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Abstract. Let X be a proper complex variety with Du Bois singularities. THeh(X, C) —

H' (X, O0y) is surjective for alli. This property makes this class of singularities behave well with
regard to Kodaira type vanishing theorems. Steenbrink conjectured that rational singularities are Du
Bois and Kollar conjectured that log canonical singularities are Du Bois. Kollar also conjectured
that under some reasonable extra conditions Du Bois singularities are log canonical. In this article
Steenbrink’s conjecture is proved in its full generality, Kollar's first conjecture is proved under some
extra conditions and Kollar's second conjecture is proved under a set of reasonable conditions, and
shown that these conditions cannot be relaxed.
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0. Introduction

Following P. Deligne’s work on mixed Hodge structures, it was shown by
Ph. Du Bois that for every complex scheti®ne can define a filtered compl&x,
that ‘resolvestCy, its associated graded quotients}@®y, have®-linear differ-
entials and coherent cohomology sheaves and the analogue of the Hodge—de Rham
spectral sequence exists and degenerates @i tteyrm [DB81].

Du Bois singularities were introduced by J. H. M. Steenbrink. They have the
property that the zeroth graded piece of Du Bois’ complef, @, ‘resolves’@x.
In particular, let(X, x) be a normal isolated singularity,; ¥ — X a resolution of
sngularities such that = £~1(0) is a divisor with only simple normal crossings
andY\E ~ X\{x}. Then(X, x) is Du Bois if and only ifR’ .0y ~ R f,O. for
alli > 0.

Cohomological properties of Du Bois singularities are often similar to those of
smooth points. For instance, every proper, flat degenerdgtiover the unit diskA
is cohomologically insignificant providefi=1(0) has Du Bois singularities [S81].

* Supported in part by NSF Grant DMS-9600089.
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124 SANDOR J. KOVACS

As a simple consequence of the degeneration of the Hodge—de Rham spec-
tral sequence, one easily sees thaX ifs proper with Du Bois singularities, then
H (X,C) — H(X, Oy) is surjective for alli. According to J. Kollar’s Principle
[K87, 23; CKM88, 8.1; K95, 9.12] this surjectivity property makes these singu-
larities the natural class for Kodaira type vanishing theorems [K95, 9.12, 12.3,
12.10].

Therefore it is interesting to know what kind of singularities have the Du Bois
property. After classifying normal Gorenstein two-dimensional Du Bois singular-
ities Steenbrink made the following conjecture:

CONJECTURE SRational singularities are Du Bois

At the same time he proved the conjecture for isolated singularities (cf. [S83]).

Conjecture S was recently confirmed for projective varieties by Kollar [K95,
Ch. 12]. This would have completely solved the problem if one were able to prove
that a variety with rational singularities can be embedded into a projective variety
with only rational singularities. Unfortunately, that is still unknown. The first result
of this article is that in fact Steenbrink’s conjecture is true in general.

THEOREM S.ConjectureS holds

The proof is somewhat similar to the one in [ibid.]. There are two main ad-
ditional ideas: First, one observes that the degeneration of the Hodge—de Rham
spectral sequence implies another surjectivity (in fact a weaker one) than the one
used by Kollar. The second idea is that this surjectivity allows one to pass to local
cohomology, where the other necessary ingredient of the proof holds. For details,
see the argument in Section 2.

Kollar has also made a conjecture regarding Du Bois singularities [K92,1.13]:

CONJECTURE KLog canonical singularities are Du Bais

This has only been confirmed for isolated singularities. S. Ishii showed that a
normal isolated Gorenstein singularity is Du Bois if and only if it is log canonical
[185] (see definition at the end of the Introduction). More generally it was shown by
K. Watanabe and Ishii that an isolated log canonical singularity is Du Bois [W86],
[186b]. The second result of this paper is another step toward Kollar's conjecture.

THEOREM K. Let X be a complex variety with log canonical Cohen—Macaulay
singularities. Let> = Sing X be the set of singular points &f and letX, denote
the smallest closed subsetXfsuch thatX\ X, has rational singularities. Assume
that eitherdimX 4+ dim X, + 1 < dim X or ¥ has Du Bois singularities. Theki
has Du Bois singularities
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Remark Unfortunately, this still does not solve even the three-dimensional case
completely: However, it gives some new results already in that case: It implies
that a log canonical Cohen—Macaulay threefold with only finitely many nonra-
tional points has Du Bois singularities. Similarly a log canonical Cohen—Macaulay
threefold whose singular set is a curve with only ordinary singularities is Du Bois.
In higher dimensions there are many more new cases: for instafiicén@ensional
log canonical Cohen—Macaulay variety whose singular set is a curve is Du Bois
as soon ag > 4, a log canonical Cohen—Macaulay variety whose singular set is
smooth is always Du Bois.

