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DISCLAIMER. In order to understand and follow this article the readerdoes notneed to
know what a stack is. In fact, the sole point of using the word “stack” is to make it easier
to talk about subvarieties of moduli spaces that are inducedby families that belong to the
corresponding moduli problem. This is what I mean by “subvarieties of moduli stacks”
and this is the only aspect of the theory of stacks that will berelevant.

1. INTRODUCTION

Moduli theory strives to understand how algebraic varieties deform and degenerate.
Studying a moduli stack tells us a lot about these properties. A basic question one is
interested in is whether a given moduli stack is proper, or ifit is not, then how far it is from
being proper. An even more simple question one may ask about the geometry of a given
moduli stack is whether it contains any proper subvarieties. If it does, what kind can that
proper subvariety be?

Naturally, the same questions may be asked about moduli spaces. The difference
between the two is whether one is interested in any subvariety of the moduli space or only
those that come from a family that belongs to the corresponding moduli problem. The latter
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ones provide subvarieties of the moduli stack and in this article we are mainly interested in
those.

ConsiderMg, the moduli space of smooth projective curves of genusg ≥ 3. Mg admits
a projective compactification, the Satake compactification, with a boundary of codimen-
sion two. Taking general hyperplane sections on this compactification one finds thatMg

contains a proper curve through any general point. Unfortunately, this does not give ex-
plicit families of smooth projective curves that induce a non-constant map from a proper
curve toMg. On the other hand Kodaira constructed such families in [Kod67], cf. [Kas68],
[BHPV04, V.14], [Zaa95], [GDH99]. However, the images of these curves in the corre-
sponding moduli stackMg (or in the moduli spaceMg) are confined to the special locus
of curves that admit non-trivial automorphisms.

These results naturally imply the following question: Are there higher dimensional
proper subvarieties contained in someMg? The answer is positive. Kodaira’s construction
can be used to prove the following: For anyd ∈ N there exists ag = g(d) ∈ N such
thatMg contains a proper subvariety of dimensiond. For details on this construction see
[Mil86], [FL99, pp.34-35], [Zaa99]. These examples are allbased on the aforementioned
construction of Kodaira and hence the proper subvarieties constructed this way all lie in
the locus of curves that admit a morphism onto another positive genus curve.

One may argue that the really interesting question is whether there are higher dimen-
sional proper subvarieties ofMg that contain a general point ofMg. Unfortunately this
is still an open question even for surfaces, i.e., it is not known whether there are proper
surfaces through a general point ofMg, for anyg > 3.

Naturally, sincedim Mg = 3g − 4, there is an obvious upper bound on the dimension
of a proper subvariety ofMg for a fixedg, but one may ask whether there is a better upper
bound than3g − 3. Actually this is one of those questions when finding the answer for
the moduli space,Mg, implies the same for the moduli stack,Mg, and not the other way
around. The celebrated theorem of Diaz-Looijenga [Dia84, Dia87, Loo95] says that any
proper subvariety ofMg has dimension at mostg − 2. This estimate is trivially sharp for
g = 2, 3, but it is not known to be sharp for any other values ofg. The known examples
are very far from this bound. Recently, Faber and van der Geer[FvdG04] pointed out that
in char p there exists a natural subvariety ofMg of expected dimensiong − 2, and hence
seems a good candidate for a proper subvariety of maximal dimension. However, they
also show that this subvariety has non-proper components and hence itself is not proper.
On the other hand, Faber and van der Geer express hope that it might also have proper
components. This would be enough to prove that the upper bound g − 2 is sharp.

Similar questions may be asked about other moduli spaces/stacks, for instance, re-
placing curves by abelian varieties. The reader interestedin this question could start by
consulting [Oor74], [KS03], and [VZ05c].

In this article we are interested in somewhat more sophisticated questions. On one
hand, we are not only asking whether a given moduli stack contains proper subvarieties,
but we would like to know what kind of proper subvarieties it contains. For instance, does
it contain proper rational or elliptic curves? Furthermore, we are also interested in non-
proper subvarieties. For instance, if it does not contain a proper rational curve, does it
contain one that’s isomorphic to the affine line?

Interestingly, already the question of containing proper rational curves differentiates
between the moduli stack,Mg, and the moduli space,Mg: Parshin [Par68] proved thatMg

does not contain proper rational curves for anyg, while Oort [Oor74] showed that there
exists someg such thatMg does contain proper rational curves.



SUBVARIETIES OF MODULI STACKS 3

Our starting point in this article is Shafarevich’s conjecture (2.1). This leads us to in-
vestigate related questions and eventually to a recent generalization, Viehweg’s conjecture
(5.6), which states that any subvariety of the moduli stack is of log general type.

The topic of this article has gone through an enormous transformation during the last
decade and consequently it is impossible to cover all the newdevelopments in as much
detail as they deserve it. Hence the reader is encouraged to consult other surveys of related
interest [Vie01], [Kov03a], [MVZ05].

The following notation will be preserved throughout the entire article:

NOTATION AND DEFINITIONS 1.1. Letk be an algebraically closed field of characteristic
0, B a smooth variety overk, and∆ ⊆ B a closed subset. Unless otherwise stated, all
objects will be assumed to be defined overk.

A family overB is varietyX together with a flat projective morphismsf : X → B
with connected fibers.

For a morphismY → S and another morphismT → S, the symbolYT will denote
Y ×S T . In particular, forY = X, S = B andb ∈ B we writeXb = f−1(b). In addition,
if T = Spec F , thenYT will also be denoted byYF .

Let q ∈ N. ThenMq, respectivelyMq, denotes themoduli stack, respectively the
coarse moduli space, of smooth projective curves of genusq. Similarly Mq, respectively
Mq, denotes themoduli stack, respectively thecoarse moduli space, of stable projective
curves of genusq. Furthermore,Mh, respectivelyMh, denotes themoduli stack, respec-
tively thecoarse moduli space, of smooth canonically polarized varietes with Hilbert poly-
nomialh. We will say thatMh admits ageometric compactificationif there exists a moduli
stackMh with a coarse moduli spaceMh such thatMh is projective and containsMh as
an open subscheme.

A family f : X → B is isotrivial if Xa ≃ Xb for any pair of general pointsa, b ∈ B.
The family f : X → B will be called admissible(with respect to(B,∆)) if it is not
isotrivial and∆ contains the discriminant locus off , i.e., the mapf : X\f−1(∆) → B\∆
is smooth.

Let L be a line bundle on a schemeX. It is said to begenerated by global sections
if for every pointx ∈ X there exists a global sectionσx ∈ H0(X,L ) such that the germ
σx generates the stalkLx as anOX -module. IfL is generated by global sections, then
the global sections define a morphismφL : X → PN = P

(
H0(X,L )

)
. L is called

semi-ampleif L m is generated by global sections form ≫ 0. L is calledampleif it
is semi-ample andφL m is an embedding form ≫ 0. A line bundleL on X is called
big if the global sections ofL m define a rational mapφL m : X 99K PN such thatX is
birational toφL m(X) for m ≫ 0. Note that in this caseL m is not necessarily generated
by global sections, soφL m is not necessarily defined everywhere.

A smooth projective varietyX is of general typeif ωX is big. It is easy to see that this
condition is invariant under birational equivalence between smooth projective varieties. An
arbitrary projective variety is ofgeneral typeif so is a desingularization of it.

2. SHAFAREVICH’S CONJECTURE

Let B be a smooth projective curve of genusg and∆ ⊂ B a finite subset.

