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Abstract. Let X be a proper complex variety with Du Bois singularities. ThenHi(X,C) →
Hi(X,OX) is surjective for alli. This property makes this class of singularities behave well with
regard to Kodaira type vanishing theorems. Steenbrink conjectured that rational singularities are Du
Bois and Kollár conjectured that log canonical singularities are Du Bois. Kollár also conjectured
that under some reasonable extra conditions Du Bois singularities are log canonical. In this article
Steenbrink’s conjecture is proved in its full generality, Kollár’s first conjecture is proved under some
extra conditions and Kollár’s second conjecture is proved under a set of reasonable conditions, and
shown that these conditions cannot be relaxed.
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0. Introduction

Following P. Deligne’s work on mixed Hodge structures, it was shown by
Ph. Du Bois that for every complex schemeX one can define a filtered complex�·X
that ‘resolves’CX, its associated graded quotients, Grp

filt �
·
X, haveOX-linear differ-

entials and coherent cohomology sheaves and the analogue of the Hodge–de Rham
spectral sequence exists and degenerates at theE1 term [DB81].

Du Bois singularities were introduced by J. H. M. Steenbrink. They have the
property that the zeroth graded piece of Du Bois’ complex, Gr0

filt �
·
X, ‘resolves’OX.

In particular, let(X, x) be a normal isolated singularity,f : Y → X a resolution of
sngularities such thatE = f −1(0) is a divisor with only simple normal crossings
andY \E ' X\{x}. Then(X, x) is Du Bois if and only ifRif∗OY ' Rif∗OE. for
all i > 0.

Cohomological properties of Du Bois singularities are often similar to those of
smooth points. For instance, every proper, flat degenerationf over the unit disk1
is cohomologically insignificant providedf −1(0) has Du Bois singularities [S81].

? Supported in part by NSF Grant DMS-9600089.
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124 SÁNDOR J. KOVÁCS

As a simple consequence of the degeneration of the Hodge–de Rham spec-
tral sequence, one easily sees that ifX is proper with Du Bois singularities, then
Hi(X,C) → Hi(X,OX) is surjective for alli. According to J. Kollár’s Principle
[K87, 23; CKM88, 8.1; K95, 9.12] this surjectivity property makes these singu-
larities the natural class for Kodaira type vanishing theorems [K95, 9.12, 12.3,
12.10].

Therefore it is interesting to know what kind of singularities have the Du Bois
property. After classifying normal Gorenstein two-dimensional Du Bois singular-
ities Steenbrink made the following conjecture:

CONJECTURE S.Rational singularities are Du Bois.

At the same time he proved the conjecture for isolated singularities (cf. [S83]).
Conjecture S was recently confirmed for projective varieties by Kollár [K95,

Ch. 12]. This would have completely solved the problem if one were able to prove
that a variety with rational singularities can be embedded into a projective variety
with only rational singularities. Unfortunately, that is still unknown. The first result
of this article is that in fact Steenbrink’s conjecture is true in general.

THEOREM S.ConjectureS holds.

The proof is somewhat similar to the one in [ibid.]. There are two main ad-
ditional ideas: First, one observes that the degeneration of the Hodge–de Rham
spectral sequence implies another surjectivity (in fact a weaker one) than the one
used by Kollár. The second idea is that this surjectivity allows one to pass to local
cohomology, where the other necessary ingredient of the proof holds. For details,
see the argument in Section 2.

Kollár has also made a conjecture regarding Du Bois singularities [K92,1.13]:

CONJECTURE K.Log canonical singularities are Du Bois.

This has only been confirmed for isolated singularities. S. Ishii showed that a
normal isolated Gorenstein singularity is Du Bois if and only if it is log canonical
[I85] (see definition at the end of the Introduction). More generally it was shown by
K. Watanabe and Ishii that an isolated log canonical singularity is Du Bois [W86],
[I86b]. The second result of this paper is another step toward Kollár’s conjecture.

