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Relative De Rham complex for non-smooth morphisms

Sándor J. Kovács

In Memoriam: Professor Wei-Liang Chow

Let f : X → S be a smooth morphism of algebraic varieties. It is well-known
that the short exact sequence,

0 −→ f∗ΩS −→ ΩX −→ ΩX/S −→ 0,

provides a powerful tool for cohomological computations. Taking exterior powers
it yields a filtration of Ωp

X with associated graded quotients f∗Ωr
S ⊗ Ωp−r

X/S . This

filtration in turn leads to a spectral sequence,

Er,s
1 = Hr+s(X, f∗Ωr

S ⊗ Ωp−r
X/S ⊗ L) ⇒ Hr+s(X,Ωp

X ⊗ L),

for an arbitrary line bundle L.
The purpose of this article is to construct a similar spectral sequence for a

morphism that is not necessarily smooth. More precisely, the goal is to define
natural objects that relate Ω·

X and f∗Ω·

S . These objects – the relative De Rham
complexes – will not be single sheaves anymore, but objects of the derived cate-
gory of OX -modules. Nevertheless their functorial and cohomological properties
resemble the ones of Ωp

X/S . The relative De Rham complexes were already defined

and constructed in [Kovács96] for the case when S is a smooth curve. The present
construction is a special case of the construction of [Kovács97a].

§1 contains a brief summary of some technical material that is essential to
the construction. (1.1.2) ought to be well-known, but I do not know a convenient
reference other than the one quoted. §§1.2 is a simple generalization of the notion
of a filtration to the derived categorical setting.

In §2 the complexes Ωp
X/S are constructed for an arbitrary morphism between

smooth varieties. The guiding principles are funcoriality and the desired “filtra-
tion”.
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Next, one would like to extend this definition to the case when X may be
singular. If X is no longer assumed to be smooth, then in particular the sheaf of
Kähler differentials of X is not locally free and the usual (non-relative) De Rham
complex does not behave as nicely as in the smooth case. Hence one needs to
replace it with another object.

[DuBois81] showed that one can define an object, Ω·

X , in the derived category
of filtered complexes of OX -modules, that resemble the cohomological properties
of the De Rham complex in the smooth case. In particular it gives a resolution
of the constant sheaf CX . Later Du Bois’ results were re-proved in [GNPP88]
using somewhat different methods. They also proved some new results about Ω·

X ,
for instance the analogue of the Kodaira-Akizuki-Nakano vanishing theorem (cf.
(3.1)).

An important ingredient of the construction of Ω·

X is the notion of a hyperres-
olution. In fact, there are several different flavors of this notion that will not be
discussed here. The reader is referred to [DuBois81], [GNPP88] or [Steenbrink85].

In §3, using the construction from §2 and the generalized De Rham complex of
[DuBois81], [GNPP88], the relative De Rham complexes are defined for an arbitrary
morphism with S being smooth. The main result is (3.3).

The rest of the article is concerned with applications. The first application is
a vanishing theorem, proved in §4.

Usually one cannot expect that a notion so generally defined could be very use-
ful without further restrictions on the morphisms allowed. A class of morphisms, so
called SP -morphisms (cf. [Kovács96]), is defined and some important consequencies
of the vanishing theorem of §4 are derived in §5.

§6 contains the main application. In fact, this was the initial driving force for
the entire project.

Theorem. Let g : Y −→ S be a smooth family of projective varieties of general

type with nef canonical bundle. Assume that ΩS is semi-negative. Then the fibres

of g are birational.

This is a common generalization of [Migliorini95], [Kovács96], [Kovács97]. The
sketch of the proof is as follows. By [DPS94] a finite étale cover of S is a smooth
Fano fibre space over an abelian variety. Using Poincaré’s Complete Reducibility
Theorem one can assume that this abelian variety is irreducible. Considering the
relative canonical model of g : Y −→ S and using results of [Kovács97] one easily
reduces the problem to proving that the relative canonical bundle of the relative
canonical model is not ample. This in turn follows from the above mentioned
vanishing theorem.

