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Abstract

We show that the number of deformation types of canonically polarized

manifolds over an arbitrary variety with proper singular locus is finite, and

that this number is uniformly bounded in any finite type family of base

varieties. As a corollary we show that a direct generalization of the geo-

metric version of Shafarevich’s original conjecture holds for infinitesimally

rigid families of canonically polarized varieties.
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1. Introduction

Fix an algebraically closed field k of characteristic 0. Let B be a smooth

projective curve of genus g over k and ∆ ⊂ B a finite subset. A flat morphism

with connected fibers will be called a family. For two families over the same

base B a morphism of families is simply a morphism of B-schemes. A family

f : X → B is called isotrivial if Xa ' Xb for general points a, b ∈ B, and

f : X → B is admissible (with respect to (B,∆)) if it is not isotrivial and the

map f : X \ f−1(∆)→ B \∆ is smooth.

At the 1962 International Congress of Mathematicians in Stockholm, Sha-

farevich conjectured the following

1.1. Shafarevich’s Conjecture. Let (B,∆) be fixed and q ≥ 2 an

integer. Then

(1.1.1) there exist only finitely many isomorphism classes of admissible families

of curves of genus q;

(1.1.2) if 2g − 2 + #∆ ≤ 0, then there exist no such families.

Shafarevich showed a special case of (1.1.2): There exist no smooth fam-

ilies of curves of genus q ≥ 2 over P1. Conjecture 1.1 was proven by Parshin

[Par68] for ∆ = ∅ and by Arakelov [Ara71] in general.

This conjecture has a natural analogue for curves over number fields. For

a brief discussion see [Kov03, §2] and for more details [CS86] and [Lan91].

Shafarevich’s conjecture implies Mordell’s conjecture in both the function field

and the number field case by an argument known as Parshin’s covering trick.

Because of this, the proof of Shafarevich’s conjecture in the number field case

constitutes the lion’s share [AesBC] of Faltings’ celebrated proof of Mordell’s

conjecture [Fal83], [Fal84].

With regard to Shafarevich’s conjecture, Parshin made the following ob-

servation. In order to prove that there are only finitely many admissible fam-

ilies, one may proceed as follows. Instead of aiming for the general statement,

first prove that there are only finitely many deformation types.1 The next step

then is to prove that admissible families are rigid, that is, they do not admit

nontrivial deformations over a fixed base. Now since every deformation type

contains only one family, and since there are only finitely many deformation

types, the original statement follows.

Based on this idea, the following reformulation of Shafarevich’s conjecture

was used by Parshin and Arakelov to confirm the conjecture:

1.2. Shafarevich’s Conjecture (version two). Let (B,∆) be fixed

and q ≥ 2 an integer. Then the following statements hold.

1See Definition 1.4.
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(B) (Boundedness) There exist only finitely many deformation types of ad-

missible families of curves of genus q with respect to B \∆.

(R) (Rigidity) There exist no nontrivial deformations of admissible families

of curves of genus q with respect to B \∆.

(H) (Hyperbolicity) If 2g − 2 + #∆ ≤ 0, then no admissible families of

curves of genus q exist with respect to B \∆.

Remark 1.3. As we discussed above, (B) and (R) together imply (1.1.1)

and (H) is clearly equivalent to (1.1.2).

It is a natural and important question whether similar statements hold for

families of higher dimensional varieties. It is easy to see that (R) fails [Vie01],

[Kov03, 10.4] and hence the equivalent of (1.1) fails in higher dimensions.

This gives additional importance to the Parshin-Arakelov reformulation as it

separates the clearly false part from the rest. In fact, the past decade has

seen a flood of results concerning both (B) and (H). For a detailed historical

overview and references to related results we refer the reader to the survey

articles [Vie01], [Kov03], [MVZ06], [Kov09a], and [Kov09b].

In this article we are interested in (B). If there existed an algebraic

stack D parametrizing families of canonically polarized varieties over the base

B \ ∆, and if furthermore D is of finite type, then boundedness, (B), would

follow. Before further discussing the potential existence and properties of D,

it behooves us to mention the following notion closely related to (B):

(WB) (Weak Boundedness) We say that weak boundedness holds if for

an admissible family of projective varieties, f : X → B, the degree of

f∗ω
m
X/B is bounded above in terms of g(B),#∆, m, and hXgen , where

Xgen denotes the general fiber of f and hXgen the Hilbert polynomial of

ωmXgen
. In particular, the bound is independent of f .

This was proven by Bedulev and Viehweg in 2000 [BV00]. From this they

derived the consequence that as soon as a reasonable moduli theory exists for

canonically polarized varieties and if a D as above exists, then it is indeed of

finite type. Unfortunately, such D almost never exist (especially over open

bases); moreover, when the base variety has dimension higher than 1, the

question of how to rectify this situation (by adding elements to the family over

the discriminant locus ∆) is quite subtle. The bulk of this paper is devoted to

pointing out that a proxy for D can be constructed by standard stack-theoretic

methods, thus allowing us to show that (WB) implies (B) while skirting the

difficult issues surrounding compactifications of the stack of canonically polar-

ized manifolds.

Before stating our main result we need the following definition.
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Definition 1.4. Let U be a variety over a field k and C a class of schemes.

A morphism X → U is a C-morphism if for all geometric points u → U , Xu

belongs to C. Two proper, flat C-morphisms X1 → U , X2 → U are deformation

equivalent if there is a connected scheme T with two points t1, t2 ∈ T (k) and a

proper, flat C-morphism X→ U × T such that X|U×ti 'U Xi. An equivalence

class (with respect to deformation equivalence) of proper, flat C-morphisms

X → U will be called a deformation type.

Remark 1.5. In the sequel, the class C will be chosen to be the class of

canonically polarized varieties over a field k.

The following theorem proves (B) in arbitrary dimension.

Theorem 1.6. Let U be a variety over k that is smooth at infinity (see

Definition 2.1). The set Defoh(U) of deformation types of families X → U

of canonically polarized manifolds with Hilbert polynomial h is finite. Further-

more, if T is a quasicompact quasiseparated Q-scheme and U→ T is smooth at

infinity, then there is an integer N such that for every geometric point t→ T ,

we have |Defoh(Ut)| ≤ N .

This solves one of the open problems on the list compiled at the American

Institute of Mathematics workshop “Compact moduli spaces and birational

geometry” in December, 2004 [VO, Problem 2.4]. See also [Vie10].

In fact, we prove a more general result. For the relevant terminology see

Section 4.A.

Theorem 1.7. Let M ◦ be a weakly bounded2 compactifiable Deligne-

Mumford stack over a quasicompact quasiseparated Q-scheme T . Given a mor-

phism U → T that is smooth at infinity, there exists an integer N such that for

every geometric point t → T , the number of deformation types of morphisms

Ut →M ◦
t is finite and bounded above by N .

1.8. Definitions and notation. For morphisms f : X → B and ϑ : T → B,

the symbol XT will denote X ×B T and fT : XT → T the induced morphism.

Of course, by symmetry we also have the notation ϑX : TX ' XT → X. In

particular, for b ∈ B we write Xb = f−1(b). In addition, if T = SpecF , then

XT will also be denoted by XF . Finally, if F is an OX -module, then FT will

denote the OXT -module ϑ∗XF.

Given a proper scheme X over a field k, we write PicτX for the locus of

numerically trivial invertible sheaves in PicX . This is generally larger than

Pic0
X , the connected component containing the trivial sheaf. Given a field

extension L/k and an invertible sheaf N on XL, we will write [N ] for the

element of PicX(L) associated to N .

2See Definition 4.5.
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For the theory of stacks, we will use the definitions and conventions of

[LMB00]. In particular, all algebraic (Deligne-Mumford or Artin) stacks are

assumed to be quasiseparated. Most of the time, the stacks we use will in fact

be separated; this is always indicated in the text as a hypothesis when it is used.

A quasicompact separated Deligne-Mumford stack M is polarized if there

exists an invertible sheaf L on M such that the nonvanishing loci of all sections

of all tensor powers of L generate the topology on the underlying topologi-

cal space of M . When M has a coarse moduli space M , this is equivalent

to requiring that some tensor power of L is the pullback from M of an am-

ple invertible sheaf L. A Deligne-Mumford stack is tame if the order of the

stabilizer group of any geometric point x is invertible in κ(x). We will only

explicitly encounter tame stacks in the generalities of Section 3; otherwise, we

will be working in characteristic 0, where tameness is automatic and will go

unmentioned.

2. Coarse boundedness

2.A. Bounding maps to a projective scheme. As in the introduction, k will

be an algebraically closed field of characteristic 0. In what follows, variety will

mean a k-variety.

Definition 2.1. For a morphism U→ T of algebraic spaces let Sing(U/T )

denote the smallest closed subset of U such that the induced morphism U \
Sing(U/T )→ T is smooth. The morphism U→ T is called smooth at infinity

if it is of finite presentation, Sing(U/T ) is proper over T , and U \Sing(U/T ) is

schematically dense in every geometric fiber. A variety will be called smooth

at infinity if its structure morphism is smooth at infinity.

2.2. Let M be a proper k-scheme with a fixed invertible sheaf N and let

U be an algebraic variety that is smooth at infinity. By Nagata’s theorem, U

embeds into a proper variety B. Blowing up and using the assumption that U

is smooth at infinity, and hence SingU is proper, we may assume that B \U is

a divisor ∆ (with simple normal crossings, if desired) and that B is smooth in

a neighborhood of ∆. Because M is proper, it follows that given a morphism

ξ : U → M , there is an open subset ι : U ′ ↪→ B containing U and every

codimension 1 point of B and an extension of ξ to a morphism ξ′ : U ′ → M .

Taking the reflexive hull of ι∗NU ′ yields an invertible sheaf Nξ on B by [OSS80,

II.1.1.15, p.154].