On the other hand, one would also like to know how far Du Bois singularities
are from being log canonical. Simple examples show that there are Du Bois singu-
larities whose canonical divisor is n@tCartier and there are Du Bois singularities
whose canonical divisor i®-Cartier, but the singularity fails to be log canonical
cf. [W86, 4.13; 186b, 2.5; I186a, 3.3]. One fact to keep in mind is that rational sin-
gularities are not necessarily log canonical, in particular there are two-dimensional
rational singularities (and therefore Du Bois) that are not log canonical, but have a
Q-Cartier canonical divisor.

In light of these facts the following seems to be the best one can hope for in this
direction.

THEOREM K. Let U be a normal variety and assume th&}, is Cartier andU
has Du Bois singularities. Thdlii is log canonical

This was also conjectured by Kollar.

DEFINITIONS AND NOTATION. Throughout the article the groundfield will
always beC, the field of complex numbers. Bomplex scheméesp.complex
variety) will mean a separated scheme (resp. variety) of finite type Gver

A divisor D is calledQ-Cartier if mD is Cartier for somen > 0. A normal
variety X is said to havdog canonical(resp.log terminal, canonicdlsingularities
if Ky is Q-Cartier and for any resolution of singularitig& ¥ — X, with the
collection of exceptional prime divisofg;}, there existy; € Q, a; > —1 (resp.
a; > —1,a; > 0) such thatky = f*Ky + Xa; E; (cf. [CKM88]). Theindexof
a normal varietyX with Ky Q-Cartier is the smallest positive integersuch that
mKy is Cartier. Note that for a normal variefy with Ky Q-Cartier, there exists
locally anindex 1 coveri.e., a finite surjective morphism: X’ — X such thatX’
has index 1 [R87, 3.6].

A singularity is calledGorenstein(resp.Cohen—Macaulayif its local ring is
a Gorenstein (resp. Cohen—Macaulay) ring. A varie@dsenstein(resp.Cohen—
Macaulay) if it admits only Gorenstein (resp. Cohen—Macaulay) singularities. Let

* Recently, | found that the results in this article give basis to a rather easy proof of the three-
dimensional Cohen—Macaulay case. This is included in the next article.
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126 SANDOR J. KOVACS

X be a normal variety ang: Y — X a resolution of singularitiesX is said to
haverational singularitiesif R’ £,©y = 0 for alli > 0.

Let X be a complex scheme of dimensienDy, (X) denotes the derived cat-
egory of filtered complexes afy-modules with differentials of ordeg 1 and
Dyt con(X) the subcategory oDy (X) of complexesk ', such that for all, the
cohomology sheaves of K" are coherent (cf. DB81, [GNPP88JR(X) and
Dcon(X) denotes the derived categories with the same definition except that the
complexes are assumed to have the trivial filtration. The superseripts b carry
the usual meaning (bounded below, bounded above, bound@éd). is the cat-
egory of complexes ofdx-modules with differentials of ordex 1 and foru €
Mor(C (X)), M(u) € Ob(C (X)) denotes the mapping cone ©f(cf. [H66]). The
isomorphism in these categories is denoteddgy. If K" is a complex in any of
the above defined categories, thenk ) denotes théth cohomolgy sheaf ok .
In particular every sheaf is naturally a complex with= 0 fori # 0.

The right derived functor of an additive functé, if exists, is denoted bR F
and R’ F stands for’ o RF. In particular,H' denotesk'T" andH, denotesk'T";
whereT is the functor of global sections ant}; is the functor of global sections
with support in the closed subsgt Finally oy, = f'C is the dualizing complex of
X where f: X — SpedC is the natural morphism (cf. [H66]). Note thatXf has
Gorenstein singularities, thes, ~is wx[n] andwy is a line bundle.

The dimension of the empty set-sco.

1. Du Bois Singularities

The actual construction of Du Bois’ complex will not be used in this article. There-
fore it is not repeated here. Instead the interested reader is referred to the original
article. Note also that a simplified construction was later obtained by [GNPP88]
via the general theory of cubic resolutions. An easily accessible introduction can
be found in [S85].

The basic results regardirf@, that are essential in the sequel are summarized
in the following theorem.

THEOREM 1.1 [DB81, 3.2, 3.10, 4.5, 4.11], [GNPPS88, 111.1.12, 111.1.17, V.3.5].
For every complex scheniethere exists a2, € Ob( Dy (X)) with the following
properties

(2.1.1) It is functorial, i.e., if¢p: ¥ — X is a morphism of complex schemes, then
there exists a natural map* of filtered complexeg*: Qy — R¢.Q2;.
Furthermore Q2 € Ob(Dﬁlt) on(X)) and if¢ is proper, thenp™ is a morph-
ism inDf; on(X).