Definitions and Notation. Henceforth the groundfield will be C, the field
of complex numbers. A complex scheme will mean a separated scheme of finite type
over C.

A divisor D on a scheme X is called Q-Cartier if mD is Cartier for some m > 0.
It is called ample if mD is ample. A Q-Cartier divisor D is called nef if D.C ≥ 0
for every proper curve C ⊂ X. D is called big if X is proper and |mD| gives a
birational map for some m > 0. In particular ample implies nef and big.

A normal variety X is said to have canonical (resp. terminal) singularities

if KX is Q-Cartier and for any resolution of singularities π : X̃ → X, with the
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collection of exceptional prime divisors {Ei}, there exist ai ∈ Q, ai ≥ 0 (resp.
ai > 0) such that KX̃ ≡ π∗KX +

∑

aiEi (cf. [CKM88]). X is called a canonical

variety if it has only canonical singularities and KX is ample. X is called a minimal

variety if it has only terminal singularities and KX is nef.
A singularity is called Gorenstein if its local ring is a Gorenstein ring. A variety

is Gorenstein if it admits only Gorenstein singularities. In particular, the dualizing
sheaf of a Gorenstein variety is locally free.

A locally free sheaf E on a scheme X is called semi-positive (or nef ) if for
every smooth complete curve C and every map γ : C −→ X, any quotient bundle of
γ∗

E has non-negative degree. E is called semi-negative if Ě, the dual of E, is semi-
positive. Syml(E) denotes the l-th symmetric power of E, and detE the determinant
bundle of E, i.e., detE =

∧r
E if r = rkE.

Let f : X −→ S be a morphism of schemes, then Xs denotes the fibre of f over
the point s ∈ S and fs denotes the restriction of f to Xs. More generally, for a
morphism Z −→ S, let fZ : XZ = X ×S Z −→ Z. If f is composed with another
morphism g : S −→ T , then Xt denotes the fibre of g ◦ f over the point t ∈ T , i.e.,
Xt = XSt

.
f is called isotrivial if Xs ≃ Xt for every s, t ∈ S.
A smooth projective variety X is called a Fano variety if −KX is ample. X is

a Fano fibre space over S if the fibres of f are connected Fano varieties.
A proper variety X is called rationally connected if two arbitrary points of X

can be joined by an irreducible rational curve (cf. [KMM92a], [Campana91]).
ΩX denotes the sheaf of differentials on X, ΩX/S is the sheaf of relative differ-

entials. Ωp
X =

∧p
ΩX , Ωp

X/S =
∧p

ΩX/S , and ωX/S = ωX ⊗ g∗ω−1
S .

Let X be a complex scheme of dimension n. Then C(X) is the category of
complexes of OX -modules with differentials of order ≤ 1 and for u ∈ Mor(C(X)),
M(u) ∈ Ob(C(X)) denotes the mapping cone of u (cf. [Hartshorne66]). K(X) is the
category of homotopy equivalence classes of objects of C(X). A diagram in C(X)
will be called a predistinguished triangle, if its image in K(X) is a distinguished
triangle.

Dfilt(X) denotes the derived category of filtered complexes of OX -modules
with differentials of order ≤ 1 and Dfilt,coh(X) the subcategory of Dfilt(X) of
complexes K ·, such that for all i, the cohomology sheaves of GriFK

· are coherent
(cf. [DuBois81], [GNPP88]). D(X) and Dcoh(X) denotes the derived categories
with the same definition except that the complexes are not assumed to be filtered.
The superscripts +,−, b carry the usual meaning (bounded below, bounded above
and bounded).

Sk denotes the symmetric group of degree k.