On the other hand, suppose C◦ is a smooth curve over k with smooth

compactification C. Given a morphism ν : C → B that maps C◦ into U and

a morphism ξ : U → M as above, one obtains an extension ξC : C → M of

ξC◦ ◦ ν. It is of course not necessary for deg(ξ∗CN ) to equal deg Nξ|C , but this

will clearly occur when C is contained in U ′ (in the above notation).
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Definition 2.3. A (g, d)-curve is a smooth curve C◦ whose smooth com-

pactification C has genus g and such that C \ C◦ consists of d closed points.

Definition 2.4. Given U and M as above, a morphism ξ : U → M is

weakly bounded with respect to N if there exists a function bN : Z2
≥0 → Z

such that for every pair (g, d) of nonnegative integers, for every (g, d)-curve

C◦ ⊆ C, and for every morphism C◦ → U , one has that deg ξ∗CN ≤ bN (g, d).

The function bN will be called a weak bound (with respect to N ), and we will

say that ξ is weakly bounded by bN .

Notation 2.5. Given a field extension L/k, the set of morphisms UL →ML

which are weakly bounded by bN will be denoted W(U,M, bN )(L). Notice

that as bN depends on N, so does W(U,M, bN )(L).

Proposition 2.6. Let b be a weak bound. Then there exists a variety Wb

and a morphism Ξ : Wb ×U →M such that for every field extension L/k and

for every morphism ξ : UL → ML that is weakly bounded by b there exists an

L-valued point p : SpecL→Wb such that ξ = Ξ|{p}×U .

Remark 2.7. Notice that this does not necessarily mean that every point

of Wb corresponds to a weakly bounded morphism U →M . This phenomenon

is common in the theory of moduli; one often produces a bounded family

containing the points of interest, but possibly also containing numerous other

points. In fact, this is one of the main difficulties in the present situation. It

is much easier to find a bounding family than one that actually parametrizes

the class in which we are interested.

The proof consists of several steps. First, we compactify U ⊆ B as the

complement of a divisor ∆ in a proper variety as in 2.2. Then we bound the

set of invertible sheaves Nξ. The choice of n + 1 sections of such an Nξ that

simultaneously vanish only in ∆ can then be parametrized by a finite type

space T .

Assumption 2.8. We will assume that M is projective, fix an embedding

M ↪→ Pn, and let N = OM (1) = OPn(1)|M . For simplicity we replace the

phrase “weakly bounded with respect to N ” by “weakly bounded”.

Let us first treat the case M = Pn.

Lemma 2.9. Given a compactification U ⊆ B as above, there exists a

reduced subscheme of finite type W(U,Pn, b) ⊂ PicB such that for all field

extensions L/k and for all ξ ∈W(U,Pn, b)(L), we have [Nξ] ∈W(U,Pn, b)(L).

Proof. We first claim that it suffices to prove the result when B is smooth

and projective. Indeed, choose a projective resolution of singularities (or a
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projective alteration [dJ96]) π : ‹B → B with ‹B smooth, and let ‹U be the

preimage of U . Now we can consider weakly bounded morphisms ‹U → M

with the same weak bound b. Among these will be the compositions of π

with morphisms U → M weakly bounded by b. In other words, composi-

tion with π induces a natural map π∗ : W(U,Pn, b) → W(‹U,Pn, b). Ob-

serve that the pullback morphism π∗ : PicB → Pic
B̃

is of finite type by

[SGA71, XII.1.1], and hence if the required W(‹U,Pn, b) ⊂ Pic
B̃

exists, then

W(U,Pn, b) := (π∗)−1W(‹U,Pn, b) ⊂ PicB satisfies the desired conditions.

Therefore we may assume from now on that B is smooth and projective.

Suppose dimB ≥ 3 and let Y ⊂ B be a general ample divisor. By [SGA71,

XIII.3.8], the restriction morphism PicB → PicY of Picard schemes is of finite

type. Since the restriction of a morphism U → Pn weakly bounded by b to

U ∩ Y is also weakly bounded by b and we have Nξ|Y ' NξY , we see that

it suffices to prove the statement for U ∩ B ⊂ B. Thus, we may assume

dimB ≤ 2.

If dimB = 1, then the inclusion U ⊂ B is a (g, d)-curve with g the

genus of B and d the number of points in B \ U . In addition, any morphism

ξ : U → Pn extends to a morphism B → Pn. By the weak boundedness

assumption, 0 ≤ deg ξ∗CN ≤ b(g, d), so that ξ∗CN is contained in the preimage

Pic
[0,b(g,d)]
C of the interval [0, b(g, d)] ⊂ Z under the degree map PicC → Z.

Since the fiber of PicC → Z over any finite subset is of finite type, we see that

setting W(U,Pn, b) = Pic
[0,b(g,d)]
C yields the result.

Hence we may assume for the rest of the proof that B is a surface. Let

A be a very ample divisor on B. We will prove that for each ξ we have 0 ≤
degA Nξ ≤ N and c1(Nξ)

2 ≥ 0. These conditions define an open subscheme

W(U,Pn, b) of PicB. Moreover, by [SGA71, Th. XIII.3.13(iii)], there exists a

quasicompact scheme T and a family of invertible sheaves L on B × T such

that every sheaf Nξ appears as a fiber over a point of t. We conclude that

W(U,Pn, b) is quasicompact and therefore of finite type, as desired.

So it remains to verify that the above numerical conditions are satisfied.

We may assume that the very ample divisor A is smooth. The definition of

weak boundedness then yields a bound deg ξ∗AOM (1) ≤ N which depends only

on the genus of A and on A ·∆. Moreover, since codim(B \U ′, B) ≥ 2, we can

choose an A such that A ⊂ U ′. In this case Nξ|A ' ξ∗AOM (1) and hence we

conclude that 0 ≤ degA Nξ ≤ N .

Next consider H1, H2, the zero loci of two general sections of OM (m) for

some m � 0. Assume that ξ is nonconstant and let “Hi = ξ′∗Hi ⊂ B be the

closure of the pullback of Hi to U ′ via ξ′ for i = 1, 2. Clearly, “H1 · “H2 ≥ 0.

Notice that by definition Nξ ' OB(“Hi) for i = 1, 2 and hence c1(Nξ)
2 ≥ 0, as

desired. �
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Lemma 2.10. Given a finite type reduced subscheme Y ⊂ PicB , there is a

finite stratification Yi of Y by locally closed subschemes such that the functor of

tuples (L , σ0, . . . , σn) with [L ] ∈ ∐Yi and σ0, . . . , σn global sections of L at

least one of which is nonzero is represented by a reduced scheme W separated

and of finite type over
∐
Yi.

Proof. Let PicB be the Artin stack of invertible sheaves on B; this is a

Gm-gerbe over the Picard scheme PicB. Write P → Y for the fiber product

PicB ×PicB Y . Write Luniv for the universal invertible sheaf on P ×B. The

function L 7→ h0(L ) is upper semicontinuous and thus defines a stratification

of P by reduced locally closed substacks Pi ⊂ P. Since P → Y is a Gm-

gerbe, each Pi is a Gm-gerbe over a locally closed subscheme Yi ⊂ Y , and the

Yi form a stratification of Y .

Write pi : Pi×B →Pi for the first projection. By cohomology and base

change, the sheaf (pi)∗Luniv|Pi×B is a locally free Pi-twisted sheaf (see [Lie08,

§3.1.1] for the definition and basic properties of twisted sheaves). A choice of

sections σ0, . . . , σn such that at least one σi is not the zero section is a point

of the stack

W := V((((pi)∗Luniv|Pi×B)∨)⊕(n+1)) \ 0,

where 0 denotes the zero section of the vector bundle.

Since the inertia stack of P acts on Luniv by scalar multiplication, the

induced action on W is faithful, from which it follows that W is an algebraic

space. To prove that it is a separated scheme of finite type (and to give

a more concrete description of the space), we can work étale locally on the

sheafification Pi of Pi and thus assume that (1) Pi is isomorphic to Pi×BGm

and (2) the pullback of (pi)∗Luniv via the canonical map Pi → Pi × BGm

is trivial, say of rank r. The natural left action of Gm on the fibers of the

locally free sheaf (((pi)∗Luniv|Pi×B)∨)⊕n is via scalar multiplication. Thus,

W is isomorphic to the stack-theoretic quotient of the scalar multiplication

action of Gm on AnrPi \0. This is just Pnr−1
Pi

, which is certainly separated and of

finite type. (Continuing along these lines shows that W is in fact isomorphic

to a Brauer-Severi scheme over Pi with the same Brauer class as [Pi]. While

it may seem baffling that a projective Pi-scheme can be an open substack of

a geometric vector bundle over Pi, it arises from the fact that Pi — and

therefore any vector bundle over Pi — is highly nonseparated.) �

Lemma 2.11. Let S be a reduced Noetherian algebraic space and X → S

and Y → S two Artin stacks of finite presentation. Let Z ⊂ X and T ⊂ Y
be locally closed substacks. Given an S-morphism ϕ : X → Y , there is a

monomorphism of finite type S′ → S whose image contains a geometric point

s→ S if and only if ϕs maps (Zs)red into (Ts)red.
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Proof. Pulling back T to X and replacing the inclusion T ⊂ Y by

TX ⊂ X , we may assume that X → Y is the identity morphism. Then the

set Z \T is constructible in X , so the reduced structure on the complement of

its image in S is constructible. Any constructible set admits a natural locally

finite stratification by reduced algebraic spaces, yielding the desired morphism

S′ → S. �

Lemma 2.12. Let W be the scheme constructed in Lemma 2.10. Then

there is a finite type morphism W∆ →W such that for any w ∈W the reduced

common zero locus of σ0
w, · · · , σnw is contained in ∆ if and only if w is in the

image of W∆. In fact, W∆ is the union of pieces in a stratification of W .

Proof. The sections σi define divisors Zi ⊂ B ×W . Apply Lemma 2.11

with X = Y = B ×W , S = W , Z = Z0 ∩ · · · ∩ Zn, and T = ∆×W . �

Proof of Proposition 2.6. Let Wb = W∆ be the result of applying Lemma

2.10 and Lemma 2.12 to the scheme Y = W(U,Pn, b) constructed in Lemma 2.9.