2.A. The original conjecture

Let us start with the aforementioned conjecture of Shafarevich [Sha63]:

2.1. SHAFAREVICH’ S CONJECTURE. Let (B,∆) be fixed andq ≥ 2 an integer. Then
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(2.1.1) There exist only finitely many isomorphism classes of admissible families of
curves of genusq.

(2.1.2) If 2g − 2 + #∆ ≤ 0, then there exist no such families.

REMARK 2.2. The inequality in (2.1.2) can be satisfied only ifB is either a rational or an
elliptic curve:

2g − 2 + #∆ ≤ 0 ⇔

{
g = 0 and #∆ ≤ 2,
g = 1 and ∆ = ∅.

Shafarevich showed a special case of (2.1.2): There exist nosmooth families of curves
of genusq overP1. (2.1.1) was confirmed by Parshin [Par68] for∆ = ∅ and by Arakelov
[Ara71] in general.

Our main goal is to generalize this statement to higher dimensional families. In order
to do that we will have to reformulate the statement as Parshin and Arakelov did, but before
doing so, we need a little bit of background on deformations and parameter spaces.

2.B. Deformations and Parameter Spaces

In general, deforming an object means to include that objectin a family. There is a poten-
tially confusing point here. Our main objects of study are families, that is, deformations
of their members. However, we do not want to consider our families as deformations. We
want to look at deformationsof these families. This works just the same way as defor-
mations of other objects. In addition, we want to fix the base of these families, so we are
interested in deformations leaving the base fixed, which makes both the notation and the
theory easier.

A deformationof a family f : X → B with the base fixed is a familyX → B × T ,
whereT is connected and for somet0 ∈ T we have(Xt0 → B × {t0}) ≃ (X → B):

X ≃ Xt0

f

��

// X

��
B ≃ B × {t0} // B × T.

We say that two familiesX1 → B andX2 → B have the samedeformation typeif they can
be deformed into each other, i.e., if there exists a connected T and a familyX → B × T
such that for somet1, t2 ∈ T , (Xti

→ B × {ti}) ≃ (Xi → B) for i = 1, 2.
We will consider deformations of admissible families. It will be advantageous to re-

strict to deformations of the family overB \ ∆. Doing so potentially allows more defor-
mations than over the original baseB: it can easily happen that a deformation overB \∆,
that is, a familyX → (B \∆)× T , cannot be compactified to a (flat) family overB × T ,
because the compactification could contain fibers of higher than expected dimension. This
however, will not cause any problems because of the nature ofour inquiry.

Given a familyf : X → B, we say thatB parametrizesthe members of the family. If
all members of a classC of varieties appear as fibers off and all fibers are members ofC,
then we say thatB is aparameter spacefor the classC. Note that we do not require that
the members ofC appear only once in the family.

A very useful parameter space is theHilbert scheme,a parameter space for subschemes
of Pn. The Hilbert scheme ofPn, Hilb(Pn), decomposes as the disjoint union of Hilbert
schemes of subschemes with a given Hilbert polynomialh. The components of this union,
Hilbh(Pn), are projective schemes (in particular of finite type). When one is hoping to
parametrize the members of a class of varieties, then the most likely way to succeed is to
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try to find the parameter space as a subscheme of an appropriate Hilbert scheme. For more
details on Hilbert schemes see [Kol96] and [Vie95]. For moreon parameter spaces see
[Harr95, Lectures 4, 21].

2.C. The Parshin-Arakelov reformulation

With regard to Shafarevich’s conjecture, Parshin made the following observation. In order
to prove that there are only finitely many admissible families, one can try to proceed the
following way. Instead of aiming for the general statement,first try to prove that there
are only finitely many deformation types. The next step then is to prove that admissible
families are rigid, that is, they do not admit non-trivial deformations. Notice that if we
prove these statements for families overB \ ∆, then they also follow for families over
B. Now since every deformation type contains only one family,and since there are only
finitely many deformation types, the original statement follows.

The following is the reformulation of Shafarevich’s conjecture that was used by Par-
shin and Arakelov:

2.3. SHAFAREVICH’ S CONJECTURE(VERSION TWO). Let (B,∆) be fixed andq ≥ 2 an
integer. Then the following statements hold.

(B) (BOUNDEDNESS) There exist only finitely many deformation types of admis-
sible families of curves of genusq with respect toB \ ∆.

(R) (RIGIDITY ) There exist no non-trivial deformations of admissible families of
curves of genusq with respect toB \ ∆.

(H) (HYPERBOLICITY) If 2g − 2 + #∆ ≤ 0, then no admissible families of
curves of genusq exist with respect toB \ ∆.

REMARK 2.4. As we discussed above,(B) and (R) together imply (2.1.1) and(H) is
clearly equivalent to (2.1.2).

2.D. Shafarevich’s conjecture for number fields

Shafarevich’s conjecture has an analogue for number fields.The number field version
played a prominent role in Faltings’ proof of the Mordell conjecture. This section is a brief
detour to this very exciting area, but it is disconnected from the rest of the article. The
reader should feel free to skip this section and continue with the next one.

DEFINITION 2.5. Let(R,m) be a DVR,F = Frac(R), andC a smooth projective curve
overF . C is said to havegood reduction overR if there exists a schemeZ, smooth and
projective overSpec R, such thatC ≃ ZF ,

C
≃ // ZF

��

// Z

��
SpecF // SpecR

DEFINITION 2.6. LetR be a Dedekind ring,F = Frac(R), andC a smooth projective
curve overF . C hasgood reduction at the closed pointm ∈ Spec R if it has good reduction
overRm.

2.7. SHAFAREVICH’ S CONJECTURE(NUMBER FIELD CASE). Let q ≥ 2 be an integer.

(2.7.1) LetF be a number field,R ⊂ F the ring of integers ofF , and∆ ⊂ SpecR a
finite set. Then there exists only finitely many smooth projective curves over
F of genusq that have good reduction outside∆.
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(2.7.2) There are no smooth projective curves of genusq overSpec Z.

REMARK 2.8. Shafarevich’s Conjecture in the number field case has been confirmed:
(2.7.1) by Faltings [Fal83b, Fal84] and (2.7.2) by Fontaine[Fon85].

One can reformulate (2.1.1) to resemble the above statement:

2.9. SHAFAREVICH’ S CONJECTURE(FUNCTION FIELD CASE, VERSION THREE). Let
q ≥ 2 be an integer andF = K(B) the function field ofB. Let∆ ⊂ B a finite subset such
thatB \ ∆ = SpecR for a (Dedekind) ringR. Then there exist only finitely many smooth
projective non-isotrivial curves of genusq overF having good reduction over all closed
points ofSpecR.

DEFINITION 2.10. IfC is a smooth projective curve overF (an arbitrary field), then there
exists a morphismC → SpecF . Sections,SpecF → C, of this morphism correspond
in a one-to-one manner toF -rational pointsof C, points that are defined over the fieldF .
F -rational points ofC will be denoted byC(F ).

EXAMPLE 2.11.

• The R-rational points of the curvex2 + y2 − z2 = 0 form a circle, itsC-
rational points form a sphere.

• The curvex2 + y2 + z2 = 0 has noR-rational points.
• Let Cn be the curve defined by the equationxn + yn − zn = 0. If n ≥ 3,

then according to Wiles’ Theorem (Fermat’s Last Theorem),

Cn(Q) =

{

{[1 : 0 : 1], [0 : 1 : 1], [1 : −1 : 0]} , if n is odd,

{[1 : 0 : 1], [0 : 1 : 1], [1 : 0 : −1], [0 : 1 : −1]} if n is even.