§1. Wedge products and hyperfiltrations

§§1.1 Wedge products. Let f : X −→ S be a morphism of smooth algebraic
varieties of dimension n and k respectively. Let Ψ be the functor of Kähler differen-
tials on smooth varieties, i.e., for any smooth variety X, ΨX = ΩX . Further let Φ
be the functor on the category of S-schemes that is the pullback of Ψ from S, i.e.,
for f : X −→ S, ΦX = f∗ΩS . Then f∗ induces a natural transformation θ : Φ −→ Ψ.
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Following the notation of [Kovács97a] let ff
q = f

θ
q . Let us recall the definition of

f
θ
q in this special case.

1.1.1 Definition. Let η be a section of Ωp
X over an open set and ξ1, . . . , ξk a

basis for f∗ΩS over the same set. Then η⊗ (ξ1∧· · ·∧ ξk) is a section of Ωp
X ⊗f∗ωS .

For any σ ∈ Sk let ξσ,q = ξσ(1) ∧ · · · ∧ ξσ(q) and ξσ,q = ξσ(q+1) ∧ · · · ∧ ξσ(k). Now
define

f
f
q (η ⊗ (ξ1 ∧ · · · ∧ ξk)) ∈ Ωp+q

X ⊗ f∗Ωk−q
S

by the formula

f
f
q (η ⊗ (ξ1 ∧ · · · ∧ ξk)) =

1

q!(k − q)!

∑

σ∈Sk

(−1)sgnσ(ξσ,q ∧ η)⊗ ξσ,q,

and extend it linearly.

1.1.2 Lemma. f
f
q : Ωp

X ⊗ f∗ωS −→ Ωp+q
X ⊗ f∗Ωk−q

S is a well-defined morphism

of sheaves and

Ωp
X ⊗ f∗ωS ⊗ f∗ωS

f
f
q

−−−−→ Ωp+q
X ⊗ f∗Ωk−q

S ⊗ f∗ωS

f
f
q+r





y





y
f

f
r

Ωp+q+r
X ⊗ f∗ωS ⊗ f∗Ωk−q−r

S −−−−→
fid

q

Ωp+q+r
X ⊗ f∗Ωk−q

S ⊗ f∗Ωk−r
S

is a commutative diagram, i.e., ff
r ◦ff

q = f
id
q ◦ff

q+r.

Proof. [Kovács97a, 1.1.2 and 1.1.3] �

§§1.2 Hyperfiltrations and spectral sequences. Let A be an abelian cate-
gory and D(A) its derived category. Let Γ : A −→ Ab be a left exact additive functor
from A to the category of abelian groups and assume that RΓ : D(A) −→ D(Ab),
the right derived functor of Γ, exists.

1.2.1 Definition. Let K ∈ Ob(Db(A)) be a bounded complex. A hyperfil-

tration F of K consists of a set of objects F
jK ∈ Ob(Db(A)) for j = l, . . . , k + 1,

where l, k ∈ Z and morphisms

ϕj ∈ HomDb(A)(F
j+1K,FjK) for j = l, . . . , k,

where FlK ≃ K and Fk+1K ≃ 0. FjK will be denoted by F
j when no confusion is

likely. For convenience let FiK = K for i < l and FiK = 0 for i > k.
The p-th associated graded complex of a hyperfiltration F is

Gp = Grp
F
K = M(ϕp),

the mapping cone1 of the morphism ϕp.

Then one has the following standard result:

1Strictly speaking this is the class of the mapping cone of a morphism in C(X) whose class in

D(X) is ϕp. The important point is that F
p+1

−→ F
p
−→ G

p +1
−−→ forms a distinguished triangle.
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1.2.2 Theorem. There exists a spectral sequence Er with Ep,q
1 = Rp+qΓ(Gp)

abutting to Rp+qΓ(K ).

§2. The smooth case

Let f : X −→ S be a morphism of smooth algebraic varieties of dimension n and
k respectively. Let Ψ, Φ, θ be defined as in (1.1) and for any p ∈ Z let Ωp

X/S = Q
p
θX

as defined in [Kovács97a]. As follows we briefly review the construction.