The sections σ0, . . . , σn define the required morphism Ξ : Wb×U → Pn, prov-

ing the statement for M = Pn.

For a general projective M ↪→ Pn, if we let Wb × U → Wb × Pn be the

morphism ensured by the previous case, we can take S = Wb, Z = X =

Wb × U , Y = Wb × Pn, and T = Wb ×M in Lemma 2.11, yielding a finite

type monomorphism W ′ →Wb and the required morphism W ′×U →M . �

Proposition 2.13. Given a polarized variety (M,OM (1)), an open sub-

scheme M◦ and a weak bound b, there is a k-variety Wb
M◦ and a morphism

Wb
M◦ × U → M◦ such that for every field extension L/k, every morphism

UL →M◦L whose composition with the inclusion M◦L ↪→ML is weakly bounded

with respect to the polarization of ML by b appears in a fiber over Wb
M◦(L).

Proof. This follows from Proposition 2.6 and Lemma 2.11. �

We briefly indicate how to extend the results above to the case of a family

over a reduced base.

Proposition 2.14. Let T be a quasicompact quasiseparated reduced k-

scheme and U → T a separated morphism which is smooth at infinity. Given

a projective T -scheme of finite presentation (M,OM(1)), an open subscheme

M◦ ⊆ M of finite presentation over T , and a weak bound b, there exists a

T -scheme of finite presentation Wb
M◦ and a morphism Ξ : Wb

M◦ × U → M◦

such that for every geometric point t → T and for every morphism ξ : Ut →
M◦t ⊆Mt that is weakly bounded by b there exists a point p→Wb

M◦t
such that

ξ = Ξ|{p}×Ut .

Proof. Since T is quasicompact and quasiseparated, absolute Noetherian

approximation [TT90, C.3 and Th. C.9] lets us assume that T is of finite
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type over k. We claim that there is a finite type morphism T ′ → T and

a fiberwise dense open immersion UT ′ ↪→ B with B → T ′ a proper scheme

with geometrically integral fibers. To see this, we can first replace T with the

disjoint union of its irreducible components and thus assume that T is integral.

The geometric generic fiber Uη has an integral compactification Uη ↪→ B by

Nagata’s theorem. Since B is of finite presentation over T , there is a finite

type integral T -scheme T1 → T with a lift η → T1 to a geometric generic point

over the given geometric generic point of T , a proper T1-scheme B→ T1, and

an open immersion UT1 ↪→ B whose pullback to η is Uη ↪→ B.

By generic flatness, there is a dense open subscheme T2 ⊂ T1 over which

B and BT2 \ UT2 are flat. Applying [Gro67, Th. 12.2.4], there is a further

open subscheme T3 ⊂ T2 over which the geometric fibers of B are integral

and the geometric fibers of BT3 \UT3 have dimension strictly smaller than the

fiber dimension of BT3 → T3. It follows that UT3 ⊂ BT3 is a fiberwise dense

open immersion. Since T3 → T is dominant and of finite type, Chevalley’s

theorem shows that its image contains a dense open subset. By Noetherian

induction, there are morphisms T ′ → T and UT ′ ↪→ B as claimed in the first

paragraph. Resolution of singularities and similar stratification and Noetherian

induction argument gives a finite type morphism T ′′ over which there is a

smooth projective morphism ‹B → T ′′ whose geometric fibers are connected

and which admits a fiberwise birational morphism ‹B→ BT ′′ . We can replace

T by T ′′ and assume that we have such a compactification and resolution.

Since the geometric fibers of B→ T are integral, we see that B is cohomo-

logically flat in degree 0 and the Picard functor is separated. Thus, the Picard

stack PicB/T is a Gm-gerbe over a separated algebraic space PicB/T locally

of finite type over T . Given a T -flat relatively ample smooth divisor B′ ⊂ B,

if the fiber dimension of B′ is at least 2 then by [SGA71, Th. XIII.3.8] the re-

striction morphism PicB/T →PicB′/T is of finite type. Since we can always

replace T by an open covering, we can always assume that such a T -smooth

divisor exists.

We claim that there is an open substack Y ⊂PicB/T of finite type over

T such that for each geometric point t → T , the invertible sheaves Nξ on Bt
arising from weakly bounded morphisms Ut →M◦ via the procedure of 2.2 lie

in Y . Arguing precisely as in the proof of Lemma 2.9, it suffices to prove this

for the inclusion ‹U ↪→ ‹B, so that we may assume B is smooth over T .

First suppose B is a relative smooth curve. The degree map gives a

finite type morphism PicB/T → ZT . Just as in the proof of Lemma 2.9, the

weak boundedness shows that the Nξ are contained in the preimage of a finite

interval in Z, yielding the claim.

If the fibers of B/T have dimension at least 2, then arguing as in the

proof of Lemma 2.9 and using the existence of smooth relatively ample divisors
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B′ ⊂ B (after possibly replacing T by an open covering), we can reduce to the

case in which B → T is a smooth projective relative surface. Now, again as

in the proof of Lemma 2.9 we have that the sheaves Nξ on the fibers over

T satisfy 0 ≤ degA Nξ ≤ N and c1(Nξ)
2 ≥ 0 (where A ⊂ B is a relatively

ample smooth divisor). Invoking [SGA71, Th. XIII.3.13(iii)] again, we see that

the collection of invertible sheaves on the fibers satisfying those boundedness

conditions forms a finite type open substack Y ⊂PicB/T , as desired.

Now, to bound the map we argue as in Lemma 2.10. As written, the

argument is completely general and applies in the present situation. It yields

the universal collection of sections. The proofs of Lemmas 2.11, 2.12, and

Proposition 2.13 also carry over to yield the map Ξ. �

2.15. Next we compactify ξ in a bounded family.

Definition 2.16. Given a T -scheme B → T , a relative simple normal cross-

ings divisor D ⊂ B is a divisor of the form D = D1+· · ·+Dr such that B is flat

over T in a neighborhood of D, each Di is flat over T , and in each geometric

fiber Bt the divisor (D1)t + · · ·+ (Dr)t is a simple normal crossings divisor.

Proposition 2.17. Let T be reduced quasiseparated and quasicompact k-

scheme and U → T a separated morphism that is smooth at infinity. Given a

proper T -scheme of finite presentation M and a T -morphism ξ : U→M, there

exists a finite type surjective morphism T ′ → T , a proper scheme B → T ′,

an open immersion UT ′ ↪→ B over T ′ whose complement B \ UT ′ is a relative

simple normal crossings divisor, and a T ′-morphism ξ̄ : B → MT ′ such that

ξ̄|UT ′ = ξT ′ .

Proof. By absolute Noetherian approximation, we may assume that T is

Noetherian. We may then replace T by the disjoint union of its irreducible

components and assume that T is integral. Next we compactify the morphism

U → T to a proper scheme B′ → T (which is not necessarily flat!). Resolving

the singularities of the generic fiber of B′ \ Sing(U/T ) yields an immersion

U→ B′′ into a proper scheme over the function field of T whose general fiber

over T is smooth outside U. After a birational modification of B′′, we may

assume that ξ extends to B′′ and that B′′ \ U is a simple normal crossings

divisor. This extends over an open dense subscheme of T . By Noetherian

induction, we can thus stratify T so that such compactifications exist over

each stratum. Given the compactifications, we proceed as in the proof of

Proposition 2.6. �

Remark 2.18. If U→ T is quasiprojective, then we can assume that B→
T ′ is projective, as the resolution of singularities of B′ can be assumed to be

projective.
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2.B. Bounding maps to a quasiprojective scheme.

Definition 2.19. Given a proper T -scheme π : M → T and an open sub-

scheme M◦ ⊆ M, an invertible sheaf L on M is relatively ample with respect

to M◦ if there exists an integer m > 0 such that

(2.19.1) π∗π∗Lm → Lm is surjective over M◦, and

(2.19.2) the natural map M◦ → PT (π∗Lm) is a locally closed immersion.

A relative polarization of M with respect to M◦ is an invertible sheaf L that

is relatively ample with respect to M◦.

Note that if (2.19.2) holds for some m > 0, then it holds for any m

sufficiently large and divisible.

Definition 2.20. Given a separated T -scheme of finite type M◦, a relative

compactification of M◦ is a T -morphism ι : M◦ → M that embeds M◦ as an

open subscheme of the proper T -scheme M. If there is no danger of confusion,

we will abuse notation and refer to a relative compactification ι : M◦ → M

simply as M. A morphism between relative compactifications ι : M◦ →M and

ι′ : M◦ →M′ is a T -morphism ϕ : M→M′ such that ϕ ◦ ι = ι′.

Remark 2.21. These notions seem most natural if M◦t is dense in Mt for

all t ∈ T , but we do not need to make this assumption here.

The next statement allows us to replace a polarization with respect to an

open subscheme with a polarization everywhere.

Proposition 2.22. Let T be a Noetherian scheme, M◦ a separated T -

scheme of finite type, ι : M◦ →M a relative compactification, and L a relative

polarization of M with respect to M◦. Then there exists a diagram of relative

compactifications of M◦

M̃
σ

~~||
||

||
|| τ

!!B
BB

BB
BB

B

M M◦ι
oo

ι̃

OO

ι′
// M′

and a T -ample invertible sheaf A on M′ such that :

(2.22.1) There exists an inclusion of invertible sheaves τ∗A ⊆ σ∗L which is an

isomorphism on M◦.

(2.22.2) In particular, given a weak bound b, a geometric point t → T , and a

morphism ξ : U → M◦t , if ι ◦ ξ is weakly bounded with respect to Lt

by b, then ι′ ◦ ξ is weakly bounded with respect to At by b.

Proof. Let m > 0 be the integer given in Definition 2.19 and E = π∗Lm.