As mentioned earlier, Faltings used (2.7) to prove:

2.12. FALTINGS’ T HEOREM (MORDELL’ S CONJECTURE) [Fal83b, Fal84].Let F be a
number field andC a smooth projective curve of genusq ≥ 2 defined overF . ThenC(F )
is finite.

The function field version of this conjecture was proved earlier by Manin:

2.13. MANIN ’ S THEOREM (MORDELL CONJECTURE FOR FUNCTION FIELDS) [Man63].
Let F be a function field (i.e., the function field of a variety overk, wherek is an alge-
braically closed field of characteristic0) and letC be a smooth projective non-isotrivial
curve overF of genusq ≥ 2. ThenC(F ) is finite.

REMARK 2.14. The essential case to settle is whentr.degk F = 1, i.e., F = K(B),
whereB is a smooth projective curve overk.

2.E. From Shafarevich to Mordell: Parshin’s trick

Shafarevich’s conjecture implies Mordell’s in both the function field and the number field
case by an argument due to Parshin. The first step is a clever way to associate different
(families of) curves to different sections:

2.15. PARSHIN’ S COVERING TRICK. For everyF -rational point,P ∈ C(F ), or equiva-

lently, for every sectionX
σP
x
→ B, there exists a finite cover ofX, WP

πP−→ X such that

• the degree ofπP is bounded in terms ofq,
• the projectionWP → B is smooth overB \ ∆,
• the mapπP is ramified exactly over the image ofσP ,
• the genus of the fibers ofWP → B is bounded in terms ofq.



SUBVARIETIES OF MODULI STACKS 7

For details on the construction of the covers,WP
πP−→ X, see [Lan97, IV.2.1] and [Cap02,

§4]. The second step is an old result:

2.16. DE FRANCHIS’ S THEOREM [dF13, dF91].Let C and D be smooth projective
curves of genus at least two. Then there exist only finitely many dominant rational maps
D → C.

Shafarevich’s Conjecture implies that there are only finitely many differentWP ’s.
Viewing WP andX as curves overF , de Franchis’s theorem implies that a fixedWP can
admit only finitely many different maps toX.

Since those maps are ramified exactly over the image of the correspondingσP , this
means that there are only finitely manyσP ’s, i.e.,C(F ) is finite, and therefore Mordell’s
conjecture follows from that of Shafarevich.

We end our little excursion to the number field case here. In the rest of the article we
work in the function field case and use the notation and assumptions of (1.1).

3. HYPERBOLICITY AND BOUNDEDNESS

3.A. Hyperbolicity

DEFINITION 3.1. [Bro78] A complex analytic spaceX is calledBrody hyperbolicif every
holomorphic mapC → X is constant.

REMARK 3.2. Another important, related notion isKobayashi hyperbolicity. For its defi-
nition and relation to Brody hyperbolicity the reader is referred to [Kob70] and [Lan87].

REMARK 3.3. LetT be a complex torus. IfX is Brody hyperbolic, then since every
holomorphic mapC∗ → X is constant, it follows that every holomorphic mapT → X is
also constant.

We would like to define the algebraic analogue of hyperbolicity motivated by this
observation. Algebraic maps are more restrictive than holomorphic ones. For instance the
universal covering map,C → E, of an elliptic curve,E, is not algebraic. In particular,
excluding algebraic maps fromC to X does not exclude maps fromE to X. The same
argument goes for abelian varieties. Since there exist simple abelian varieties (i.e., such
that do not contain other abelian varieties) of arbitrary dimension, we have to take into
consideration arbitrary dimensional abelian varieties.

The following definition ofalgebraic hyperbolicityis an algebraic version of Brody
hyperbolicity and perhaps it should be called “algebraic Brody hyperbolicity” to emphasize
that fact. However, this is not the established terminology.

Complicating the matter is that there are some related, but different definitions that
are used with the same name [Dem97], [Che04]. As usual in similar cases, these different
variants were introduced around the same time and hence it ishard to go back and change
the terminology. In the next section we will introduce the notion of weak boundedness,
which is closer in spirit to Demailly’s notion of hyperbolicity. As the reader will see,
the known results of hyperbolicity (as used in this article)follow from weak boundedness
(3.8), hence the statements actually remain true even if oneuses Demailly’s definition of
algebraic hyperbolicity.

One major advantage of the definition used here is that it extends naturally to stacks,
which is exactly the context we would like to use it.

DEFINITION 3.4. An algebraic stackX is calledalgebraically hyperbolicif
– every morphismA1 \ {0} → X is constant, and
– every morphismA → X is constant for an abelian variety,A.
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REMARK 3.5. The first row in the following diagram is the statement ofcondition(H).
The last row shows equivalent conditions for both the assumption and the conclusion.
Recall thatMq stands for the moduli stack (of curves of genusq), so maps of the form
B \ ∆ → Mq are exactly the ones that are induced by families overB \ ∆.

2g − 2 + #∆ ≤ 0
KS

��

+3 ∄ f : X → B admissible
KS

��
B \ ∆ ⊇ A1 \ {0} or,

∆ = ∅ andB is an elliptic curve.
∄ B \ ∆ → Mq

non-constant

This implies that proving(H) is equivalent to proving that there does not exist a non-
constant morphism of the formA1 \ {0} → Mq or E → Mq, whereE is an arbitrary
elliptic curve.

Corollary 3.6. If Mq is algebraically hyperbolic, then(H) holds.

3.B. Weak Boundedness

In addition to properties(B), (R), and(H), there is another important property to study.
Its importance lies in the fact that it implies(H) and if some additional conditions hold it
also implies(B).

(WB) (WEAK BOUNDEDNESS) For an admissible familyf : X → B, the degree of
f∗ω

m
X/B is bounded above in terms ofg(B),#∆, g(Xgen), m. In particular,

the bound is independent off .

The traditional proof of hyperbolicity for curves proceedsvia some form of weak
boundedness. The key point is that the upper bound obtained on deg f∗ω

m
X/B has the form

of

(2g(B) − 2 + #∆) · c(g(B),#∆, g(Xgen),m),

wherec(g(B),#∆, g(Xgen),m) > 0. This proves hyperbolicity. Sincedet f∗ω
m
X/B is

ample, its degree is positive, so any upper bound of it is positive as well.
In higher dimensions, the bounds obtained are not always in this form. However, per-

haps somewhat surprisingly, hyperbolicity follows already from the fact of weak bounded-
ness, not only from the explicit bound.

Theorem 3.7. (WB) ⇒ (H)

A more precise and somewhat more general formulation is the following:

Theorem 3.8 ([Kov02, 0.9], cf. [Par68]).Let F be a collection of smooth varieties of
general type,B a smooth projective curve and∆ ⊂ B a finite subset ofB. Let

Fam(B,∆,F) = {f : X → B | X is smooth,f is flat and

f−1(t) ∈ F for all t ∈ B \ ∆
}

.

Assume thatFam(B,∆,F) contains non-isotrivial families and that there existM,m ∈ N
such that for all(f : X → B) ∈ Fam(B,∆,F),

deg
(

f∗ω
m
X/B

)

≤ M.

Then2g(B) − 2 + #∆ > 0.
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3.C. From Weak Boundedness to Boundedness

By [Par68, Theorem 1] there exists a schemeV that parametrizes admissible families of
curves of genusq. Hence(B) is equivalent to the statement thatV has finitely many
components. Therefore, in order to prove(B), it is enough to prove thatV is a scheme of
finite type.