Let p ∈ N, and define F
p
i = F

p
i (X/S) ∈ Ob(C(X)) and F

p
i = F

p
i (X/S) a

diagram in C(X) for i ∈ N in the following way. First let Fp
0 = Ωn−p

X ⊗ f∗ω−1
S .

2.1 Definition. The (p, 0)-filtration diagram of X/S consists of Fp
0 ⊗ f∗ωS =

Ωn−p
X . It is denoted by F

p
0 . A 0-filtration morphism for some p, q, consists of

locally free sheaves E,F and a morphism between Ωn−p
X ⊗ E and Ωn−q

X ⊗ F.

For instance, ff
p : Ωn−p

X ⊗ f∗ωS → Ωn
X ⊗ f∗Ωk−p

S is a 0-filtration morphism.
Let

F
p
1 = M(ff

p)[−1]⊗ f∗ω−1
S .

2.2 Definition. The (p, 1)-filtration diagram of X/S consists of the predis-
tinguished triangle,

F
p
1 ⊗ f∗ωS −→ Ωn−p

X ⊗ f∗ωS −→ Ωn
X ⊗ f∗Ωk−p

S
+1
−−→ .

It is denoted by F
p
1 . A 1-filtration morphism for some p, q, consists of locally

free sheaves E,F and morphisms between the corresponding terms of F
p
1 ⊗ E and

F
q
1 ⊗ F such that the resulting diagram is commutative.

Consider the following commutative diagram (cf. (1.1.2)):

F
p
1 ⊗ f∗ωS ⊗ f∗ωS F

p−q
1 ⊗ f∗Ωk−q

S ⊗ f∗ωS




y





y

Ωn−p
X ⊗ f∗ωS ⊗ f∗ωS

f
f
q

−−−−→ Ωn−p+q
X ⊗ f∗Ωk−q

S ⊗ f∗ωS

f
f
p





y





y

f
f
p−q

Ωn
X ⊗ f∗ωS ⊗ f∗Ωk−p

S −−−−→
fid

q

Ωn
X ⊗ f∗Ωk−q

S ⊗ f∗Ωk−p+q
S

+1





y





y

+1

Then there exists a morphism,

F
p
1 ⊗ f∗ωS ⊗ f∗ωS −→ F

p−q
1 ⊗ f∗Ωk−q

S ⊗ f∗ωS ,

that makes the above diagram commutative, and therefore it gives a 1-filtration

morphism F
p
1 ⊗ f∗ωS → F

p−q
1 ⊗ f∗Ωk−q

S .

In general we have the following.
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2.3 Proposition. [Kovács97a, 2.4] The following assumptions hold for all

p, q ≥ 0 and i ≥ 0.

(2.3.1) The (p, i)-filtration diagram of X/S, denoted by F
p
i , consists of the

diagram

F
p
i ⊗ f∗ωS −→ F

p
i−1 ⊗ f∗ωS −→ Fi−1

i−1 ⊗ f∗Ωk−p+i−1
S .

(2.3.2) An i-filtration morphism, by definition, consists of locally free sheaves

E,F and a morphism between the corresponding terms of F
p
i ⊗ E and

F
q
i ⊗ F such that the resulting diagram is commutative.

(2.3.3) F
p
i = 0 for p < i.

(2.3.4) There exists an i-filtration morphism,

f
f,i
q : F

p
i ⊗ f∗ωS −→ F

p−q
i ⊗ f∗Ωk−q

S .

(2.3.5) The diagram,

F
p
i ⊗ f∗ωS ⊗ f∗ωS

f
f,i
q

−−−−→ F
p−q
i ⊗ f∗Ωk−q

S ⊗ f∗ωS

f
f,i
q+r





y





y
f

f,i
r

F
p−q−r
i ⊗ f∗ωS ⊗ f∗Ωk−q−r

S −−−−→
fid

q

F
p−q−r
i ⊗ f∗Ωk−q

S ⊗ f∗Ωk−r
S

is commutative.