Consider the natural map ν : π∗E = π∗π∗Lm → Lm which is surjective on

M◦. Let I = ν(π∗E )⊗L −m ⊆ OM and let σ : M̃→M be the blowing up of

the ideal sheaf I .
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Since the support of OM

¿
I is disjoint from M◦, ι̃ = σ−1◦ι : M◦ → M̃ is a

relative compactification of M◦ and N = σ∗Lm⊗σ−1I ·O‹M is relatively am-

ple with respect to ι̃(M◦). The surjective morphism σ∗π∗E � N induces

a T -morphism τ : M̃ → PT (E ) which is an embedding on M◦. Letting M′

be the scheme-theoretic image of τ and A the restriction of OPT (E )(1) to M′

yields (2.22.1). Given a curve C and a morphism γ : C → M̃t such that

γ(C) ∩M◦t 6= ∅, the natural map γ∗τ∗A → γ∗σ∗L remains injective. There-

fore (2.22.1) implies (2.22.2). �

Corollary 2.23. Let T be a Noetherian scheme, M◦ a separated T -

scheme of finite type, ι : M◦ → M a relative compactification, L a relative

polarization of M with respect to M◦, and b a weak bound. Then there exists

a T -scheme of finite type Wb
M◦ and a morphism Wb

M◦ ×U→M◦ such that for

every geometric point t→ T , every morphism Ut →M◦t ⊆Mt which is weakly

bounded with respect to Lt by b appears in a fiber over Wb
M◦t

.

Proof. This follows directly from Propositions 2.14 and 2.22. �

3. Weak stacky stable reduction

3.A. Groupoid-equivariant objects in a stack. We start with a few basic

results about equivariant objects and their liftings. While the main result of

this section can be stated in purely stack-theoretic language (as we indicate in

the alternative proof of Corollary 3.5), the formalism we briefly sketch here is

useful for clarifying the proof of Proposition 3.12.

Let (R,Z) be a groupoid object in the category of algebraic spaces with

big fppf stack quotient [Z/R]. Write σ, τ : R→ Z for the two structural mor-

phisms. At the moment, we make no (e.g., flatness or finiteness) assumptions

about σ and τ . One way to understand the stack [Z/R] is as the stackification

(see Lemma 3.2 of [LMB00]) of an intermediate prestack, which we will denote

{Z/R}. The objects of {Z/R} over T are given by the elements of Z(T ). Given

two such objects a, b ∈ Z(T ), we define the sheaf of isomorphisms IsomT (a, b)

to be the fiber of R→ Z×Z over (a, b). Using the groupoid structure on (R,Z),

one can check that this defines a prestack, and that the natural map to the

2-categorical fiber product R→ Z×{Z/R}Z is an isomorphism (see Paragraph

2.4.3 of [LMB00]). For any stack Y , the universal property of stackification

says that the restriction functor

Hom([Z/R],Y )→ Hom({Z/R},Y )

is an equivalence of groupoids.

Let R(2) denote the fiber product R×Z R. The groupoid structure yields

three morphisms R(2) → R: the two projections pr1 and pr2, and the com-

position map m. Given a prestack Y , an object ϕ : Z → Y , and an iso-

morphism η : ϕσ
∼−→ ϕτ , the coboundary of η is defined to be the element

∂η := (η pr1)(ηm)−1(η pr2) of Aut(ϕσ pr2).



598 SÁNDOR J KOVÁCS and MAX LIEBLICH

Definition 3.1. Let Y be a prestack. Then an R-equivariant object of Y
over Z is an object ϕ : Z → Y and an isomorphism η : ϕσ

∼−→ ϕτ of morphisms

R→ Y such that the coboundary ∂η is trivial.

The R-equivariant objects of Y naturally form a groupoid, which we will

denote by Y(R,Z). A 1-morphism of groupoids Y → Y ′ induces a functor

Y(R,Z) → Y ′(R,Z).

A basic example of an equivariant object of a prestack comes from the

morphism ϕ : Z → {Z/R} induced by the point id ∈ Z(Z). The isomorphism

η : ϕσ
∼−→ ϕτ arises as follows: by definition, we have that IsomR(ϕσ, ϕτ) is

the fiber product sheaf

IsomR(ϕσ, ϕτ) //

��

R

��
R // Z × Z,

where both maps R→ Z ×Z are the pair (σ, τ). The diagonal of R×R yields

a canonical section of IsomR(ϕσ, ϕτ), giving rise to an equivariant object.

In fact, this is the universal equivariant object, as we now make precise.

Given a prestack Y , the constructions of the two previous paragraphs yield a

functor

ε : Hom({Z/R},Y )→ Y(R,Z)

between groupoids.

Proposition 3.2. The functor ε is an equivalence for any stack Y .

Proof. We first describe the groupoid Hom({Z/R},Y ). Let P be the

groupoid of pairs (ϕ, ι) consisting of a 1-morphism ϕ : Z → Y and a morphism

ι : (R,Z) → (Z ×Y Z,Z) of groupoids. The isomorphisms in P are given by

isomorphisms between the maps ϕ which are compatible with the maps ι.

Given a morphism ϕ : {Z/R} → Y , composition with the natural mor-

phism Z → {Z/R} defined above yields a diagram

R = Z ×{Z/R} Z

�� ��

// Z ×Y Z

�� ��
Z

��

idZ // Z

��
{Z/R} // Y .

The diagram induces a morphism of groupoids ι : (R,Z) → (Z ×Y Z,Z),

yielding a functor from Hom({X/R},Y ) to P.
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We can produce a functor P → Hom({Z/R},Y ) in the opposite direction.

Given a 1-morphism ϕ : Z → Y and a morphism ι : (R,Z) → (Z ×Y Z,Z)

of groupoids, we make a 1-morphism of prestacks {Z/R} → Y as follows.

An object α ∈ {Z/R}(T ) = Z(T ) gets sent to ϕα ∈ YT , and an arrow r ∈
Isom{Z/R}(T )(α, β) = R(T ) gets sent to the arrow ψ : ϕα

∼−→ ϕβ determined by

the image of r in Z ×Y Z (i.e., r maps to the triple (α, β, ψ) in the functorial

construction of the 2-fiber product).

The result is an equivalence of groupoids Hom({X/R},Y )→P. Sending

a pair (ϕ, ι) to the pair (ϕ, ι(σ, τ)) gives a functor e : P → Y(R,Z) which

factorizes ε. The result is thus proven if we show that e is an equivalence

of groupoids. A morphism (R,Z) → (Z ×Y Z,Z) extending ϕ is given by a

morphism y : R → Z ×Y Z with image (σ, τ) in Z(R) × Z(R) such that the

composition arrow R(2) → R is compatible via y with the canonical morphism

(Z ×Y Z)×Z (Z ×Y Z)
∼−→ Z ×Y (Z ×Z Z)×Y Z

∼−→ Z ×Y Z.

The arrow y : R → Z ×Y Z gives a triple (σ, τ, η) with η : ϕσ
∼−→ ϕτ . The

coboundary condition on η is precisely the condition that a triple (σ, τ, η) give

rise to a morphism of groupoids over ϕ, as desired. �

Remark 3.3. A similar result is proven in Section 3.8 of [Vis05], where

equivariant objects of stacks are treated. There, the groupoid (R,Z) is given

by a group action G× Z → Z.

In particular, we may apply Proposition 3.2 to the case of a group G

acting on an algebraic space Z, yielding an equivalence between G-equivariant

maps Z → Y and morphisms [Z/G]→ Y . We can use this to prove a purity

theorem for maps [Z/G]→ Y .

Proposition 3.4. Suppose M is a separated Deligne-Mumford stack with

coarse moduli space M . Let (R,Z) be a groupoid of algebraic spaces with Z

regular and R normal and with flat structural morphisms. Suppose ψ : Z →M

is an R-invariant morphism, U ⊂ Z is a dense R-invariant open subspace, and

ϕ : U →M is an R-equivariant object covering ψ|U . If Z \U has codimension

at least 2 in Z then ϕ extends to an R-equivariant object of M over all of Z

which covers ψ.

Proof. By the Purity Lemma [AV02, 2.4.1 and 2.4.2], ϕ lifts to ϕ : Z →M .

It remains to show equivariance. We are given an isomorphism α : ϕσ
∼−→ ϕτ .

As M is separated, IsomR(ϕσ, ϕτ) is finite over R (via either projection).

Furthermore, since R is normal, any finite birational morphism Y → R is an

isomorphism. It follows that taking the closure of α in IsomR(ϕσ, ϕτ) yields a

global section over R. Moreover, we know that the coboundary of α is trivial

over the preimage of U . Since U is schematically dense in Z and the structural
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morphisms of the groupoid are flat, it follows that the preimage of U in R(2) is

schematically dense. (To prove this, first note that it suffices to prove that some

open subspace of U has schematically dense preimage inR(2). Since Z is regular

and quasiseparated, by working with one component at a time we can choose

a dense open subspace U ′ of U whose inclusion i : U ′ ↪→ Z is a quasicompact

morphism, so that OZ → i∗OU ′ is an injective map of quasicoherent OZ-

algebras. Since pushforward and flat base change commute for quasicoherent

sheaves, we see that the induced map OR(2) → (i×idR(2))∗OU ′×ZR(2) is injective.

This shows that U ′ ×Z R(2) is schematically dense in R(2), as desired.) Using

the fact that IsomR(ϕσ, ϕτ) is separated over R, we see that the coboundary

of α is trivial over all of R(2). �

Corollary 3.5. Let Z be a smooth Deligne-Mumford stack and U ⊂ Z
an open substack of complementary codimension at least 2. Let M be a sepa-

rated Deligne-Mumford stack with coarse moduli space M . Given a morphism

ψ :Z→M and a lift ϕU : U →M , there is a unique extension ϕ : Z →M
up to unique isomorphism.

Proof. We include an alternative, purely stack-theoretic proof (without in-

voking groupoids). This proof has the advantage of greater intrinsic clarity, al-

though we find the groupoid formalism helpful in the proof of Proposition 3.12

below.