V is naturally embedded intoHom((B,B \∆), (Mq,Mq)). For a familyf : X → B,
let µf : B → Mq be the moduli map. If for a fixed ample line bundleL on Mq, one can
establish thatdeg µ∗

fL is bounded onB, the bound perhaps depending onB, ∆ andq, but

not onf , then one may conclude that the image ofV in Hom((B,B \ ∆), (Mq,Mq)) is
contained in finitely many components and hence is of finite type.

The final piece of the puzzle is provided by the construction of Mq. Forp sufficiently

large and divisible there exist line bundlesλ
(p)
m onMq such that for a family of stable curves

f : X → B, if µ̄f : B → Mq is the induced moduli map, then
(

det
(

f∗ω
m
X/B

))p

= µ̄∗
fλ(p)

m .

Hence(WB) gives exactly the above required boundedness result and so we obtain the
following statement.

Theorem 3.9. For families of curves(WB) implies(B).

4. HIGHER DIMENSIONAL FIBERS

Next we turn to higher dimensional generalizations. As a first step, we will keep
the base of the family be a curve and allow higher dimensionalfibers. Independently,
or simultaneously, one can study families over higher dimensional bases. Furthermore,
generalizing the conditions on the fibers naturally leads tothe study of families of singular
varieties. We will discuss all of these directions.

In order to generalize Shafarevich’s conjecture to the caseof families of higher di-
mensional varieties the first task is to generalize both the statement and the conditions.
The condition that a curve has genus at least2, i.e., our assumption thatg(Xgen) ≥ 2, is
equivalent to the condition thatωXgen

is ample. In higher dimensions, the role of the genus
is played by the Hilbert polynomial, so fixingg(Xgen) will be replaced by fixinghωXgen

,
the Hilbert polynomial ofωXgen

. Therefore we have the following starting data:

• a fixed smooth curveB of genusg,
• a fixed finite subset∆ ⊂ B, and
• a fixed polynomialh.

DEFINITION 4.1. An admissible familywith respect toB, ∆ andh is a non-isotrivial
family f : X → B, such thatX is a smooth projective variety and for allb ∈ B \ ∆, the
varietyXb is smooth and projective withωXb

ample andhωXb
= h. Two such families are

equivalentif they are isomorphic overB \ ∆.

Having made this definition, the various parts of Shafarevich’s conjecture make sense
in any dimension.

4.2. HIGHER DIMENSIONAL SHAFAREVICH CONJECTURE. Fix B,∆ andh. Then

(B) (BOUNDEDNESS) there exist only finitely many deformation types of admis-
sible families of canonically polarized varieties with respect toB,∆ andh,

(R) (RIGIDITY ) there exist no non-trivial deformations of admissible families of
canonically polarized varieties with respect toB,∆ andh,



10 SÁNDOR J. KOVÁCS

(H) (HYPERBOLICITY) if 2g(B) − 2 + #∆ ≤ 0, then no admissible families of
canonically polarized varieties with respect toB,∆ andh exist, and

(WB) (WEAK BOUNDEDNESS) for an admissible familyf : X → B, the degree
of f∗ωm

X/B is bounded in terms ofg(B),#∆, h andm.

Next we will discuss the state of affairs with regard to theseconjectures and the many
results obtained during the past decade. Because of the interdependency of the various
results it makes more sense to follow a different order than they are listed in the conjecture.

4.A. Rigidity

Let Y → B be an arbitrary non-isotrivial family of curves of genus≥ 2, andC a smooth
projective curve also of genus≥ 2. Thenf : X = Y × C → B is an admissible family,
and a deformation ofC gives a deformation off . Therefore(R) fails as stated.

This leads naturally to the following question.

QUESTION 4.3. Under what additional conditions does(R) hold?

A possible answer to this question will be given in Section 8.B.

4.B. Hyperbolicity

Migliorini [Mig95] showed that for families of minimal surfaces a somewhat weakened
hyperbolicity statement holds, namely that∆ 6= ∅ if g ≤ 1. The same conclusion was
shown in [Kov96] for families of minimal varieties of arbitrary dimension. Later(H) for
families of minimal surfaces was proved in [Kov97b], and then in general for families of
canonically polarized varieties in [Kov00a].

Theorem 4.4 [Kov00a]. Let X → B be an admissible families of canonically polarized
varieties with respect toB,∆ andh. Then2g(B) − 2 + #∆ > 0.

Finally, Viehweg and Zuo [VZ03b] proved the analytic version of (H):

Theorem 4.5 [VZ03b]. Mh is Brody hyperbolic.

4.C. Weak Boundedness

Bedulev and Viehweg [BV00] proved the following:

Theorem 4.6 [BV00]. Let f : X → B be an admissible family withB,∆, h fixed. Let
δ = #∆, g = g(B), andn = dimXgen = dim X − 1. If f∗ω

m
X/B 6= 0, then there exists a

positive integere = e(m,h) such that

deg f∗ω
m
X/B ≤ m · e · rk f∗ω

m
X/B · (n(2g − 2 + δ) + δ).

This clearly implies(WB) and as a byproduct of the explicit bound it also implies(H).
Viehweg and Zuo [VZ01] extended(WB) to families of varieties of general type and

of varieties admitting a good minimal model. In [Kov02] similar results were obtained
with different methods allowing the fibers to have rational Gorenstein singularities, but
restricting to the case of families of minimal varietes of general type.

The proof of (3.8) still works in this generality, so(WB) implies (H) in all dimen-
sions [Kov02, 0.9].

4.D. Boundedness

Using the existence of moduli spaces of canonically polarized varieties and the description
of ample line bundles on them, Bedulev and Viehweg [BV00] also proved a boundedness-
type statement:
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Theorem 4.7 [BV00]. Let B,∆ andh be fixed and assume thatMh admits a geometric
compactificationMh. Then there exists a subscheme ofHom((B,B \ ∆), (Mh,Mh)) of
finite type that contains the classes of all morphismsB → Mh induced by admissible
families.

Unfortunately this statement does not imply(B). However, a recent result of Kovács
and Lieblich does.

Theorem 4.8 [KL06]. LetB,∆ andh be fixed. Then there exist only finitely many defor-
mation types of admissible families of canonically polarized varieties with respect toB,∆
andh.

4.E. Shafarevich’s conjecture for other types of varieties

One may ask whether the Shafarevich problem holds for families of other types of varieties.
There are some known results in this setting as well.

Faltings [Fal83a] studied the Shafarevich problem for families of abelian varieties and
proved that(B) holds, while(R) fails in general. He also gave an equivalent condition for
(R) to hold in this case.

Oguiso and Viehweg [OV01] considered(H) for families of non-general type sur-
faces. Their work combined with the previous results show that (H) holds for families of
minimal surfaces of non-negative Kodaira dimension.

Recent results have been obtained by Jorgensen and Todorov [JT02], Liu, Todorov,
Yau and Zuo [LTYZ05] and Viehweg and Zuo [VZ05b] for familiesof Calabi-Yau vari-
eties.

5. HIGHER DIMENSIONAL BASES

The next natural generalization is to allowB to have arbitrary dimension. LetB be
a smooth projective variety,∆ ⊂ B a divisor with normal crossings andh a polynomial.
The definition of an admissible family is formally the same asin (4.1). As before, for an
admissible family,f : X → B, the moduli mapb 7→ [Xb] is denoted byµf : B\∆ → Mh.