Now we are ready to define Ωp
X/S ∈ Ob(D(X)) for p ∈ Z, p ≥ −k. Let Ωp

X/S

be the class of Fn−k−p
n−k−p ⊗ f∗ω

−(n−k−p)
S in Ob(D(X)) for −k ≤ p ≤ n − k, and let

Ωp
X/S = 0 for p > n− k. It is easy to see that

Ωn−k
X/S = Ωn

X ⊗ f∗ω−1
S

and that there is a distinguished triangle:

Ωn−k−1
X/S ⊗ f∗ωS −→ Ωn−1

X −→ Ωn−k
X/S ⊗ f∗Ωk−1

S
+1
−−→

In general for j ≥ p−n+k let FjΩp
X be the class of Fn−p

n−k−p+j⊗f∗ω
1−(n−k−p+j)
S

in Ob(D(X)). The predistinguished triangle (⋆) from [Kovács97a, 2.4],

F
n−p
n−k−p+j+1 ⊗ f∗ωS −→ F

n−p
n−k−p+j ⊗ f∗ω2

S −→ F
n−k−p+j
n−k−p+j ⊗ f∗ωS ⊗ f∗Ωj

S
+1
−−→

gives the distinguished triangle,

Fj+1Ωp
X −→ FjΩp

X −→ Ωp−j
X/S ⊗ f∗Ωj

S
+1
−−→

Now Fk+1Ωp
X = 0 by (2.3.3) and by construction F

p−n+kΩp
X = Ωp

X . Observe

that if p − n + k < 0, then F0Ωp
X ≃ F−1Ωp

X ≃ F
p−n+kΩp

X = Ωp
X , since f∗Ωj

S = 0

for j < 0. If p− n+ k ≥ 0, define F
jΩp

X = Ωp
X for j = 0, . . . , p− n+ k.

Therefore [Kovács97a, 2.6] gives:
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2.4 Theorem. Let f : X −→ S be a morphism of smooth algebraic varieties

of dimension n and k respectively. Then there exists an Ωr
X/S ∈ Ob(D(X)) for all

r ≥ −k with the following property. For any p ∈ N there exists a hyperfiltration

F
jΩp

X of Ωp
X with j = 0, . . . , k + 1, such that F0Ωp

X ≃ Ωp
X , Fk+1Ωp

X ≃ 0 and

GjΩp
X ≃ Ωp−j

X/S ⊗ f∗Ωj
S .

Furthermore Ωr
X/S ≃ 0 if r > n− k.

§3. The general case

The results regarding Ω·

X that are essential in the sequel are summarized in
the following theorem.

3.1 Theorem. [DuBois81], [GNPP88, III.1.12, V.3.6, V.5.1] For every com-

plex scheme X of dimension n there exists an Ω·

X ∈ Ob(Dfilt(X)) with the following

properties.

(3.1.1) It is functorial, i.e., if φ : Y → X is a morphism of complex schemes,

then there exists a natural map φ∗ of filtered complexes

φ∗ : Ω·

X → Rφ∗Ω
·

Y .

Furthermore, Ω·

X ∈ Ob(Db
filt,coh(X)) and if φ is proper, then φ∗ is a

morphism in Db
filt,coh(X).

(3.1.2) Let Ω·

X be the usual De Rham complex of Kähler differentials considered

with the “filtration bête”. Then there exists a natural map of filtered

complexes

Ω·

X → Ω·

X

and if X is smooth, it is a quasi-isomorphism.

(3.1.3) Let {νi : Ui →֒ X} be a finite open cover of X. Then

Ω·

X ≃ Rν·∗Ω
·

U·

.

(3.1.4) Let Ωp
X = GrpF Ω·

X [p]. If X is projective and L is an ample line bundle

on X, then

Hq(X,Ωp
X ⊗ L) = 0 for p+ q > n.