Consider the morphism ϕ : Z ×M M → Z . By assumption, there is

a section σ over U . Let Y = σ(U ) be the stack-theoretic closure. The

projection Y → Z is proper, quasifinite, and an isomorphism in codimension

1. This persists after any étale base change Z → Z , whence, since Z is

smooth, we see that ρ : Y ′ := Y ×Z Z → Z must be an isomorphism. Indeed,

it immediately follows that (via ρ) Z is the coarse moduli space of Y ′. On

the other hand, over the strict localizations of Z, Y ′ is a finite group quotient

[SpecR/G] with coarse space SpecS. By assumption, S is regular and S ⊂ R is

finite and unramified in codimension 1, hence is finite étale by purity. It follows

that SpecS ' [SpecR/G]. We conclude that Y → Z is an isomorphism, and

thus that there is a lift Z →M over M . �

3.B. Stacky branched covers. We briefly recall the basic facts concerning

stacky branched covers. Let D ⊂ Z be an effective Cartier divisor in an

algebraic space, corresponding to a pair (L, s) with L an invertible sheaf on

Z and s ∈ Γ(Z,L) a regular global section (i.e., s is not a zero divisor). Let

L be the Artin stack [A1/Gm]; L represents the stack (on the category of

algebraic spaces) of pairs (L, s) consisting of an invertible sheaf and a global

(not necessarily regular) section. The map x 7→ xn defines a morphism νn :

L→ L.
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Proposition 3.6. Let Z,D,L, s be as above. Define Z[D1/n] to be

Z ×(L,s),L,νn L.

(3.6.1) π : Z[D1/n]→ Z is a tame Artin stack with coarse moduli space Z; the

natural morphism Z[D1/n]×Z (Z \D)→ Z \D is an isomorphism.

(3.6.2) (Z[D1/n]×Z D)red → Dred is the µn-gerbe of nth roots of the invertible

sheaf L|D.

(3.6.3) There exists a pair (L , σ) of an invertible sheaf and a global section on

Z[D1/n] with an isomorphism L⊗n ∼−→ π∗L sending σ⊗n to π∗s. The

section σ is regular. Moreover, the pair (L , σ) is universal: Z[D1/n]

represents the stack of such pairs of nth roots.

(3.6.4) Zariski locally on Z , Z[D1/n] has the form [Spec(OZ [z]/(zn− t))/µn],

where t = 0 is a local equation for D.

(3.6.5) The stack Z[D1/n] is a global quotient of the form [Q/Gm]. If Z and

D are regular, then so is Q.

(3.6.6) If Z is projective over a field and D is smooth then there is a finite flat

morphism Y → Z[D1/n] with Y a projective scheme.

Proof. The proof of (3.6.1) through (3.6.4) has been treated numerous

times in the literature (see for example [MO05, 4.1] and [Cad07, §2]). The

penultimate statement may be proven as follows: given the universal pair

(L , σ), let Q → Z[D1/n] be the total space of the Gm-torsor associated to

L . Since the stabilizer action on each geometric fiber of L is faithful, it is

a standard result that Q (which is the bundle of frames of the line bundle

associated to L) is an algebraic space. It immediately follows that Z[D1/n] '
[Q/Gm].

To prove the final statement, we recall Viehweg’s formulation of the Kawa-

mata covering trick [Vie95, Lemma 2.5] and point out a slight modification.

Write Zsm for the smooth locus of Z; this is an open subscheme containing D.

Let d = dimZ. Let H be an ample divisor on Z. For sufficiently large m, the

divisor nmH−D is very ample. Choose general members E1, . . . , Ed such that

(E1 +E2 + · · ·+Ed+D)|Zsm is a simple normal crossings divisor. Each Ei+D

is in nPic, so we can construct the usual cyclic cover branched over Ei + D

(see for example [KM98, Def. 2.49(3)]), say Ci → Z. By construction, Ci → Z

is a finite flat morphism. Let Y := C1 ×Z C2 ×Z · · · ×Z Cd. Over Zsm \ D,

the transversality of E1, . . . , Ed ensures that Y is smooth. On the other hand,

one can check that the normalization Y ν of Y |Zsm is smooth. Moreover, the

reduced structure on the preimage of D in Y ν gives an effective Cartier divisor

D′ such that nD′ = D|Y ν . Gluing Y |Z\D to Y ν yields a finite flat morphism

f : Y → Z such that f−1(Zsm) is smooth and there is an effective Cartier

divisor D′ ∈ Y such that nD′ = f∗D. By the universal property of Z[D1/n],

there is a Z-morphism f ′ : Y → Z[D1/n]. Over the complement of D, f ′
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and f are naturally isomorphic. On the other hand, in a neighborhood of D,

both Z[D1/n] and Y are regular and equidimensional of the same dimension.

Applying [Mat89, Cor. to Th. 32.1] to the pullback of f ′ over an affine étale

neighborhood of D, we see that f ′ is finite and flat, as desired. �

Given a simple normal crossings divisor D = D1 + · · · + D` in Z (which

implies that the strict local rings of Z are regular at each point in the support

of D), define

Z〈D1/n〉 := Z[D
1/n
1 , . . . , D

1/n
` ] := Z[D

1/n
1 ]×Z · · · ×Z Z[D

1/n
` ].

In Cadman’s notation [Cad07], X[D1/n] is written as XL,s,n and X〈D1/n〉 is

written as X(D1,...,Dn),(n,...,n).

We assume in what follows that Z is excellent. (By definition, an algebraic

space is excellent if every étale cover by a scheme is excellent. Simply requiring

it for one cover is not sufficient, as shown in [Gro67, 18.7.7].)

Lemma 3.7. Z〈D1/n〉 is regular in a neighborhood of Z〈D1/n〉 ×Z D.

Proof. It is clear that the formation of Z〈D1/n〉 and the statement of

the lemma are compatible with étale base change, so we may assume that

Z = SpecR is an affine scheme. Since D is a simple normal crossings divisor

and Z is excellent, Z is regular in a Zariski neighborhood of D. Upon replacing

Z by this neighborhood, we may assume that Z is regular. Shrinking Z further

if necessary, we may also assume that O(D1), . . . ,O(D`) are trivial. Let ti = 0

be an equation for Di. In this case, Z〈D1/n〉 is locally isomorphic to the quo-

tient stack for the action of µ⊕`n on Y = SpecR[z1, . . . , z`]/[(z
n
1−t1, . . . , zn` −t`)].

Since D is a simple normal crossings divisor, it is easy to see that Y is regular

(and excellent). �

Lemma 3.8. Let D ⊂ Z → S be a flat relative simple normal crossings

divisor. The formation of Z〈D1/n〉 is compatible with base change.

Proof. This follows immediately from the definition. �

3.C. Applications to lifting problems. In this section we fix a discrete val-

uation ring R with uniformizer t, fraction field K, and residue field κ. Let Z
be a tame separated Deligne-Mumford stack of finite type over R with coarse

moduli space SpecR and trivial generic stabilizer.

Lemma 3.9. With the above notation, there exists a positive integer n0

such that for all n divisible by n0, there is a unique R-morphism SpecR[t1/n]→
Z up to unique isomorphism.
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Proof. Let R′ be the strict Henselization of R. By the local structure

theory of Deligne-Mumford stacks, there exists a finite generically Galois ex-

tension S/R′ with Galois group G and an R′-isomorphism Z ⊗ R′ ' [S/G].

Since Z is tame, we may assume that the order of G is invertible in R. Let

S̃ denote the normalization of S. Since S̃/R′ is generically Galois of degree

invertible in R, it follows from Abhyankar’s Lemma and the structure of finite

unramified extensions of Henselian local rings that S̃ is a finite product of rings

of the form R′[t1/n0 ] for a fixed n0. (A treatment of the case of discrete valua-

tion rings, which is all we use here, may be found in [Ser79, Ch. IV, §§1–2].) It

follows that the stabilizer of the factor R′[t1/n0 ] is isomorphic to µn0
(κ̄). Let n

be any integer divisible by n0. Then there exists a natural µn-equivariant map

SpecR[t1/n] → SpecR[t1/n0 ]. Since R′[t1/n] = R′ ⊗R R[t1/n], it follows that

there is an étale surjection U → SpecR[t1/n] and an R-morphism ϕ : U → Z .

Let Y = SpecR[t1/n]. Over the generic fiber of U ×Y U there is a descent

datum ψ : pr∗1 ϕ
∼−→ pr∗2 ϕ arising from the fact that Z is generically isomor-

phic to R. Since U → Y is unramified, U ×Y U is a Dedekind scheme, and

since Z is separated, it follows that ψ extends to a descent datum for the

covering U → Y , yielding an R-morphism Y → Z . Uniqueness follows from

separatedness and the fact that Z → SpecR is a generic isomorphism. �

Lemma 3.10. In the situation of the previous lemma, let Y = SpecR[t1/n0 ].

There is an induced morphism of R-stacks [Y/µn0
] → Z which identifies

[Y/µn0
] with the normalization of Z .

Proof. The scheme Y ×µn0
is Dedekind, and the generic morphism Y ⊗K

→ Z ⊗K is clearly equivariant. Arguing as in the proof of Lemma 3.9, the

induced generic isomorphism between the two maps Y × µn0
→ Z extends

(uniquely) over all of Y × µn0
. It follows that Y → Z is equivariant, yielding

a morphism ρ : [Y/µn0
] → Z by Proposition 3.2. Since, in the notation of

Lemma 3.9, µn0
(κ̄) is a subgroup of G (namely, the subgroup fixing the closed

point of S̃), it follows that the morphism of stabilizers induced by [Y/µn0
]→ Z

is injective. Thus, [Y/µn0
] → Z is proper, quasifinite, birational, and injec-

tive on geometric stabilizers, which implies that it is a finite (affine) morphism.