SinceB is now allowed to be higher dimensional, the notion of isotriviality is no
longer the best one to consider. Observe thatf is isotrivial if and only ifµf is constant.
Saying thatf is not isotrivial would allow the family to be isotrivial in certain directions.
What we want to assume is that the family “truly” changes in anydirection onB. To
express this we define the family’s variation in moduli.

DEFINITION 5.1 cf. [Vie83a], [Vie83b], [Kol87a].Var f := dim(µf (B)) (≤ dimB).

We are interested in the caseVar f = dimB. In (3.6), we observed that hyperbolicity
follows if we know that the stackMh is algebraically hyperbolic. In fact, for hyperbolicity
over a1-dimensional base, we only needed the corresponding property of Mh for curves.
However, we would also like to know that every morphismA → Mh induced by a family
is constant, whereA is an arbitrary abelian variety. This is the extra content ofthe next
theorem.

Theorem 5.2. [Kov97a], [Kov00a]Mh is algebraically hyperbolic.

REMARK 5.3. This statement also follows from boundedness by an argument similar to
the one used in the proof of (3.8). It also follows from (4.5).

As before, this implies that iff : X → P1 is an admissible family, then#∆ > 2.
More generally, for an admissible familyf : X → Pm with Var f = m, this implies that
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deg ∆ > 2. However, we expect that in this casedeg ∆ should be larger thanm + 1. This
is indeed the case.

Theorem 5.4 [VZ02],[Kov03c]. Letf : X → Pm be an admissible family. ThenωPm(∆)
is ample, or equivalentlydeg ∆ > m + 1.

REMARK 5.5. Viehweg and Zuo actually prove a lot more than this in [VZ02]. Please see
the article for details.

It is now natural to suspect that a more general statement should hold. The following
statement to this effect is part of a more general conjectureof Viehweg [Vie01].

5.6. VIEHWEG’ S CONJECTURE. If f : X → B is an admissible family, thenωB(∆) is
big.

For dim B = 1, this is simply(H). For dim B > 1, it is known to be true for
families of curves by [Vie01, 2.6] and forB = Pn and various other special cases by
[VZ02], [Kov03b] and [Kov03c]. It was recently confirmed fordim B = 2 by Kebekus
and Kovács in [KK05]. However, this question is far from being completely settled. The
reader is encouraged to read Viehweg’s discussion of this and other related open questions
in [Vie01].

6. UNIFORM AND EFFECTIVE BOUNDS

6.A. Families of curves

A finiteness result such as (2.1.1) naturally leads to the question whether the obtained
bound dependends on the actual curve, or only on its genus. Inother words, is it possible
to give auniform boundthat works for all base curvesB of genusg?

This question is actually more subtle than it might seem at first. Consider the argument
before (3.9). That proves that(WB) implies (B), but it does not shed any light on the
obtained bound. Even if the bound appearing in(WB) depends only on the genus, it
might happen that the number of deformation types still depends on the actual curve. The
argument uses the fact that a subscheme of a scheme of finite type itself is of finite type.
That means that the subscheme has finitely many components, which is what is needed for
(B), but it says nothing about how big that finite numner is. The number of components
of a subscheme has nothing to do with the number of componentsof the ambient scheme.

Despite these difficulties, uniform boundedness is known. The first such result was
obtained by Caporaso:

Theorem 6.1 [Cap02, Cap03] cf. [Cap04].There exists a constantc(q, d, δ) such that for
any smooth irreducible varietyB ⊆ Pr of degreed and for any closed subscheme∆ ⊂ B
of degreeδ, the number of admissible families of curves of genusq with respect to(B,∆)
is at mostc(q, d, δ).

REMARK 6.2. If B is one dimensional, then one may writec(q, d, δ) = c′(q, g, δ) using
g = g(B) the genus ofB instead ofd.

The next question is whether the constantc(q, d, δ) (or in the case of a base curve
c′(q, g, δ)) is computable. In other words, is it possible to give aneffectiveuniform bound?
For families over a base curve this was achieved by Heier:

Theorem 6.3 [Hei04]. LetB be a smooth projective curve of genusg and∆ ⊂ B a finite
subset. Thenc′(q, g, δ) can be expressed as an explicit function ofq, g andδ.

REMARK 6.4. The expression itself is rather complicated and can be found in the original
article.
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6.B. Higher dimensional families

For higher dimensional families rigidity fails and so we cannot expect a similar finiteness
statement as above. However, one may still ask whetheruniform boundednessholds and
if so, whether there is an effective bound on the number of deformation types over a base
with a fixed Hilbert polynomial.

Uniform boundedness was recently proved by Kovács and Lieblich.

Theorem 6.5 [KL06]. Let h be a fixed polynomial. Then the set of deformation types of
admissible families of canonically polarized varieties with Hilbert polynomialh is finite
and uniformly bounded in any quasi-compact family of base varietiesB◦.

On the other hand, no effective (uniform) bound is known at this time.

7. TECHNIQUES

7.A. Positivity of direct images

One of the most important ingredients in the proofs of the known results is an appropriate
variant of a fundamental positivity result due to the work ofFujita, Kawamata, Kollár and
Viehweg. In this section we will assume, for simplicity, that dim B = 1.

DEFINITION 7.1. A locally free sheaf,E , is ampleif OP(E )(1) onP(E ) is ample.

Theorem 7.2 [Fuj78], [Kaw82b], [Kol87a], [Kol90], [Vie83a], [Vie83b]. Letf : X → B
be an admissible family andm > 1. If f∗ω

m
X/B 6= 0, thenf∗ω

m
X/B is ample onB.

Corollary 7.3. Let f : X → B be an admissible family andm > 1. If f∗ω
m
X/B 6= 0, then

deg f∗ω
m
X/B > 0.

The methods used to prove (7.2) give a more precise estimate of the positivity of these
push-forwards as shown by Esnault and Viehweg:

Theorem 7.4 [EV90, 2.4]. Let f : X → B be an admissible family, andM a line bundle
on B. Assume that there exists an integerm > 1 such thatdeg M < deg f∗ω

m
X/B . Let

r denote the rank off∗ωm
X/B . Then there exists a positive integere = e(m,h), such that

(f∗ω
m
X/B)

⊗e·r ⊗ M−1 is ample onB.

Corollary 7.5 [Kov96, 2.15], [Kov00a, 2.1], [Kov02, 7.6]. (for∆ = ∅) Let N be a line
bundle onB such thatdeg N m·e·r < deg f∗ω

m
X/B . ThenωX/B ⊗f∗N −1 is ample onX.

PROOF (SKETCH). As
(

f∗(ω
m
X/B ⊗ f∗N −m)

)⊗e·r

≃ (f∗ω
m
X/B)

⊗e·r ⊗ N −m·e·r,

we obtain that (7.4) implies thatf∗(ωm
X/B ⊗ f∗N −m) is ample onB. Furthermore,

by assumption one has thatωm
X/B ⊗ f∗N −m|Xgen

≃ ωm
Xgen

is ample onXgen. Hence

ωX/B ⊗ f∗N −1 is ample both “horizontally” and “vertically”, so it is ample. For details
about the last step see [Kov02, 7.6]. �

This allows us to reduce the proof of(WB) to finding an appropriate line bundle on
B according to the following plan.

PLAN 7.6. First, find a line bundleN on B, depending only onB and ∆, such that
ωX/B ⊗ f∗N −1 is not ample onX. Then one hasdeg N m·e·r 6< deg f∗ω

m
X/B by (7.5).

In other words one has that

deg f∗ω
m
X/B ≤ m · e · r · deg N .