(1.1.2) Let Q2 be the usual De Rham complex of Kahler differentials considered
with the ‘filtration béte’. Then there exists a natural map of filtered com-
plexesQ?y — 2 and if X is smooth, it is a quasi-isomorphism
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(1.1.3) LetU < X be an open subschemeXf ThenQy [y ~qis 2.

(1.1.4) If X is proper, then there exists a spectral sequence degeneratifigatd
abutting to the singular cohomology &f EJY = HY(X, Grfy, Q[p]) =
HPT (X, C).

(1.1.5) dim Sup@’ (Grg, Q) < dimX —i + p.

(1.1.6) Let QY = GrﬁIt Q. LetX = SingX be the singular set of X andl: ¥ —
X a resolution of singularities such that it is an isomorphism outsitle
and E = f~1(2) is a divisor with normal crossings. Then there exists a
distinguished triangleQ$ — Q% ® Rf.0y — Rf.Of *. where the
morphisms are those ¢1.1.1) and (1.1.2).

Remarkl.1.7. Letf: Y — X be a resolution of singularities &f. Then by
(1.1.1) and (1.1.2) the natural morphigdy — Rf,Oy. factors through$ and if
X is proper, then by (1.1.4§(X, C) — Hi(X, 2%) is surjective for alk.

DEFINITION 1.2 [S83].X is said to havéDu Bois singularitiesf 0Oy — 2% is a
quasi-isomorphism. (1.e4%(Q%) ~ Ox andh!(Q%) = 0 for alli # 0.) In partic-
ular, if X is proper and has Du Bois singularities, théh(X, C) — H'(X, Oy) is
surjective for alli.

2. Rational Singularities — The Key Lemma

2.1. LetX be a complex scheme that one would like to prove to have Du Bois

singularities. LetF" be a complex such thay — Q§ — F° * forms a dis-
tinguished triangle and IeE,3 = USupph! (F°) the union of the supports of the
cohomology sheaves df'. ThenXpj is thenon-Du Bois locusf U. By taking
general hyperplane sections, as in [K95, 12.8], one may assume thatgirg 0.
Therefore as long as the assumptionsXoare invariant under taking hyperplane
sections, one can restrict to the case when the possibly non-Du Bois locus is at
most a set of finite points.

The following is the key step in the proof of both Theorem S and Theorem K.

LEMMA 2.2. Let U be a complex scheme with a finite set of poiftssuch that
U\ P has only Du Bois singularities and assume thgt(U, Oy) — H, (U, Q?])
is injective foralli =0, ..., dimU. ThenU has Du Bois singularities

Proof. Since the statement is local, one may assumelfhiataffine. LetF" be
the complex defined in (2.1). By assumptiBrcontainst p 3 = USupph’ (F’), the
non-Du Bois locus otJ.

Next let X be a projective closure df, and letQ = X\U andZ = P U Q.
ThenX\Z ~ U\ P has only Du Bois singularities, i.69x\z ~qis Qg’(\z.
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128 SANDOR J. KOVACS

Now by (1.1.4) the compositio®’(X,C) — H'(X,0x) — H (X, Q%) is
surjective for alli. Then in the commutative diagram

H™Y(X\Z, Ox\z) — HL(X,O0x) — H'(X, Ox) — H'(X\Z, Ox\7)

o B 1% 8
H ™Y X\Z, Q%) — HL (X, Q%) — H (X, Q%) — H'(X\Z, 2%, )

the rows are exacty andé§ are isomorphisms, angd is surjective. Hences is
surjective by the 5-lemma.
Observe that since dith < 0, P N Q = @, and then

H}(X, Ox) ~ Hp(X, Ox) @ Hy(X, O),
H (X, Q%) ~ Hiy (X, Q%) @ Hiy (X, Q%)

and by excisionH’, (X, Ox) ~ HL(U, Oy) andH:, (X, Q%) ~ Hi, (U, Q7).
ThereforeH:, (U, Oy) — HL (U, £%) is surjective. By assumption it is also
injective, hence an isomorphism.
The cohomology sheaves &f are supported o®, soH' (U\P, F') = 0 for
all i. HenceH (U, F') = H’},(U, F) = 0. Using again that din® < 0, one finds
thatH (U, F') = H°(U, hi(F")), so in facth’ (F*) = O for all i, thus®y ~ Q9. O

THEOREM 2.3LetU be a complex scheme such tidat — Qg has a left inverse,
thenU has Du Bois singularities

Proof. The statement is local, so one may assumelthataffine. Since9y ~
Oy ®L Oy andRY) ~qis QY ® Oy for a general hyperpland (cf. [K95, 12.6.2]),
one can use (2.1), and then (2.2) can be applied. O