THEOREM K. LetX be a complex variety with log canonical Cohen–Macaulay
singularities. Let6 = SingX be the set of singular points ofX and let6r denote
the smallest closed subset ofX such thatX\6r has rational singularities. Assume
that eitherdim6 + dim6r + 1 < dimX or 6 has Du Bois singularities. ThenX
has Du Bois singularities.
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RATIONAL, LOG CANONICAL, DU BOIS SINGULARITIES 125

Remark. Unfortunately, this still does not solve even the three-dimensional case
completely.? However, it gives some new results already in that case: It implies
that a log canonical Cohen–Macaulay threefold with only finitely many nonra-
tional points has Du Bois singularities. Similarly a log canonical Cohen–Macaulay
threefold whose singular set is a curve with only ordinary singularities is Du Bois.
In higher dimensions there are many more new cases: for instance ad-dimensional
log canonical Cohen–Macaulay variety whose singular set is a curve is Du Bois
as soon asd > 4, a log canonical Cohen–Macaulay variety whose singular set is
smooth is always Du Bois.

On the other hand, one would also like to know how far Du Bois singularities
are from being log canonical. Simple examples show that there are Du Bois singu-
larities whose canonical divisor is notQ-Cartier and there are Du Bois singularities
whose canonical divisor isQ-Cartier, but the singularity fails to be log canonical
cf. [W86, 4.13; I86b, 2.5; I86a, 3.3]. One fact to keep in mind is that rational sin-
gularities are not necessarily log canonical, in particular there are two-dimensional
rational singularities (and therefore Du Bois) that are not log canonical, but have a
Q-Cartier canonical divisor.

In light of these facts the following seems to be the best one can hope for in this
direction.

THEOREM K′. LetU be a normal variety and assume thatKU is Cartier andU
has Du Bois singularities. ThenU is log canonical.

This was also conjectured by Kollár.

DEFINITIONS AND NOTATION. Throughout the article the groundfield will
always beC, the field of complex numbers. Acomplex scheme(resp.complex
variety) will mean a separated scheme (resp. variety) of finite type overC.

A divisor D is calledQ-Cartier ifmD is Cartier for somem > 0. A normal
varietyX is said to havelog canonical(resp.log terminal, canonical) singularities
if KX is Q-Cartier and for any resolution of singularitiesf : Y → X, with the
collection of exceptional prime divisors{Ei}, there existai ∈ Q, ai > −1 (resp.
ai > −1, ai > 0) such thatKY ≡ f ∗KX + 6aiEi (cf. [CKM88]). The indexof
a normal varietyX with KX Q-Cartier is the smallest positive integerm such that
mKX is Cartier. Note that for a normal varietyX with KX Q-Cartier, there exists
locally anindex 1 cover, i.e., a finite surjective morphismσ : X′ → X such thatX′
has index 1 [R87, 3.6].

A singularity is calledGorenstein(resp.Cohen–Macaulay) if its local ring is
a Gorenstein (resp. Cohen–Macaulay) ring. A variety isGorenstein(resp.Cohen–
Macaulay) if it admits only Gorenstein (resp. Cohen–Macaulay) singularities. Let

? Recently, I found that the results in this article give basis to a rather easy proof of the three-
dimensional Cohen–Macaulay case. This is included in the next article.
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126 SÁNDOR J. KOVÁCS

X be a normal variety andf : Y → X a resolution of singularities.X is said to
haverational singularitiesif Rif∗OY = 0 for all i > 0.

Let X be a complex scheme of dimensionn. Dfilt (X) denotes the derived cat-
egory of filtered complexes ofOX-modules with differentials of order6 1 and
Dfilt , coh(X) the subcategory ofDfilt (X) of complexesK ·, such that for alli, the
cohomology sheaves of Gri

filtK
· are coherent (cf. DB81, [GNPP88]).D(X) and

Dcoh(X) denotes the derived categories with the same definition except that the
complexes are assumed to have the trivial filtration. The superscripts+,−, b carry
the usual meaning (bounded below, bounded above, bounded).C(X) is the cat-
egory of complexes ofOX-modules with differentials of order6 1 and foru ∈
Mor(C(X)), M(u) ∈ Ob(C(X)) denotes the mapping cone ofu (cf. [H66]). The
isomorphism in these categories is denoted by'qis. If K · is a complex in any of
the above defined categories, thenhi(K ·) denotes theith cohomolgy sheaf ofK ·.
In particular every sheaf is naturally a complex withhi = 0 for i 6= 0.