We find such anN using vanishing theorems. The main idea is the following: we
want to find a line bundle such that twisting with the relativedualizing sheaf does not yield
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an ample line bundle. Ample line bundles appear in many vanishing theorems, so one way
to prove that a given line bundle is not ample is to prove that acohomology group does not
vanish that would if the line bundle were ample. Next we are going to look at the needed
vanishing theorems.

7.B. Vanishing theorems

Vanishing theorems have played a central role in algebraic geometry for the last couple of
decades, especially in classification theory. Kollár [Kol87b] gives an introduction to the
basic use of vanishing theorems as well as a survey of resultsand applications available at
the time. For more recent results one should consult [EV92],[Ein97], [Kol97], [Smi97],
[Kov00c], [Kov02], [Kov03a], [Kov03b]. Because of the availability of those surveys,
we will only recall statements that are important for the present article. Nonetheless, any
discussion of vanishing theorems should start with the fundamental vanishing theorem of
Kodaira.

Theorem 7.7 [Kod53]. Let X be a smooth complex projective variety andL an ample
line bundle onX. Then

Hi(X,ωX ⊗ L ) = 0 for i > 0.

This has been generalized in several ways, but as noted abovewe will restrict to a
select few. The original statement of Kodaira was generalized to allow semi-ample and big
line bundles in place of ample ones by Grauert and Riemenschneider.

Theorem 7.8 [GR70]. LetX be a smooth complex projective variety andL a semi-ample
and big line bundle onX. Then

Hi(X,ωX ⊗ L ) = 0 for i > 0.

“Semi-ample” was later replaced by “nef” in the statement byKawamata and Viehweg.

Theorem 7.9 [Kaw82a],[Vie82]. Let X be a smooth complex projective variety andL a
nef and big line bundle onX. Then

Hi(X,ωX ⊗ L ) = 0 for i > 0.

Akizuki and Nakano extended Kodaira’s vanishing theorem toinclude other exterior
powers of the sheaf of differential forms.

Theorem 7.10 (Akizuki–Nakano [AN54]). LetX be a smooth complex projective variety
andL an ample line bundle onX. Then

Hq(X,Ωp
X ⊗ L ) = 0 for p + q > dim X.

REMARK 7.11. Ramanujam [Ram72] gave a simplified proof of (7.10) andshowed that it
does not hold if one only requiresL to be semi-ample and big.

In order to proceed we will need more delicate vanishing theorems than before. Our
starting point is the theorem of Esnault and Viehweg that extends (7.10) to sheaves of
logarithmic differential forms.

Theorem 7.12 [EV90, 6.4]. Let X be a smooth complex projective variety,L an ample
line bundle andD a normal crossing divisor onX. Then

Hq (X,Ωp
X(log D) ⊗ L ) = 0 for p + q > dimX.

REMARK 7.13. Extending the known vanishing theorems in a differentdirection, Navarro-
Aznaret al. proved a version of the Kodaira-Akizuki-Nakano vanishing theorem for sin-
gular varieties that implies our previous statements: (7.7), (7.8), and (7.10) cf. [Nav88] in
[GNPP88] and Theorem 8.5 in the next section.
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As mentioned earlier, in order to prove(WB) we need a suitable vanishing theorem.
The following is a somewhat weaker statement than that is really needed, but shows the
main idea of the proof and how to apply it.

Theorem 7.14 [Kov97b], [Kov00a]. Let f : X → B be a family such thatB is a smooth
projective curve. Assume thatD = f∗∆ is a normal crossing divisor. Letn = dimXgen

andL an ample line bundle onX such thatL ⊗ f∗ωB(∆)
−n is also ample. Then

Hn+1 (X,L ⊗ f∗ωB(∆)) = 0.

PROOF. After taking exterior powers of the sheaves of logarithmicdifferential forms,
one has the following short exact sequence for eachp = 1, . . . , n + 1:

0 −→ Ω p−1
X/B(log D) ⊗ f∗ωB(∆) −→ Ω p

X(log D) −→ Ω p
X/B(log D) −→ 0.

DefineLp = L ⊗f∗ωB(∆)
1−p for p = 0, . . . , n+1. Then the above short exact sequence

yields:

0 −→ Ω p−1
X/B(log D) ⊗ Lp−1 −→ Ω p

X(log D) ⊗ Lp −→ Ω p
X/B(log D) ⊗ Lp −→ 0.

Lp is ample forp = 1, . . . , n + 1 since eitherωB(∆) or ωB(∆)
−1 is nef. Then by (7.12)

Hn+1−(p−1)(X,Ωp
X(log D) ⊗ Lp) = 0 (recall thatdim X = n + 1). Hence the map

Hn+1−p
(

X,Ω p
X/B(log D) ⊗ Lp

)

−→ Hn+1−(p−1)
(

X.Ω p−1
X/B(log D) ⊗ Lp−1

)

is surjective forp = 1, . . . , n + 1. Observe that these maps form a chain asp runs through
p = n + 1, n, . . . , 1. Hence the composite map,

H0
(

X,Ωn+1
X/B(log D) ⊗ Ln+1

)

−→ Hn+1(X,L0),

is also surjective. However,Ω 1
X/B(log D) is of rankn, soΩn+1

X/B(log D) = 0, and therefore

Hn+1(X,L0) = Hn+1(X,L ⊗ f∗ωB(∆)) = 0 as well. �

We are finally able to prove(WB), at least for∆ = ∅, by combining positivity and
vanishing: (7.3) and (7.5) withN = OB imply thatωX/B is ample. Since

Hn+1(X,ωX/B ⊗ f∗ωB
︸ ︷︷ ︸

ωX

) 6= 0,

this and (7.14) imply thatωX/B ⊗ f∗ω−n
B cannot be ample. Then (7.5) withN = f∗ωn

B

implies that

deg f∗ω
m
X/B ≤ deg f∗ωn·m·e·r

B = m · e · r · dimXgen · (2g − 2).

REMARK 7.15. For a complete proof of(WB) without the assumption∆ = ∅, see
[BV00], [Kov02], or [VZ02].

7.C. Kernels of Kodaira-Spencer maps

The germ of the method described above was first used in [Kov96] and then it was polished
through several articles [Kov97b, Kov97a, Kov00a, BV00, OV01, Kov02]. Then Viehweg
and Zuo [VZ01, VZ02] combined some of the ideas of this methodwith Zuo’s discovery of
the negativity of kernels of Kodaira-Spencer maps [Zuo00].This negativity is essentially
a dual phenomenon of the positivity results mentioned earlier (7.2), (7.4).

The Viehweg-Zuo method has a great advantage over the previous method. The lat-
ter uses global vanishing theorems which limits the scope ofthe applications, while the
Viehweg-Zuo method uses local arguments and hence is more applicable. Unfortunately
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this method is rather technical and so we cannot present it here. However, it is discussed
in many places. The interested reader should start by Viehweg’s excellent survey [Vie01]
and then read the full account in [VZ01, VZ02].

8. FURTHER RESULTS AND CURRENT DIRECTIONS

8.A. More general fibers

In the pursuit of more general results somewhat different approaches were taken in [VZ02]
and [Kov02]. Both of these approaches led to several furtherresults and these results, in
accordance with the different approaches, were somewhat different. Here we discuss the
latter approach and the related results. For a survey on the former, the reader is referred to
[Vie01] and the references therein.

Our starting point is a principle that has been applied with great success in birational
geometry.

PRINCIPLE 8.1. Studying an ample line bundle on a singular variety is similar to studying
a semi-ample and big line bundle on a smooth variety.