(3.1.5) If ε· : X· → X is any hyperresolution of X, then Ω·

X ≃ Rε·∗Ω
·

X·

and

Ωp
X ≃ Rε·∗Ω

p
X·

.

Now we turn to the relative case. Let f : X −→ S be a morphism of algebraic
varieties of dimension n and k respectively, such that S is smooth. Let ε· : X· → X
be a hyperresolution of X. By (2.4) there are complexes Ωp

X·/S
and hyperfiltrations

F· of Ω
p
X·

, such that

Grq
F·

Ωp
X·

≃ Ωp−q
X·/S

⊗ f∗

·
Ωq

S .

3.2 Definition. Let Ωp
X/S = Rε·∗Ω

p
X·/S

for p ≥ 0 and define the hyperfiltra-

tions in the obvious way: FqΩp
X = Rε·∗F

q
·Ω

p
X·

3.3 Lemma. Ωp
X/S is independent of the hyperresolution chosen.
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Proof. Let α be a morphism of hyperresolutions.

X ′

·

α
−−−−→ X ′′

·

ε′
·





y





y

ε′′
·

X −−−−→
idX

X

Then by [Kovács97a, 4.1] there exists a commutative diagram:

Rε′
·
F
q+1
· Ωp

X′

·

−−−−→ Rε′
·
F
q
·Ω

p
X′

·

−−−−→ Rε′
·
G

q
·Ω

p
X′

·

+1
−−−−→





y





y





y

Rε′′
·
F
q+1
· Ωp

X′′

·

−−−−→ Rε′′
·
F
q
·Ω

p
X′′

·

−−−−→ Rε′′
·
G

q
·Ω

p
X′′

·

+1
−−−−→

Now Rε′
·
Ωp

X′

·

≃ Rε′′
·
Ωp

X′′

·

by [DuBois81, 2.3] or [GNPP88, V.3.3] and the statement

follows from [DuBois81, 2.1.4] and the construction of the hyperfiltration. �

3.4 Theorem. Let f : X −→ S be a morphism of algebraic varieties of dimen-

sion n and k respectively, such that S is smooth. Then there exists an Ωr
X/S ∈

Ob(D(X)) for all r ≥ −k with the following properties:

(3.4.1) Ωr
X/S ≃ 0 for r > n− k, and if f is proper, then Ωr

X/S ∈ Ob(Db
coh(X))

for every r.

(3.4.2) Let p ∈ N, then there exists a hyperfiltration F
qΩp

X of Ωp
X for q =

0, . . . , k + 1, such that F0Ωp
X ≃ Ωp

X , Fk+1Ωp
X ≃ 0 and

GqΩp
X ≃ Ωp−q

X/S ⊗ f∗Ωq
S .

(3.4.3) F
qΩp

X is functorial, i.e., if φ : Y −→ X is an S-morphism, then there are

natural maps in D(X) forming the commutative diagram:

F
q+1Ωp

X −−−−→ F
qΩp

X −−−−→ G
qΩp

X
+1

−−−−→




y





y





y

Rφ∗F
q+1Ωp

Y −−−−→ Rφ∗F
qΩp

Y −−−−→ Rφ∗G
qΩp

Y
+1

−−−−→ .

In particular, there are natural maps in D(X) forming the commutative

diagram:

Ωp
X −−−−→ Ωp

X/S




y





y

Rφ∗Ω
p
Y −−−−→ Rφ∗Ω

p
Y/S .

(3.4.4) If f is smooth, then Ωp
X/S ≃ Ωp

X/S.

(3.4.5) Let {νi : Ui →֒ X} be a finite open cover of X. Then

Ωp
X/S ≃ Rν·∗Ω

p
U·/C

.
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Proof. (3.4.1) follows by definition.