The right derived functor of an additive functorF , if exists, is denoted byRF
andRiF stands forhi ◦ RF . In particular,Hi denotesRi0 andHiZ denotesRi0Z
where0 is the functor of global sections and0Z is the functor of global sections
with support in the closed subsetZ. Finallyω·X = f !C is the dualizing complex of
X wheref : X → SpecC is the natural morphism (cf. [H66]). Note that ifX has
Gorenstein singularities, thenω·X 'qis ωX[n] andωX is a line bundle.

The dimension of the empty set is−∞.

1. Du Bois Singularities

The actual construction of Du Bois’ complex will not be used in this article. There-
fore it is not repeated here. Instead the interested reader is referred to the original
article. Note also that a simplified construction was later obtained by [GNPP88]
via the general theory of cubic resolutions. An easily accessible introduction can
be found in [S85].

The basic results regarding�·X that are essential in the sequel are summarized
in the following theorem.

THEOREM 1.1 [DB81, 3.2, 3.10, 4.5, 4.11], [GNPP88, III.1.12, III.1.17, V.3.5].
For every complex schemeX there exists an�·X ∈ Ob(Dfilt (X)) with the following
properties.

(1.1.1) It is functorial, i.e., ifφ: Y → X is a morphism of complex schemes, then
there exists a natural mapφ∗ of filtered complexesφ∗: �·X → Rφ∗�·Y .
Furthermore,�·X ∈ Ob(Db

filt , coh(X)) and ifφ is proper, thenφ∗ is a morph-
ism inDb

filt , coh(X).
(1.1.2) Let�·X be the usual De Rham complex of Kähler differentials considered

with the ‘filtration bête’. Then there exists a natural map of filtered com-
plexes�·X → �·X and ifX is smooth, it is a quasi-isomorphism.
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RATIONAL, LOG CANONICAL, DU BOIS SINGULARITIES 127

(1.1.3) LetU ⊆ X be an open subscheme ofX. Then�·X|U 'qis �
·
U .

(1.1.4) If X is proper, then there exists a spectral sequence degenerating atE1 and
abutting to the singular cohomology ofX: Epq1 = Hq(X,Grpfilt �

·
X[p]) ⇒

Hp+q(X,C).
(1.1.5) dim Supphi(Grpfilt�

·
X) 6 dimX − i + p.

(1.1.6) Let�0
X = Gr0filt �

·
X. Let6 = SingX be the singular set of X andf : Y →

X a resolution of singularities such that it is an isomorphism outside6

andE = f −1(6) is a divisor with normal crossings. Then there exists a

distinguished triangle,�0
X → �0

6 ⊕ Rf∗OY → Rf∗OE
+1→, where the

morphisms are those of(1.1.1) and(1.1.2).

Remark1.1.7. Letf : Y → X be a resolution of singularities ofX. Then by
(1.1.1) and (1.1.2) the natural morphismOX → Rf∗OY . factors through�0

X and if
X is proper, then by (1.1.4)Hi(X,C)→ Hi(X,�0

X) is surjective for alli.

DEFINITION 1.2 [S83].X is said to haveDu Bois singularitiesif OX → �0
X is a

quasi-isomorphism. (I.e.,h0(�0
X) ' OX andhi(�0

X) = 0 for all i 6= 0.) In partic-
ular, ifX is proper and has Du Bois singularities, thenHi(X,C)→ Hi(X,OX) is
surjective for alli.

2. Rational Singularities – The Key Lemma

2.1. LetX be a complex scheme that one would like to prove to have Du Bois

singularities. LetF · be a complex such thatOX → �0
X → F · +1→ forms a dis-

tinguished triangle and let6DB = ∪Supphi(F ·) the union of the supports of the
cohomology sheaves ofF ·. Then6DB is thenon-Du Bois locusof U . By taking
general hyperplane sections, as in [K95, 12.8], one may assume that dim6DB 6 0.
Therefore as long as the assumptions onX are invariant under taking hyperplane
sections, one can restrict to the case when the possibly non-Du Bois locus is at
most a set of finite points.

The following is the key step in the proof of both Theorem S and Theorem K.