The result follows from the uniqueness of normalization. �

Remark 3.11. It is an amusing exercise to understand how Lemma 3.10

applies to the case of the stack Z given by the quotient of a wedge of n lines

(in the sense of topology) by one of the natural actions of Z/nZ. It is easy

to see that the coarse moduli space is a line, and that there is a single stacky

point (corresponding to the point at which all of the lines are wedged, which

is fixed by Z/nZ). In particular, Z is integral (but admits a finite étale cover

by a connected reducible scheme). In this case n0 = 1 and the normalization

is simply a (nonstacky) line.
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Proposition 3.12. Let M be a proper tame Deligne-Mumford stack with

coarse moduli space M . Let U ⊂ Z be the complement of a simple normal

crossings divisor D in an excellent scheme. Suppose ϕ : U →M is a morphism

such that π ◦ ϕ : U → M extends to a morphism ψ : Z → M . Then there is

an extension of ϕ to a morphism ψ̃ : Z〈D1/N 〉 →M lifting ψ, where N is the

least common multiple of the orders of the geometric stabilizers of M .

Proof. Let the generic points of Z \ U be p1, . . . , pr. We claim that it is

sufficient to extend ϕ across the Zariski localizations Zpi〈D
1/N
i 〉 at each pi.

Indeed, let Y → Z〈D1/N 〉 be the G⊕rm -torsor defined in (3.6.5). Giving an

extension of ϕ to Z〈D1/N 〉 is the same as giving an equivariant extension of

ϕ|UY to a morphism Y → M . Such an extension is unique up to unique

isomorphism, so it immediately follows that once one has an extension over

each pi, one gets an extension over an open subspace V ⊂ Z whose complement

has codimension at least 2 and is contained entirely in the regular locus of Z.

Applying Proposition 3.4 yields the result.

Thus, let R be the local ring at some pi. Consider Y := SpecR×M M →
SpecR. Since R is normal, we may apply Lemma 3.10 to conclude that

Y = SpecR[p
1/m
i ], where m is the order of the geometric stabilizer over pi.

Since SpecR[p
1/N
i ] naturally dominates SpecR[p

1/m
i ] over R for any multiple

N of m, we see that we can extend ϕ across the preimage of pi in Z〈D1/N 〉,
as required. �

Remark 3.13. The reason we call this section “weak stacky stable reduc-

tion” is the following: given a discrete valuation ring R and a family over its

generic point, the methods of this section produce a family over a stack with

coarse moduli space SpecR, as long as we already have the extension of the

coarse moduli map. This makes the statement easier to prove but far weaker

than stable reduction, even in a stacky form (cf. [Ols04]).

4. Proof of the main theorems

4.A. Terminology. Let M ◦ be a separated Deligne-Mumford stack of fi-

nite type over T with coarse moduli space M◦.

Definition 4.1. The stack M ◦ is compactifiable if there is an open immer-

sion M ◦ ↪→M into a proper Deligne-Mumford stack. If M ◦ is provided with

a compactification, we will say it is compactified .

Lemma 4.2. Any separated Deligne-Mumford stack arising as the quo-

tient of an action by a linear group on a quasiprojective scheme over a field is

compactifiable.
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Proof. By Theorem 5.3 of [Kre09], such a stack admits a locally closed

immersion into a smooth proper Deligne-Mumford stack with projective coarse

moduli space. Taking the stack-theoretic closure yields the result. �

Definition 4.3. A coarse compactification of M ◦ is a compactification of

the coarse moduli space M◦. If M ◦ is provided with a coarse compactification,

we will say it is coarsely compactified .

Let M ◦ be a coarsely compactified separated Deligne-Mumford stack of

finite type over T . Suppose the coarse compactification M◦ ↪→M is relatively

polarized by L .

Definition 4.4. Given a function b : Z2
≥0 → Z, we will say that M ◦ is

weakly bounded with respect to M and L by b if for every geometric point

t→ T and every (g, d)-curve C◦ ⊆ C over κ(t), every morphism ξ : C◦ → Mt

factoring through M ◦
t satisfies deg ξ∗CL ≤ b(g, d), where ξC is the extension

of ξ to a morphism C →Mt. Cf. Definition 2.4.

Definition 4.5. The stack M ◦ is weakly bounded if there exists a coarse

compactification M◦ ↪→M, a relative polarization L of M with respect to M◦,

and a function b : Z2
≥0 → Z such that M ◦ is weakly bounded with respect to

M and L by b.

Given a scheme U , define a relation on the set of isomorphism classes of

morphisms ϕ : U →M ◦ as follows: ϕ1 ∼ ϕ2 if and only if there exists a con-

nected k-scheme T , two points t1, t2 ∈ T (k), and a morphism ψ : U ×T →M ◦

such that ψ|U×ti ' ϕi for i = 1, 2. This generates an equivalence relation ≡.

Definition 4.6. The equivalence classes for the equivalence relation ≡ are

called deformation types.

It is clear that this notion agrees with Definition 1.4 when M ◦ is the

moduli stack of canonically polarized manifolds.

4.B. The main theorem.

Proof of Theorem 1.7. Observe that by Corollary 2.23 there is a finite type

extension ‹T → T and a morphism U
T̃
→ M◦ with the following property: for

a geometric point t→ T , every morphism Ut →M◦t that arises by composition

Ut → M ◦ → M◦ is parametrized by a point of ‹T . Let M ◦ ↪→ M be a

compactification of M ◦, and let M be the coarse moduli space of M . Applying

Lemma 2.17, there is a further finite type extension σ : T ′ → ‹T , a proper

morphism B → T ′, a relative simple normal crossings divisor D ⊂ B, an

isomorphism B \D ' UT ′ , and a morphism B → M such that for every fiber

Ut and every morphism ϕ : Ut → M ◦, there exists a point t′ → T ′t such that
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σ(t′) = t and the restriction of the induced morphism Bt′ → Mt to Ut′ is the

coarse morphism associated to ϕ.

By Proposition 3.12 and the fact that T has characteristic 0, the morphism

Ut′ → M ◦
t′ extends to a morphism B〈D1/N 〉t′ → Mt′ over the coarse moduli

map Bt′ → Mt′ for any geometric point t′ → T ′. Consider the morphism of

stacks

µ : HomT ′(B〈D1/N 〉,MT ′)→ HomT ′(B,MT ′).

We know that µ is of finite type: if U is quasiprojective, then this follows from

[AOV08, Th. C.4], as all of the stacks involved are tame (the characteristic

of k being 0) and separated, and B〈D1/N 〉 is proper and flat over the base.

Furthermore, by Lemma 2.11 there is a finite type monomorphism

S → HomT ′(B〈D1/N 〉,MT ′)

parametrizing morphisms that pull back the boundary M \M ◦ into D.

The given “universal” coarse moduli map B→M determines a section of

HomT ′(B,MT ′) over T ′. Pulling this back to S yields a finite type T ′-stack

H → T ′ such that for any geometric point t → T , the set of deformation

types of morphisms Ut →M ◦ is a quotient of the set of connected components

of Ht (the fiber of the morphism H → T ′ → T ). Indeed, any point of Ht

parametrizes a morphism sending Ut to M ◦ and any such morphism occurs as

such a point, so any two points in the same connected component represent

deformation equivalent morphisms Ut →M ◦, and any deformation type is rep-

resented by a point of Ht. (There could conceivably be deformation equivalent

morphisms which lie in different components of Ht, as our construction makes

frequent use of stratification.) Since H → B is of finite type, the number of

connected components is bounded above for all points t, giving a bound on the

number of deformation types. �

Corollary 4.7. If M ◦ is weakly bounded then there exists a function

bM : Z2
≥0 → Z such that for every smooth curve C of genus g with d marked

points p1, . . . , pd, the number of deformation types of morphisms

C \ {p1, . . . , pd} →M ◦

is finite and bounded above by bM (g, d).

Proof. Choosing an affine cover of Mg,d and pulling back the universal

curve yields a quasicompact family containing all d-pointed smooth curves of

genus g. The result thus follows immediately from Theorem 1.7. �

Remark 4.8. The uniformity result of Corollary 4.7 was first proven by

Caporaso for families of curves (i.e., for M ◦ = Mq) in [Cap02], using methods

specific to the stack of curves. In [Hei04], Heier refined Caporaso’s results

to produce an effective uniform bound. It would perhaps be interesting to
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determine what auxiliary data about the stack M ◦ are necessary to prove an

abstract effective form of Corollary 4.7.

5. Finiteness of infinitesimally rigid families

Let M ◦ be a Deligne-Mumford stack and let N be the least common

multiple of the orders of the stabilizers of geometric points of M . Suppose U

is a k-scheme.

Definition 5.1. A morphism χ : U → M ◦ is infinitesimally rigid if for

every n ≥ 0, any two extensions of χ to U ⊗k k[t]/(tn) are isomorphic.

Since the diagonal of M ◦ is unramified, there is at most one isomorphism

between two extensions of χ.

Theorem 5.2. Let U be a smooth variety. If M ◦ is a weakly bounded

compactifiable Deligne-Mumford stack then the set of isomorphism classes of

infinitesimally rigid morphisms U → M ◦ is finite. Moreover, the number of

isomorphism classes is bounded in a manner which is uniform in any finite

type family of bases U .

In the standard terminology, this theorem says that “infinitesimal rigid-

ity implies rigidity.” For applications of this result to families of canonically

polarized manifolds; see Section 6.

We start with two lemmas.

Lemma 5.3. Let S be a reduced locally Noetherian scheme, π : Z → S

and P → S two S-schemes of finite type with P separated over S. Further

let V ⊂ Z be an open subscheme that is dense in every fiber Zs. Assume that

V → S has a section and the geometric fibers of π are reduced. Then

(5.3.1) any S-morphism ζ : Z → P such that the restriction of ζ to each

geometric fiber Vs is constant factors through a section S → P ;

(5.3.2) if in addition S is of finite type over a field, it is sufficient for ζ to be

constant on geometric fibers over closed points of S.