The traditional way to use this principle is the following. The goal is to prove a
statement for a pair,(X,L ), whereX is possibly singular, andL is ample onX. Instead
of working onX one works on a desingularizationf : Y → X, and consider the semi-
ample and big line bundleK = f∗L . A prominent example of this trick is the use of the
Kawamata-Viehweg vanishing theorem (7.9) in the Minimal Model Program.

Here we will turn the situation upside-down. Our goal is a statement for(Y,K ),
whereY is smooth andK is a semi-ample and big line bundle onY . Instead of working
onY we construct a pair(X,L ) and a mapf : Y → X, whereX is possibly singular,L
is ample onX, f is birational, andK = f∗L .

The motivation for this approach is that we would like to extend the previous results
to the case whenωXgen

is not necessarily ample but only semi-ample and big. However,
a crucial ingredient of the proof is an appropriate version of the Kodaira-Akizuki-Nakano
vanishing theorem (7.10), and as Ramanujam (7.11) pointed out, (7.10) fails if the line
bundle in question is only assumed to be semi-ample and big instead of ample. On the
other hand, Navarro-Aznaret al. proved a singular version of the Kodaira-Akizuki-Nakano
vanishing theorem (see Remark 7.13), so one hopes that this way the proof can be made to
work.

In order to state the singular version of the Kodaira-Akizuki-Nakano vanishing theo-
rem, we need to use derived categories. The reader unfamiliar with the basics may wish to
consult [Hart66] and [Con00] for definitions and details.

8.2. DU BOIS’ S COMPLEX. We also need Du Bois’s generalized De Rham complex. The

original construction of Du Bois’s complex,Ω
�
X(log D), is based on simplicial resolutions.

The reader interested in the details is referred to the original article [DB81]. Note also that
a simplified construction was later obtained in [Car85] and [GNPP88] and via the general
theory of polyhedral and cubic resolutions. An easily accessible introduction can be found
in [Ste85].

Recently Schwede found an alternative construction of Du Bois’s complex that does
not need a simplicial resolution [Sch06], however we will use the original construction
here. For more on recent applications of Du Bois’s complex and Du Bois singularities see
[Ste83], [Kol95, Chapter 12], [Kov99], [Kov00b], [Kov00c].
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The word “hyperresolution” will refer to either simplicial, polyhedral, or cubic resolu-

tion. Formally, the construction ofΩ
�
X(log D) is the same regardless the type of resolution

used and no specific aspects of either types will be used.
The following definition is included to make sense of the statements of some of the

forthcoming theorems. It can be safely ignored if the readeris not interested in the detailed
properties of Du Bois’s complex and is willing to accept thatit is a very close analogue of
the De Rham complex of smooth varieties.

DEFINITION 8.3. LetX be a complex scheme andD a closed subscheme whose comple-
ment inX is dense. Then(X�,D�) → (X,D) is agood hyperresolutionif X� → X is a
hyperresolution, and ifU� = X� ×X (X \ D) andD� = X� \ U�, thenDi is a divisor with
normal crossings onXi for all i.

Let X be a complex scheme of dimension n. LetDfilt(X) denote the derived category
of filtered complexes ofOX -modules with differentials of order≤ 1 andDfilt,coh(X) the

subcategory ofDfilt(X) of complexesK�, such that for alli, the cohomology sheaves of

Gri
filtK

� are coherent cf. [DB81], [GNPP88]. LetD(X) andDcoh(X) denote the derived
categories with the same definition except that the complexes are assumed to have the triv-
ial filtration. The superscripts+,−, b carry the usual meaning (bounded below, bounded
above, bounded). Isomorphism in these categories is denoted by ≃qis . A sheafF is also

considered a complexF � with F 0 = F andF i = 0 for i 6= 0. If K
� is a complex in any

of the above categories, thenhi(K
�
) denotes thei-th cohomology sheaf ofK�.

The right derived functor of an additive functorF , if it exists, is denoted byRF and
RiF is short forhi ◦ RF . Furthermore,Hi, Hi

Z , andH i
Z will denoteRiΓ, RiΓZ , and

RiHZ respectively, whereΓ is the functor of global sections,ΓZ is the functor of global
sections with support in the closed subsetZ, andHZ is the functor of the sheaf of local
sections with support in the closed subsetZ. Note that according to this terminology, if
φ : Y → X is a morphism andF is a coherent sheaf onY , thenRφ∗F is the complex
whose cohomology sheaves give rise to the usual higher direct images ofF .

Theorem 8.4 [DB81, 6.3, 6.5].Let X be a proper complex scheme of finite type andD
a closed subscheme whose complement is dense inX. Then there exists a unique object

Ω
�
X(log D) ∈ ObDfilt(X) such that using the notation

Ω p
X(log D) := Grp

filt Ω
�
X(log D)[p],

it satisfies the following properties

(8.4.1) Let j : X \ D → X be the inclusion map. Then

Ω
�
X(log D)≃qis Rj∗CX\D.

(8.4.2) Ω
�
(_) (log(_)) is functorial, i.e., ifφ : Y → X is a morphism of proper com-

plex schemes of finite type, then there exists a natural mapφ∗ of filtered
complexes

φ∗ : Ω
�
X(log D) → Rφ∗Ω

�
Y (log φ∗D).

Furthermore,Ω
�
X(log D) ∈ Ob

(

Db
filt,coh(X)

)

and if φ is proper, thenφ∗

is a morphism inDb
filt,coh(X).

(8.4.3) LetU ⊆ X be an open subscheme ofX. Then

Ω
�
X(log D)

∣
∣
U
≃qis Ω

�
U (log D|U ) .
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(8.4.4) There exists a spectral sequence degenerating atE1 and abutting to the sin-
gular cohomology ofX \ D:

Epq
1 = Hq (X,Ω p

X(log D)) ⇒ Hp+q(X \ D, C).

(8.4.5) If ε� : (X�,D�) → (X,D) is a good hyperresolution, then

Ω
�
X(log D)≃qis Rε�∗Ω

�
X�

(log D�).

In particular, hi (Ω p
X(log D)) = 0 for i < 0.

(8.4.6) There exists a natural map,OX → Ω 0
X(log D), compatible with (8.4.2).

(8.4.7) If X is smooth andD is a normal crossing divisor, then

Ω
�
X(log D)≃qis Ω

�
X(log D).

In particular,

Ω p
X(log D)≃qis Ωp

X(log D).

(8.4.8) If φ : Y → X is a resolution of singularities, then

Ω dim X
X (log D)≃qis Rφ∗ωY (φ∗D).

Naturally, one may chooseD = ∅ and then it is simply omitted from the notation. The

same applies toΩp
X := Grp

filt Ω
�
X [p]. We are now able to state the aforementioned singular

version of the Kodaira-Akizuki-Nakano vanishing theorem.

Theorem 8.5 [Nav88], [GNPP88].LetX be a complex projective variety andL an ample
line bundle onX. Then

Hq(X,Ωp
X ⊗ L ) = 0 for p + q > dimX.

Since Du Bois’s complex agrees with the De Rham complex for smooth varieties, this
theorem reduces to the Kodaira-Akizuki-Nakano theorem in the smooth case. However,
this theorem is still not strong enough in our original situation if ∆ 6= ∅. We need a
singular version of Esnault-Viehweg’s logarithmic vanishing theorem (7.12).

Theorem 8.6 [Kov02]. LetX be a complex projective variety andL an ample line bundle
onX. Further letD be a normal crossing divisor onX. Then

Hq(X,Ωp
X(log D) ⊗ L ) = 0 for p + q > dim X.