Rε·∗

(

Ωp−q
X·/S

⊗ f∗

·
Ωq

S

)

≃ Rε·∗Ω
p−q
X·/S

⊗ f∗Ωq
S ,

since S is smooth, so (3.4.2) follows by (2.4). (3.4.3) is a simple consequence of the
functoriality of Ω·

X and the construction of FqΩp
X (cf. [Kovács97a, 4.1]). The rest

follows from (3.1) and the construction of FqΩp
X . �

3.5 Corollary. Let f : X −→ S be a morphism of algebraic varieties of

dimension n and k respectively, such that S is smooth. Then for any p ≥ 0 and

any locally free sheaf E there exists a spectral sequence

Er,s
1 = Hr+s(X,Ωp−r

X/S⊗f∗Ωr
S ⊗ E) ⇒ Hr+s(X,Ωp

X ⊗ E).

Proof. (3.4.2), (1.2.2). �

§4. A vanishing theorem and property SP

4.1 Definition. Let E be a locally free sheaf of rank r. E will be called
semi-negative of splitting type if E has a filtration

E = F 0 ⊃ F 1 ⊃ · · · ⊃ F r = 0

such that

F i−1/F i = Li

is a semi-negative line bundle, i.e., L−1
i is nef.

4.2 Theorem. Let L be an ample line bundle and assume that f∗ΩS is semi-

negative of splitting type. Then

Hi(X,Ωl
X/S ⊗ f∗ωS ⊗ L) = 0 for i+ l > n− k.

Proof. Hi+1(X,Ωj+k
X ⊗ L) = 0 by (3.1.4) and then the statement follows by

the proofs of [Kovács97a, 3.3 and 3.4]. �

By (3.1.2) there exists a natural map ρ : OX → Ω0
X . This map composed with

the map Ω0
X → Ω0

X/S given by (3.4.3) gives a natural map OX → Ω0
X/S and it is

functorial in the sense of (3.4.3).

4.3 Definition. Let f : X −→ S be a morphism of algebraic varieties, such
that S is smooth. f will be called an SP -morphism (or f will be said to have
property SP) if the natural map ρ : OX → Ω0

X/S has a left inverse, i.e., there exists

a map, ρ̃ : Ω0
X/S → OX in D(X) such that ρ̃◦ρ : OX → OX is a quasi-isomorphism.

In particular every smooth morphism is an SP -morphism by (3.4.4).
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4.4 Proposition. SP is a local property in the following sense: Let f : X −→ S
be a morphism of algebraic varieties, such that S is smooth and {νi : Ui →֒ X} a

finite open cover of X in the complex topology such that f : Ui → S is an SP -

morphism for all i. Then f is an SP -morphism.

Proof. [GNPP88, III.1.12(v)] (cf. [Kovács96, 1.1]), (3.4.5), and the assump-
tion imply that

OX ≃ Rν·∗OU·
→ Rν·∗Ω

0
U·/C

≃ Ω0
X/S

has a left inverse. �

4.5 Proposition. Let f : X −→ S be a morphism of algebraic varieties, such

that S is smooth, φ : Y → X a morphism such that f ◦ φ is an SP -morphism, and

OX → Rφ∗OY has a left inverse. Then f is an SP -morphism.

Proof. By functoriality there is a commutative diagram:

OX −−−−→ Ω0
X/S





y





y

Rφ∗OY −−−−→ Rφ∗Ω
0
Y/S .

The bottom horizontal and the left vertical arrows have a left inverse by assumption,
therefore the natural map OX → Ω0

X/S has a left inverse as well. �

4.6 Corollary. Assume that X has rational singularities and there exists a

resolution of singularities of X, φ : Y → X, such that f ◦ φ is smooth. Then f is

an SP -morphism. �

Now we can formulate two important corollaries of (4.2).

4.7 Corollary. Let f : X −→ S be an SP -morphism of projective algebraic

varieties of dimension n and k respectively, such that S is smooth. Let L be an

ample line bundle and assume that f∗ΩS is semi-negative of splitting type. Then

Hi(X, f∗ωS ⊗ L) = 0 for i > n− k.