LEMMA 2.2. LetU be a complex scheme with a finite set of points,P , such that
U\P has only Du Bois singularities and assume thatHi

P (U,OU)→ HiP (U,�
0
U)

is injective for alli = 0, . . . ,dimU . ThenU has Du Bois singularities.
Proof. Since the statement is local, one may assume thatU is affine. LetF · be

the complex defined in (2.1). By assumptionP contains6DB = ∪Supphi(F ·), the
non-Du Bois locus ofU .

Next letX be a projective closure ofU , and letQ = X\U andZ = P ∪ Q.
ThenX\Z ' U\P has only Du Bois singularities, i.e.,OX\Z 'qis �

0
X\Z.
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128 SÁNDOR J. KOVÁCS

Now by (1.1.4) the compositionHi(X,C) → Hi(X,OX) → Hi(X,�0
X) is

surjective for alli. Then in the commutative diagram

Hi−1(X\Z,OX\Z) - Hi
Z(X,OX) - Hi(X,OX) - Hi(X\Z,OX\Z)

Hi−1(X\Z,�0
X\Z)

?
α

- HiZ(X,�
0
X)

?
β

- Hi(X,�0
X)

?
γ

- Hi (X\Z,�0
X\Z)

?
δ

the rows are exact,α and δ are isomorphisms, andγ is surjective. Henceβ is
surjective by the 5-lemma.

Observe that since dimP 6 0,P ∩Q = ∅, and then

Hi
Z(X,OX) ' Hi

P (X,OX)⊕Hi
Q(X,OX),

HiZ(X,�
0
X) ' HiP (X,�0

X)⊕HiQ(X,�0
X)

and by excisionHi
P (X,OX) ' Hi

P (U,OU) andHiP (X,�
0
X) ' HiP (U,�0

U).
ThereforeHi

P (U,OU) → HiP (U,�
0
U) is surjective. By assumption it is also

injective, hence an isomorphism.
The cohomology sheaves ofF · are supported onP , soHi(U\P,F ·) = 0 for

all i. HenceHi(U, F ·) = HiP (U, F ·) = 0. Using again that dimP 6 0, one finds
thatHi(U, F ·) = H 0(U, hi(F ·)), so in facthi(F ·) = 0 for all i, thusOU ' �0

U .2
THEOREM 2.3.LetU be a complex scheme such thatOU → �0

U has a left inverse,
thenU has Du Bois singularities.

Proof. The statement is local, so one may assume thatU is affine. SinceOH '
OU⊗L OH and�0

H 'qis �
0
U ⊗L OH for a general hyperplaneH (cf. [K95, 12.6.2]),

one can use (2.1), and then (2.2) can be applied. 2
COROLLARY 2.4 (cf. [K95, 12.8]).Let V be a complex scheme with Du Bois
singularities andf : V → U a morphism to a complex scheme such thatOU →
Rf∗OV has a left inverse. ThenU has Du Bois singularities as well.

Proof. OU → �0
U → Rf∗OV has a left inverse, so the statement follows by

(2.3). 2
COROLLARY 2.5 (cf. [K95, 12.8.2]).Let V be a complex scheme with Du Bois
singularities andf : V → U a finite and dominant morphism to a normal variety.
ThenU also has Du Bois singularities.

Proof. Rif∗OV = 0 for i > 0 and the normalized trace map splitsOU →
f∗OV . 2
COROLLARY 2.6 (cf. [S83, 3.7], [K95, 12.9]).LetU be a complex variety with
rational singularities. ThenU has Du Bois singularities.
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Proof. Let f : V → U be a resolution of singularities. ThenOU 'qis Rf∗OV ,
so the statement again follows by (2.4). 2
COROLLARY 2.7. Let U be a complex variety with log terminal singularities.
ThenU has Du Bois singularities.

Proof. First assume thatU has canonical singularities of index 1. Letf : V →
U be a resolution of singularities. Nowf ∗ωU is a subsheaf ofωV , so by the
Grauert–Riemenschneider vanishing theoremRf∗ωV 'qis ωU . Then ωU →
Rf∗f ∗ωU → Rf∗ωV 'qis ωU shows thatωU → Rf∗f ∗ωU has a left inverse,
so tensoring byω−1

U one obtains thatOU → Rf∗OV has a left inverse. Then (2.4)
implies the result.