Proof. The statement is local on S, so we may assume that S is Noe-

therian. Since V → S has a section, it is a universal effective epimorphism

[SGA70, IV.1.12]. Since S is reduced and Noetherian, it has a dense subscheme

consisting of finitely many reduced points t1, . . . , tn (the generic points of the

irreducible components of S). Extending the residue field of ti is also a uni-

versal effective epimorphism, so if ζ is constant on the geometric fiber of V

over ti, it must be constant on V ⊗ κ(ti) for each i. Write p and q for the two

projections V ×S V → V . In the exact diagram

Hom(S, P )→ Hom(V, P ) ⇒ Hom(V ×S V, P ),
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we have that the two compositions ζp and ζq agree on the fibers over each ti.

Since these fibers are dense in V and P is separated, the two maps agree on

all of V ×S V , whence there is a morphism γ : S → P such that ζ|V = γ ◦ π|V .

Since V is everywhere dense in Z and P is separated, it follows that ζ factors

through S, as required.

The second statement works precisely the same way, using the fact that

for any closed set F containing all of the closed fibers of π we have F = Z. �

Lemma 5.4. Let R be a ring and y ∈ R a regular element. Let R[ε] :=

R[x]/(xn). Let A be a finite R[ε]-algebra such that the natural maps R→ A/εA

and R[ε][1/y]→ A[1/y] are isomorphisms. Then R[ε]→ A is an isomorphism.

Proof. In the diagram

R[ε] //

ι

��

A

��
R[ε][1/y]

ρ
// A[1/y]

the natural maps ι and ρ are injective by the hypotheses and hence R[ε]→ A

is injective as well. On the other hand, R[ε] → A is surjective modulo the

nilpotent ε, which implies that R[ε]→ A is itself surjective. �

Proof of Theorem 5.2. We already know from Theorem 1.7 that the set

of deformation types of infinitesimally rigid morphisms U →M ◦ is finite and

of cardinality bounded above in a finite type family of bases U . To show

finiteness of the set of infinitesimally rigid morphisms, it thus suffices to show

the following: if (T, t) is a pointed smooth connected curve over k and Ξ◦ :

U × T → M ◦ is a morphism whose restriction to Ut is infinitesimally rigid

then there is a finite base change T ′ → T such that Ξ◦|T ′ ∼= Ξ◦t × idT ′ . We will

refer to this statement as (†). If (†) holds then any two deformation equivalent

infinitesimally rigid morphisms are in fact isomorphic, as desired.

To show (†), we first note that by Lemma 5.3 with U = S, V = Z = U×T ,

and P = U ×M◦, the coarse morphism U × T → M◦ factors through a mor-

phism χ : U → M◦. Indeed, it suffices to show that for each closed point

u ∈ U , the induced map Ξ̃◦u : Tu → M◦ is constant. Since Ξ◦t is infinites-

imally rigid, for every n ≥ 0, the map (Ξ̃◦u)|Spec OTu,t/m
n
t

factors through the

natural map Spec OTu,t/m
n
t → Spec OTu,t/mt. It follows that the induced map

Spec “OTu,t →M◦ factors through the section tu → Tu, so that Ξ̃◦u satisfies the

hypotheses of Lemma 5.3.

Choose a compactification of U ⊂ B by a simple normal crossings di-

visor D over which there is an extension of χ to a morphism B → M . By

Proposition 3.12 (using the fact that T is regular), we can extend Ξ◦ to a
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morphism Ξ : B〈D1/N 〉 × T → M , corresponding to a homomorphism T →
Hom(B〈D1/N 〉,M ). (Note that Hom(B〈D1/N 〉,M ) is a separated Deligne-

Mumford stack by [AOV08, Th. C.4] and the fact that B〈D1/N 〉 is smooth.)

We claim that any morphism B〈D1/N 〉 → M whose restriction to U is in-

finitesimally rigid is infinitesimally rigid.

Granting this claim, let us demonstrate that (†) follows. An infinitesimally

rigid point ξ : Spec k → Hom(B〈D1/N 〉,M ) has the property that any exten-

sion of ξ to Spec k[ε] is isomorphic to ξ × Spec k[ε], and there is a unique such

isomorphism extending the identity over the closed point Spec k ↪→ Spec k[ε].

In particular, the miniversal deformation of ξ is isomorphic to Spec k, show-

ing that ξ is a smooth morphism. It follows that the residual gerbe of ξ is a

connected component of Hom(B〈D1/N 〉,M ). Applied to the morphism Ξ, this

implies that Ξ|
Spec ÔT,t

is isomorphic to Ξt × id
Spec ÔT,t

.

Now consider the finite scheme I := IsomT (Ξ,Ξt × idT ) → T . By as-

sumption, I( “OT,t) 6= ∅. Applying Popescu’s theorem (see, e.g., [Spi99]), the

excellence of OT,t implies that “OT,t is a filtering colimit of smooth OT,t-algebras,

and since I is locally of finite presentation there is thus a smooth T -scheme‹T → T such that I(‹T ) 6= ∅. Since any smooth T -scheme has étale-local sections

around any point, we find a quasifinite generically étale morphism T ′′ → T

whose image contains t such that I(T ′′) 6= ∅. Letting T ′ equal the normal-

ization of T in the function field of T ′′, we find a finite morphism T ′ → T

such that there is a generic isomorphism between Ξ|′T and Ξt × idT ′ . Since

Isom(Ξ|T ′ ,Ξt × idT ′) → T ′ is finite and T ′ is a Dedekind scheme, any generic

section extends to a global section by the valuative criterion of properness.

Restricting to U × T ′ ⊂ B〈D1/N 〉 ×T T ′, we see that (†) is established.

Thus, it remains to show that if ξ : B〈D1/N 〉 → M maps U to M ◦ and

ξU is infinitesimally rigid then ξ itself is infinitesimally rigid. Let ξ1 and ξ2 be

two infinitesimal deformations of ξ over k[ε] := k[x]/(xn). Consider the sheaf

I := IsomB〈D1/N 〉[ε](ξ1, ξ2) on the étale site of B〈D1/N 〉. Since M is separated,

π : I → B〈D1/N 〉[ε] is a finite representable morphism of stacks. By the

definition of infinitesimal rigidity, we have that there is a section σ : U [ε]→ I

of π.

Let J ⊂ I be the stack-theoretic closure of σ(U [ε]), so that J → B〈D1/N 〉[ε]
is finite, representable, and an isomorphism over a dense open subscheme. We

claim that J → B〈D1/N 〉[ε] is an isomorphism. To show this, it suffices to

work étale-locally on B〈D1/N 〉. Indeed, since σ is a quasicompact morphism

we have that J is defined by the quasicoherent kernel of the natural morphism

OI → σ∗OU [ε] of quasicoherent sheaves. Since the formation of this kernel

commutes with étale base change on B〈D1/n〉, we see that the formation of J

commutes with étale base change on B〈D1/n〉.
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Let R be an étale local ring of B〈D1/N 〉, so that J is locally represented

by an R[ε]-algebra A. Since R is regular and σ is defined over a dense open

substack U , it follows that A satisfies the conditions of Lemma 5.4. Indeed,

if R → A/εA is not an isomorphism, then A/εA cannot be irreducible (as R

is normal and R → A/εA is finite and birational). But SpecA is irreducible,

being the scheme-theoretic closure of an irreducible scheme. On the other

hand, if f is any element of R vanishing on the complement of U , we see that

SpecA[1/f ] is contained in the open subscheme σ(U) ⊂ J , which is isomorphic

to U by definition; thus, R[ε][1/f ]→ A[1/f ] is an isomorphism. We conclude

that J is an isomorphism, and thus that ξ1 ' ξ2 via an isomorphism extending

the given isomorphism over U [ε], as required. �

5.5. It may seem that the condition of infinitesimal rigidity is unnatu-

ral, especially for families over nonproper base varieties U . For families over

curves this is true (in fact, infinitesimal rigidity almost never holds for families

of canonically polarized manifolds over an affine curve). However, for bases U

such that the boundary divisor in a compactification B is nonample, there are

many examples of infinitesimally rigid families. This is captured in the follow-

ing proposition (which is far from optimal, but serves to illustrate the point).

Proposition 5.6. Let B be a proper smooth k-variety and D ⊂ B a

smooth irreducible divisor. Assume that ξ : B →M is an infinitesimally rigid

morphism to a Deligne-Mumford k-stack such that ξ|D is also infinitesimally

rigid and that ξ∗Ω1
M /k is locally free in a neighborhood of D. If Γ(D,O(−D)|D)

6= 0 then ξ|U is infinitesimally rigid.

Proof. It is a standard fact [Ill71, III.2.2.2] that the first-order infinitesimal

deformations of ξ form a torsor under Hom(ξ∗ LM /k,OB), where LM /k is the

cotangent complex of M over k. Since LM /k is bounded above at 0 and

H 0(LM ) ∼= Ω1
M /k, this space is just Hom(ξ∗Ω1

M /k,OB) = Γ(B,H ), where

H = Hom(ξ∗Ω1
M /k,OB). We know that Γ(B,H ) = 0 = Γ(D,H |D) and we

wish to conclude that Γ(U,H ) = 0. Any section of H |U extends to a section

of H (nD) for some n ∈ N, so it suffices to show that Γ(B,H (nD)) = 0 for

all n ∈ N.

Since H |D is locally free, any nonzero section of O(−D)|D is H |D-regular.

Thus, since Γ(D,H |D) = 0, it follows that Γ(D,H (nD)|D) = 0 for all n ∈ N.