To adapt the proof of(WB) to the singular case we need a singular version of (7.14).
Besides the above vanishing theorem we also need an analogueof the sheaf of relative
logarithmic differentials.

THEOREM-DEFINITION 8.7 [Kov02], cf. [Kov96, Kov97c, Kov05a].Let f : X → B be
a morphism between complex varieties such thatdimX = n + 1 and B is a smooth
curve. Let∆ ⊆ B be a finite set andD = f∗∆. For every non-negative integer p
there exists a natural map∧p : Ω p

X(log D) ⊗ f∗ωB(∆) → Ω p+1
X (log D) and a complex

Ω p
X/B(log D) ∈ Ob (D(X)) with the following properties.

(8.7.1) The natural map∧p factors throughΩ p
X/B(log D) ⊗ f∗ωB(∆), i.e., there

exist maps:

w′′
p : Ω p

X(log D) ⊗ f∗ωB(∆) → Ω p
X/B(log D) ⊗ f∗ωB(∆) and

w′
p : Ω p

X/B(log D) ⊗ f∗ωB(∆) → Ω p+1
X (log D)

such that∧p = w′
p ◦ w′′

p .
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(8.7.2) If wp = w′′
p ⊗ idf∗ωB(∆)−1 : Ω p

X(log D) → Ω p
X/B(log D), then

Ω p
X/B(log D) ⊗ f∗ωB(∆)

w′

p

−→ Ω p+1
X (log D)

wp+1

−→ Ω p+1
X/B(log D)

+1
−→

is a distinguished triangle inD(X).
(8.7.3) wp is functorial, i.e., ifφ : Y → X is a B-morphism, then there are natural

maps inD(X) forming a commutative diagram:

Ω p
X(log D) −→ Ω p

X/B(log D)

y


y

Rφ∗Ω
p
Y (log φ∗D) −→ Rφ∗Ω

p
Y/B(log φ∗D).

(8.7.4) Ω r
X/B(log D) = 0 for r > n.

(8.7.5) If f is proper, thenΩ p
X/B(log D) ∈ Ob

(
Db

coh(X)
)

for everyp.

(8.7.6) If f is smooth overB \ ∆, thenΩ p
X/B(log D)≃qis Ωp

X/B(log D).

Using these objects one can make the proof work to obtain the following theorem. It is in
a non-explicit form. For more precise statements see [Kov02, (7.8), (7.10), (7.11), (7.13)].

Theorem 8.8. Fix B, ∆ ⊂ B. Then weak boundedness holds for families of canon-
ically polarized varieties with rational Gorenstein singularities and fixed Hilbert poly-
nomial admitting a simultaneous resolution of singularities overB \ ∆. In particular,
2g − 2 + #∆ > 0 for these families by(3.8).

As a corollary, one obtains weak boundedness for non-birationally-isotrivial families
of minimal varieties of general type.

8.B. Iterated Kodaira-Spencer maps and strong non-isotriviality

Let us finish by revisiting rigidity. We have seen in (4.A) that (R) fails as stated in the
original conjecture and we asked

QUESTION 8.9 = QUESTION 4.3. Under what additional conditions does(R) hold?

This question was partially answered in [VZ03a] and [Kov05b]. Both papers gave
essentially the same answer that we will discuss below. However, one must note that this
is not the only case when rigidity holds as it was shown in [VZ05a]. In other words we do
not have a sufficient and necessary criterion for rigidity.

8.10. ITERATED KODAIRA-SPENCER MAPS, CASE I: ONE-DIMENSIONAL BASES. Let
f : X → B be a smooth projective family of varieties of general type ofdimensionn, B a
smooth (not necessarily projective) curve and letTm

X := ∧mTX andTm
X/B := ∧mTX/B .

Let 1 ≤ p ≤ n and consider the short exact sequence,

0 → T p
X/B ⊗ f∗T

⊗(n−p)
B → T p

X ⊗ f∗T
⊗(n−p)
B → T p−1

X/B ⊗ f∗T
⊗(n−p+1)
B → 0.

This induces an edge map,

ρ
(p)
f : Rp−1f∗T

p−1
X/B ⊗ T

⊗(n−p+1)
B → Rpf∗T

p
X/B ⊗ T

⊗(n−p)
B .

DEFINITION 8.11 [Kov05b]. Letρf := ρ
(n)
f ◦ ρ

(n−1)
f ◦ · · · ◦ ρ

(1)
f : T⊗n

B −→ Rnf∗T
n
X/B

and callf strongly non-isotrivialif ρf 6= 0.

EXAMPLE 8.12. LetYi → B be admissible families of curves fori = 1, . . . , r. Then
X = Y1 ×B · · · ×B Yr → B is strongly non-isotrivial.
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REMARK 8.13. SinceTB is a line bundle andRnf∗T
n
X/B is locally free,ρf 6= 0 if and

only if it is injective. We use this observation in the definition of strong non-isotriviality
for higher dimensional bases.

8.14. ITERATED KODAIRA-SPENCER MAPS, CASE II: H IGHER-DIMENSIONAL BASES.
Let f : X → B be a smooth projective family of varieties of general type ofdimensionn,
B a smooth (not necessarily projective) variety.

For an integerp, 1 ≤ p ≤ n, there exists a filtration

T p
X = F

0 ⊇ F
1 ⊇ · · · ⊇ F

p ⊇ F
p+1 = 0,

such that
F i

/

F i+1 ≃ T i
X/B ⊗ f∗T p−i

B .

In particular,
F

p ≃ T p
X/B

and
F

p−1/F
p ≃ T p−1

X/B ⊗ f∗TB .

Therefore one has a short exact sequence,

0 → T p
X/B ⊗ f∗T

⊗(n−p)
B → F

p−1 ⊗ f∗T
⊗(n−p)
B → T p−1

X/B ⊗ f∗T
⊗(n−p+1)
B → 0,

that induces a map

ρ
(p)
f : Rp−1f∗T

p−1
X/B ⊗ T

⊗(n−p+1)
B → Rpf∗T

p
X/B ⊗ T

⊗(n−p)
B .

DEFINITION 8.15 [Kov05b]. Letρf := ρ
(n)
f ◦ ρ

(n−1)
f ◦ · · · ◦ ρ

(1)
f : T⊗n

B −→ Rnf∗T
n
X/B

and callf strongly non-isotrivial overB if ρf is injective.

EXAMPLE 8.16. LetYi → B be non-isotrivial families of smooth projective curves for
i = 1, . . . , r. ThenX = Y1 ×B · · · ×B Yr → B is strongly non-isotrivial overB.

REMARK 8.17. One could consider various refinements of this notion.For instance, con-
sider maps for which the composition of fewerρ(p)’s is injective or non-zero. These appear
for example in the study of moduli spaces of varieties that are products with one rigid term.
One could also combine this condition withVar f , the variation off in moduli. This is a
mostly unexplored area at the moment.

Therefore a possible answer to Question 4.3 is given by the following theorem:

Theorem 8.18 [VZ03a], [Kov05b]. Let f : X → B be a smooth projective family of
varieties of general type,B a smooth variety. Iff is strongly non-isotrivial overB, then
rigidity holds forf .

This, combined with Theorem 4.8, leads to a statement resembling the original Sha-
farevich conjecture. In fact, for families of curves it simply reduces to that.

Theorem 8.19 [KL06]. Let B,∆ and h be fixed. Then there exist only finitely many
strongly non-isotrivial families of canonically polarized varieties with Hilbert polynomial
h with respect toB,∆.
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