 F 50 ~ Th e FT " ~ T Lo fT50 ") — 0
This induces an edge map,

_ — n— 1 n—
p;l)): RP lf*T;}/é ® Tg( p+1) N R;Df*T)P}/B ® Tg( P)'

DEFINITION 8.11 [Kov05b]. Letps:= pgc") o p;”*” 0---0 p;l): Tg" — R'f.TY)p
and callf strongly non-isotriviaif p; # 0.

EXAMPLE 8.12. LetY; — B be admissible families of curves for= 1,...,r. Then
X =Y; xp - xp Y, — Bisstrongly non-isotrivial.
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REMARK 8.13. Sincel’s is a line bundle and%’”f*T;}/B is locally free,p; # 0 if and
only if it is injective. We use this observation in the defioit of strong non-isotriviality
for higher dimensional bases.

8.14. ITERATED KODAIRA-SPENCER MAPS CASE Il: HIGHER-DIMENSIONAL BASES.
Let f : X — B be a smooth projective family of varieties of general typéiaiensionn,
B a smooth (not necessarily projective) variety.

For an integep, 1 < p < n, there exists a filtration

Ty =7°27'2. . 27" 29" =,

such that
ﬁi/yiﬂ ~ T)"’(/B ® frrh
In particular,
FP =Ty p
and

FrFT = TRy @ [T
Therefore one has a short exact sequence,
0—T% po Ty - 7rt e oyt 1 Lo Pyt o,
that induces a map

pgcp) . R;Dfl f*T§7; ® Tg’("—l)"rl) _ Rpf*T)P;/B ® Tg’("—l)).
DEFINITION 8.15 [KovO5b]. Letpy := pgc”) o p;”*l) 0.0 pgpl) (TE" — R"f*T;g/B
and callf strongly non-isotrivial ovei3 if p; is injective.

ExamMPLE 8.16. LetY; — B be non-isotrivial families of smooth projective curves for
i=1,...,7. ThenX =Y; xp--- xg Y, — B is strongly non-isotrivial oveB.

REMARK 8.17. One could consider various refinements of this nofi@n.instance, con-
sider maps for which the composition of fewéP)’s is injective or non-zero. These appear
for example in the study of moduli spaces of varieties thapaoducts with one rigid term.
One could also combine this condition withar f, the variation off in moduli. This is a
mostly unexplored area at the moment.

Therefore a possible answer to Question 4.3 is given by tlanfimg theorem:
Theorem 8.18 [VZ034d], [KovO5h]. Let f : X — B be a smooth projective family of
varieties of general type3 a smooth variety. Iff is strongly non-isotrivial ovei3, then
rigidity holds for f.

This, combined with Theorem 4.8, leads to a statement rdasgrthe original Sha-
farevich conjecture. In fact, for families of curves it silmpeduces to that.

Theorem 8.19 [KLO6]. Let B, A and h be fixed. Then there exist only finitely many
strongly non-isotrivial families of canonically polariderarieties with Hilbert polynomial
h with respect taB, A.
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