Proof. Hi(X,Ω0
X/S⊗f∗ωS⊗L) = 0 for i > n−k by (4.2), andHi(X, f∗ωS⊗L)

is a direct summand of this group by the definition of property SP. �

4.8 Corollary. Let f : X −→ S be an SP -morphism of projective algebraic

varieties of dimension n and k respectively, such that S is smooth, k > 0. Assume

that f∗ΩS is semi-negative of splitting type. Then ωX/S is not ample.

Proof. Hn(X,ωX) 6= 0. �
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§5. Families of varieties of general type

5.1 Condition. Let f : X −→ S be a morphism of proper algebraic varieties.
Assume the following:

(5.1.1) f is flat and projective;
(5.1.2) X is Gorenstein;
(5.1.3) S is smooth;
for all s ∈ S:
(5.1.4) Xs is reduced, with only canonical singularities;
(5.1.5) ωXs

is ample.

5.2 Remark. Note that ωXs
is a line bundle by (5.1.2) and by [Stevens88,

Proposition 7] these conditions imply:

(5.1.6) X has only canonical singularities.

Note also that (5.1) is the same as [Kovács97, 2.1].

5.3 Theorem. Let g : Y −→ S be a smooth family of projective varieties of

general type with nef canonical bundle. Assume that α : S → A is a smooth Fano

fibre space over the abelian variety A. Then the fibres of g are birational.

Proof. By Poincaré’s Complete Reducibility Theorem [Birkenhake-Lange92,
Ch. 5 (3.7)] there exists an isogeny B → A where B is the product of irreducible
abelian varieties. Thus applying appropriate base changes one may assume that A
itself is an irreducible abelian variety.

Let

f : X = ProjS

∑

g∗ω
m
Y/S −→ S.

Then f : X → S satisfies (5.1), and φ : Y → X is a resolution of singularities
of X.

Fano varieties are rationally connected by [KMM92b, 3.3] (cf. [Campana92]), so
Sa is rationally connected for alll a ∈ A. Let P1 = S′ → Sa ⊆ S be a rational curve
in Sa. Then fS′ : XS′ −→ S′ satisfies (5.1), and YS′ is a resolution of singularities
of XS′ , so by (5.2) and (4.6) fS′ : XS′ −→ S′ is an SP -morphism, and then it is
isotrivial by [Kovács96, Theorem 2]. Therefore fa : Xa −→ Sa is isotrivial for all
a ∈ A.

Rationally connected varieties are simply connected by [Campana91, 3.5], so
Xa = Xs × Sa, and then

h0(Xa, ω
m
Xa/Sa

) = h0(Xs, ω
m
Xs

).

On the other hand h0(Xs, ω
m
Xs

) is independent of s by Riemann-Roch and

Kawamata-Viehweg vanishing for m ≥ 2, hence h0(Xa, ω
m
Xa/Sa

) is independent of

a. Therefore (α ◦ f)∗ω
m
X/S is a locally free sheaf on A for m ≥ 2. Let

h : Z = ProjA

∑

(α ◦ f)∗ω
m
X/S −→ A,
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so one has the commutative diagram,

Y
φ

−−−−→ X
β

−−−−→ Z

g





y

f





y
h





y

S S −−−−→
α

A.

The fibres of β : X −→ Z are smooth Fano varieties, so

OZ ≃ Rβ∗OX ≃ R(β ◦ φ)∗OY .

Since α ◦ g is smooth, h is an SP -morphism by (4.5). Then h is isotrivial by
(4.8) and [Kovács97, 2.6]. Hence f is isotrivial, since Za ≃ Xs for all a ∈ A, s ∈ Sa.
Therefore the statement follows as Xs is the canonical model of Ys for all s ∈ S. �

5.4 Corollary. Let g : Y −→ S be a smooth family of projective varieties of

general type with nef canonical bundle. Assume that ΩS is semi-negative. Then the

fibres of g are birational.

Proof. By [DPS94, Main Theorem] a finite étale cover of S is a smooth Fano
fibre space over an abelian variety. �
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