The statement is local, so in the general case one can take the index 1 cover,U ′,
of U which has canonical singularities of index 1 (cf. [R87, 3.6]). ThenU ′ has Du
Bois singularities by the first part, soU has Du Bois singularities by (2.5). 2

Remark2.7.1. The last result certainly follows also from (2.6), but then one
would have to appeal to the nontrivial fact that log terminal singularities are rational
(cf. [E81], [F81], [KMM87]), whereas the above proof is considerably short and
simple.

3. Log Canonical Singularities

The following notation will be used through the rest of the article.

NOTATION 3.1. LetU be a complex scheme and6 = SingU the set of singular
points ofU . Further let6r denote the smallest closed subset ofU , such thatU\6r
has rational singularities.6 and6r will be considered with the reduced induced
subscheme structure. Letf : V → U be a resolution of singularities such that it is
an isomorphism outside6 andE = f −1(6) is a divisor with normal crossings.
Finally letQ = ωU/f∗ωV . Note that SuppQ ⊆ 6r .

Grothendieck duality will be used in the following form (cf. [H66, III.11.1]):
For f : V → U as above and for allF · bounded complexes ofOV -modules

Rf∗RHomV (F
·, ω·V ) ' RHomU(Rf∗F ·, ω·U).

LEMMA 3.2. Let U be a complex variety of dimensionn with log canonical
Gorenstein singularities. Then the natural maps

Rif∗OV → Rif∗OE, hi(�0
U)→ hi(�0

6)

are injective for alli > 0.
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130 SÁNDOR J. KOVÁCS

Proof. U has log canonical singularities, sof ∗ωU ⊆ ωV (E), and thusωU '
f∗ωV (E) by [KMM87, 1-3-2]. Consider the following commutative diagram

f∗ωV - f∗ωV (E) ' ωU

Rf∗ωV
?

- Rf∗ωV (E).
?

By the Grauert–Riemenschneider vanishing theorem, the first vertical arrow is
a quasi-isomorphism, so the natural morphism on the bottom factors throughωU

Rf∗ωV → ωU → Rf∗ωV (E).

Hence the same holds for the dualizing complexes

Rf∗ω·V → ω·U → Rf∗ωV (E)[n]. (3.2.1)

Next applyRHomU(–, ω·U) to (3.2.1). By Grothendieck duality

Rf∗OV (−E) 'qis RHomU(Rf∗ωV (E)[n], ω·U),

OU 'qis RHomU(ω
·
U, ω

·
U),

Rf∗OV 'qis RHomU(Rf∗ω·V , ω
·
U),

so (3.2.1) implies that the natural morphismRf∗OV (−E)→ Rf∗OV factors through
OU

Rf∗OV (−E)→ OU → Rf∗OV . (3.2.2)

Observe that the natural morphismOU → Rf∗OV factors through�0
U , so

(3.2.2) gives a natural morphismRf∗OV (−E)→ �0
U that factors throughOU

Rf∗OV (−E)→ OU → �0
U . (3.2.3)

By (1.1.6) there exists a distinguished triangle�0
U → �0

6⊕Rf∗OV → Rf∗OE
+1→ .

Then it is easy to see, that one has the following commutative diagram of distin-
guished triangles (cf. [DB90, 7.7])

Rf∗OV (−E) - �0
U

- �0
6

+1 -

Rf∗OV (−E)
?

- Rf∗OV

?
- Rf∗OE

? +1- .

(3.2.4)
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Now (3.2.2) and (3.2.3) implies that the natural morphisms on the higher co-
homology sheaves must be zero

Rif∗OV (−E)→ 0→ Rif∗OV , Rif∗OV (−E)→ 0→ hi(�0
U).

Hence the statement follows by (3.2.4). 2
The following is probably known to experts, but I could not find a reference, so
a proof is included here

LEMMA 3.3. LetU be a complex Cohen–Macaulay scheme of dimensionn. Then
Rif∗OV = 0 for 0< i < n− dim6r − 1.

Proof. ApplyRHomU(–, ωU) to the short exact sequence 0→ f∗ωV → ωU →
Q→ 0.

By the Grauert–Riemenschneider vanishing theorem,f∗ωV 'qis Rf∗ωV , so by

Grothendieck dualityRHomU(Q, ωU) → OU → Rf∗OV
+1→ forms a distin-

guished triangle, hence fori > 0,Rif∗OV ' Exti+1
U (Q, ωU).