Consider the sequence 0→H ((n−1)D)→H (nD)→H (nD)|D → 0. Since

Γ(D,H (nD)|D) = 0, it follows that Γ(X,H ((n − 1)D)) → Γ(X,H (nD))

is an isomorphism for all n ∈ N, and since Γ(X,H ) = 0, it follows that

Γ(X,H (nD)) = 0 for all n ∈ N. �

An example of this phenomenon arises by considering families over C×C,

where C is a curve of high genus. If D ⊂ C×C is the diagonal, it follows from



BOUNDEDNESS OF FAMILIES OF CANONICALLY POLARIZED MANIFOLDS 611

the adjunction formula that O(−D)|D ' Ω1
D, which is globally generated. If

X → C and Y → C are two infinitesimally rigid families of smooth canonically

polarized varieties (e.g., two nonisotrivial families of smooth curves) then the

fiber product X ×C Y is also infinitesimally rigid. Similarly, by the Künneth

formula, it is easy to see that the family Z := X×Y → C×C is infinitesimally

rigid. Applying the proposition, it follows that the restricted family Z|C×C\D
is infinitesimally rigid.

6. Applications to canonically polarized varieties

Write M ◦
h for the (Deligne-Mumford) stack of canonically polarized man-

ifolds with Hilbert polynomial h and M◦h for its coarse moduli space. If

f : X →M ◦
h is the universal family, then the invertible sheaf

λ(p)
m :=

(
det f∗ω

⊗m
X /M ◦

h

)p
is the pullback of an ample invertible sheaf on M◦h [Vie95, Th. 1.11].

We recall a well-known fact about M ◦
h . (A similar statement probably

first appeared in a lecture of M. Artin [Kol90, 2.8].)

Lemma 6.1. The stack M ◦
h is isomorphic to a separated stack of the form

[U/PGLr] (for r = h(m) with m sufficiently large), where U is a quasiprojec-

tive k-scheme.

Proof. By Matsusaka’s Big Theorem ([Mat70, Th. 2], [Mat72, Th. 4.2]),

there is a positive integer m such that for any canonically polarized manifold

X with Hilbert polynomial h, the global sections of ω⊗mX give a nondegenerate

embedding into Ph(m)−1. Let H be the Hilbert scheme parametrizing closed

subschemes of Ph(m)−1 with Hilbert polynomial h; it is well-known that H is

projective. There is an open subscheme V ⊂ H parametrizing closed sub-

schemes which are smooth and geometrically connected. Let X → V be the

universal family with universal embedding Υ : X ↪→ Ph(m)−1
V . Consider the

invertible sheaf L := Υ∗O(1)⊗ (ω⊗m
X/V )∨. It follows from cohomology and base

change that there is a closed subscheme U ⊂ V parametrizing the locus over

which L is isomorphic to the trivial invertible sheaf (see, e.g., the proof of

[Mum70, Cor. 6 of §II.5]). It is easy to see that U is PGLh(m)-invariant, and

it follows from standard methods that M ◦
h ' [U/PGLh(m)].

That M ◦
h is separated follows easily from the fact that any family of canon-

ically polarized manifolds is its own relative canonical model. Indeed, using

the valuative criterion of separatedness the question reduces to the following

statement: if two families of canonically polarized manifolds are given over the

same smooth curve such that they agree over an open set, then they agree

everywhere. However, this follows from the fact that within a fixed birational

class the relative canonical model over a fixed base is unique. To see this,
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let f : X → C be one of the families. Then the relative canonical model is

ProjC
Ä∑

m≥0 f∗ω
m
X/C

ä
→ C. Since ωX/C is relatively ample, this is actually

isomorphic to f . On the other hand, the sheaves f∗ω
m
X are birational invariants

and since C is fixed, this means that so is ProjC
Ä∑

m≥0 f∗ω
m
X/C

ä
→ C. �

Lemma 6.2. The stack M ◦
h is weakly bounded and compactifiable.

Proof. The compactifiability of M ◦
h follows from Lemmas 6.1 and 4.2.

Weak boundedness is much more subtle. Given m > 0, Viehweg [Vie10, Th. 3]

produced a projective compactification Mh of (M◦h)red and an invertible sheaf

λ
(p)
m ∈ Pic(Mh), nef and ample with respect to (M◦h)red, such that for any

morphism ξ : C → Mh induced by a semistable family f : X → C, we have

that ξ∗λ
(p)
m = det(f∗ω

m
X/C)p.

We claim that M ◦
h is weakly bounded with respect to Mh and λ

(p)
m , as in

Definition 4.4. The proof is similar to the proof of Corollary 4.1 and Addendum

4.2 of [BV00]. Let C◦ ⊂ C be a (g, d)-curve and let f◦ : X◦ → C◦ be a family

of canonically polarized manifolds with Hilbert polynomial h. There exists a

morphism of smooth projective varieties f : X → C including f◦ : X◦ → C◦

as an “open subdiagram.” By the semistable reduction theorem [KKMSD73,

Chapter II], there is a finite morphism γ : D → C and a diagram

X

f

��

XD ' X ×C Doo

��

Yoo

f ′
xxqqqqqqqqqqqqq

C Dγ
oo

with Y semistable over D and Y → XD a resolution of singularities. By [Vie83,

Lemma 3.2], there is an inclusion

f ′∗ω
m
Y/D ↪→ γ∗f∗ω

m
X/C .

Thus,

deg
Ä
det(f ′∗ω

m
Y/D)

ä
≤ (deg γ) deg

Ä
det(f∗ω

m
X/C)

ä
.

The composed map D →Mh comes from a semistable family, so that (by the

result of Viehweg quoted in the previous paragraph)

deg(γ ◦ ξ)∗λ(p)
m = deg

Ä
det(f ′∗ω

m
Y/D)p

ä
.

It follows that
deg ξ∗λ(p)

m ≤ deg
Ä
det(f∗ω

m
X/C)p

ä
.

By [BV00, Th. 1.4(c)], for m sufficiently large and divisible the right-hand side

of the last equation is bounded above by an explicit polynomial in g, d, n and

some constants depending upon m (which are fixed once h is fixed). �

Theorem 1.6 is now an immediate corollary of Theorem 1.7.
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Remark 6.3. At the time of this writing, the finite generation of the canon-

ical ring has apparently just been proven [BCHM10]. It has been claimed that

under the assumption of the minimal model program in dimension deg h + 1

(in fact, one seemingly needs only the existence of relative canonical models),

one knows that there are a compactification M ◦
h ⊂Mh and an invertible sheaf

L on Mh such that (1) L |(M ◦
h

)red ' λ
(p)
m for fixed sufficiently large and di-

visible m and p, and (2) L is the pullback of an invertible sheaf from the

coarse moduli space Mh of Mh. Using these results would give a more natural

proof of Lemma 6.2. Unfortunately, at the present time a proper explanation

of this implication is not in the literature, so we find it prudent to include an

alternative proof.

Remark 6.4. Because of the terminology that has been used in studying

this problem, it behooves us to point out that the powerful results of Viehweg

and Zuo [VZ01], [VZ02], [VZ03], concerning the boundedness problem for fam-

ilies of varieties, fall short of addressing the entire question. In particular,

without the use of stack-theoretic methods, the numerical boundedness results

(usually referred to as “weak boundedness”) are not enough in themselves to

show constructibility of the locus of coarse moduli maps arising from families.

It is only by combining the numerical results with a study of lifts of coarse maps

into stacks that one can prove the concrete boundedness results of Theorem 1.6

and Theorem 1.7. This fact is implicit in the work of Caporaso [Cap02], but

rather than lifting to the stack, she lifted to a level cover of the stack of curves.

This allowed her to avoid the use of stack-theoretic constructions but limited

the argument to handle only families of curves.

Corollary 6.5 (cf. [Cap02], [Hei04] for families of curves). There ex-

ists a function bh(g, d) such that for any d-pointed smooth projective curve of

genus g, (C, p1, . . . , pd), the number of deformation types of families of canon-

ically polarized manifolds X over C \ {p1, . . . , pd} with Hilbert polynomial h is

bounded above by bh(g, d).

Proof. This is an application of Corollary 4.7. �
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Études Sci. Publ. Math. (1996), 51–93. MR 1423020. Zbl 0916.14005.

[Fal83] G. Faltings, Endlichkeitssätze für abelsche Varietäten über
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Math. Grenzgeb. 39, Springer-Verlag, New York, 2000. MR 1771927.

Zbl 0945.14005.

[Lie08] M. Lieblich, Twisted sheaves and the period-index problem, Com-

pos. Math. 144 (2008), 1–31. MR 2388554. Zbl 1133.14018. doi:

10.1112/S0010437X07003144.

[MO05] K. Matsuki and M. Olsson, Kawamata-Viehweg vanishing as Kodaira

vanishing for stacks, Math. Res. Lett. 12 (2005), 207–217. MR 2150877.

Zbl 1080.14023.

[Mat89] H. Matsumura, Commutative Ring Theory, second ed., Cambridge

Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, 1989, trans-

lated from the Japanese by M. Reid. MR 1011461. Zbl 0666.13002.

http://www.ams.org/mathscinet-getitem?mr=0491680
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0224.13014
http://www.ams.org/mathscinet-getitem?mr=0335518
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0271.14017
http://www.ams.org/mathscinet-getitem?mr=1064874
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0684.14002
http://www.ams.org/mathscinet-getitem?mr=1658959
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0926.14003
http://dx.doi.org/10.1017/CBO9780511662560
http://www.ams.org/mathscinet-getitem?mr=2011746
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1058.14057
http://www.ams.org/mathscinet-getitem?mr=2483952
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1183.14002
http://www.ams.org/mathscinet-getitem?mr=2483953
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1182.14034
http://www.ams.org/mathscinet-getitem?mr=2483938
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1169.14001
http://www.ams.org/mathscinet-getitem?mr=1112552
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0744.14012
http://www.ams.org/mathscinet-getitem?mr=1771927
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0945.14005
http://www.ams.org/mathscinet-getitem?mr=2388554
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1133.14018
http://dx.doi.org/10.1112/S0010437X07003144
http://dx.doi.org/10.1112/S0010437X07003144
http://www.ams.org/mathscinet-getitem?mr=2150877
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1080.14023
http://www.ams.org/mathscinet-getitem?mr=1011461
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0666.13002
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