Let x ∈ U be a closed point. The local ring ofx, Ox , is a Cohen–Macaulay
ring of dimensionn, so (Rif∗OV )x ' Exti+1

U (Q, ωU)x ' Exti+1
Ox
(Qx, ωOx ) = 0

for 1 < i + 1 < dimOx − dimQx (cf. BH93, 3.5.11). Now the statement follows
since dimQx 6 dim6r . 2

Remark3.3.1. In this lemmaf may be an arbitrary resolution of singularities
(as opposed to the assumption in (3.1)).

THEOREM 3.4.Let U be a complex variety of dimensionn with log canonical
Gorenstein singularities. Assume thathi(�0

6) = 0 for i > n− dim6r − 1 ThenU
has Du Bois singularities.

Proof. Consider the following commutative diagram where the rows are distin-
guished triangles

OU
- �0

U
- F · +1 -

OU

?

'

- Rf∗OV

?
- R·
? +1 -

For i > 0, hi(F ·) ' hi(�0
U) ⊂ hi(�0

6) by (3.2), sohi(F ·) = 0 for i >
n− dim6r − 1.

This remains true after taking general hyperplane sections, so as in (2.1), one
may assume that dim6DB 6 0, i.e., for a finite set of points,P , U\P has Du Bois
singularities.

The cohomology sheaves ofF · are supported onP , soHi(U\P,F ·) = 0
for all i and since dimP 6 0, one finds thatHiP (U, F ·) = H 0

P (U, h
i(F ·)).
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132 SÁNDOR J. KOVÁCS

H 0
P (U, h

i(F ·)) = 0 for i > n − dim6r − 1, soHqP (U, F ·) = 0 for q > n−
dim6r − 1.

On the other hand,hi(R·) = 0 for i 6 0, sinceOU ' f∗OV , andhi(R·) '
Rif∗OV = 0 for 0 < i < n − dim6r − 1 by (3.3). ThenHj

P (U, h
i(R·)) = 0

for i < n − dim6r − 1 and allj trivially, and thenHqP (U,R·) = 0 for q <

n− dim6r − 1.
ThereforeHqP (U, F ·)→ HqP (U,R·) is zero for allq. Now the following com-

mutative diagram

Hi−1
P (U, F ·) - Hi

P (U,OU) - HiP (U,�
0
U)

Hi−1
P (U,R·)
?
0

- Hi
P (U,OU)

?
'

- HiP (U,Rf∗OV )

?

implies, thatHi−1
P (U, F ·)→ Hi

P (U,OU) is zero, thusHi
P (U,OU)→ HiP (U,�

0
U)

is injective. The result now follows by (2.2). 2
COROLLARY 3.5.LetU be a complex variety with log canonical Cohen–Macaulay
singularities. Assume that eitherdim6 + dim6r + 1 < dimU or 6 has Du Bois
singularities. ThenU has Du Bois singularities.

Proof. Passing to the index 1 cover, as in Corollary 2.7, one may assume that
U has Gorenstein singularities. By (1.1.5) dim Supphi(�0

6) 6 dim6 − i, so the
assumptions imply that dim Supphi(�0

6) < dimU − dim6r − 1− i for all i > 0.
Then the statement follows by (3.4). 2
Finally let us regard the opposite direction, namely that Du Bois singularities are
not far from being log canonical.

THEOREM 3.6.LetU be a normal variety and assume thatKU is Cartier andU
has Du Bois singularities. ThenU is log canonical.

Proof. The distinguished triangle of (1.1.6)�0
U → �0

6⊕Rf∗OV → Rf∗OE
+1-

implies that the natural morphismRf∗OV (−E)→ Rf∗OV factors through�0
U 'qis

OU . Hence there exists a morphismRf∗OV (−E)→ OU that is a quasi-isomorphism
on U\6. Applying RHomU(−, ω·U) to this morphism one obtainsω·U →
Rf∗ωV (E)[n] and taking the−nth cohomology gives a morphismωU →
f∗ωV (E) that is an isomorphism onU\6 (in particular it is not the zero morphism).
By adjointness this gives a nonzero morphismf ∗ωU → ωV (E). f ∗ωU is a line
bundle, so this implies thatf ∗ωU ⊆ ωV (E), and thereforeU is log canonical. 2
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