COROLLARY 2.4 (cf. [K95, 12.8]).Let V be a complex scheme with Du Bois
singularities andf: V. — U a morphism to a complex scheme such that —
Rf.0Oy has a left inverse. Theti has Du Bois singularities as well

Proof. Oy — 2% — Rf.0y has a left inverse, so the statement follows by
(2.3). 0

COROLLARY 2.5 (cf. [K95, 12.8.2])Let V be a complex scheme with Du Bois
singularities andf: V — U a finite and dominant morphism to a normal variety.
ThenU also has Du Bois singularities

Proof. R f,0y = 0 fori > 0 and the normalized trace map spligs, —
f¥67v- O

COROLLARY 2.6 (cf. [S83, 3.7], [K95, 12.9])et U be a complex variety with
rational singularities. Ther/ has Du Bois singularities
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Proof. Let f: V. — U be a resolution of singularities. Th&y, ~4s Rf.Ov,
so the statement again follows by (2.4). O

COROLLARY 2.7.Let U be a complex variety with log terminal singularities.
ThenU has Du Bois singularities

Proof. First assume thdt has canonical singularities of index 1. LAtV —
U be a resolution of singularities. Now*wy is a subsheaf oy, so by the
Grauert-Riemenschneider vanishing theor&fioy ~gs wy. Thenowy —
Rf.f*oy — Rf.wy ~gs wy shows thatwy — Rf, f*wy has a left inverse,
so tensoring byo,,* one obtains tha®, — Rf.Oy has a left inverse. Then (2.4)
implies the result.

The statement is local, so in the general case one can take the index 1LEover,
of U which has canonical singularities of index 1 (cf. [R87, 3.6]). Théihas Du
Bois singularities by the first part, €6 has Du Bois singularities by (2.5). O

Remark2.7.1. The last result certainly follows also from (2.6), but then one
would have to appeal to the nontrivial fact that log terminal singularities are rational
(cf. [E81], [F81], [KMM8T7]), whereas the above proof is considerably short and
simple.

3. Log Canonical Singularities

The following notation will be used through the rest of the article.

NOTATION 3.1. LetU be a complex scheme ani = SingU the set of singular
points of U. Further letZ, denote the smallest closed subset/ofkuch that/\ X,
has rational singularitiess and =, will be considered with the reduced induced
subscheme structure. Lgt V — U be a resolution of singularities such that it is
an isomorphism outsidE andE = f~1(%) is a divisor with normal crossings.
Finally let@ = wy/f.wy. Note that Supp? C %,.

Grothendieck duality will be used in the following form (cf. [H66, I11.11.1]):
For f: V — U as above and for alF* bounded complexes @, -modules
Rf.RFHomy(F ,wy) >~ RHomy(Rf.F, wy).

LEMMA 3.2. Let U be a complex variety of dimensionwith log canonical
Gorenstein singularities. Then the natural maps

R f.0y — R £,0r,  h () — h'(Q2)

are injective for alli > 0.
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Proof. U has log canonical singularities, 6wy C wy(E), and thuswy >~
frwy (E) by [KMM87, 1-3-2]. Consider the following commutative diagram

fiwy —— fioy(E) >~ wy

|

1?f¥a)v

I?f;évv(lf)-

By the Grauert—Riemenschneider vanishing theorem, the first vertical arrow is
a quasi-isomorphism, so the natural morphism on the bottom factors thegugh

Rf.wy — wy — Rfioy(E).
Hence the same holds for the dualizing complexes
Rf.wy — wy — Rfiwy(E)nl. (3:2.1)
Next applyR Homy (—, wy,) to (3.2.1). By Grothendieck duality
Rf.Oy(—E) ~qis RHomy (R frwy (E)[n], o),
Ov ~q4is RHomy(wy, wy),
Rf.Oy ~4is RHomy (Rf.wy, wy),

s0 (3.2.1) implies that the natural morphigtf, @y, (—E) — Rf. Oy factors through
Oy

Rf.0y(—E) — Oy — Rf.0y. (3.2.2)

Observe that the natural morphiséh, — Rf.Oy factors through?, so
(3.2.2) gives a natural morphisRif, @y (—E) — 9, that factors througl®,

Rf.Ov(—E) — Oy — Q7. (3.2.3)

By (1.1.6) there exists a distinguished trian@p — QL ®Rf,Oy — Rf. Ok el

Then it is easy to see, that one has the following commutative diagram of distin-
guished triangles (cf. [DB90, 7.7])

Rf.Ov(—E) Q0 Q) —+

] o

Rf.Oy(—E) — Rf,0y — Rf,0p —=
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Now (3.2.2) and (3.2.3) implies that the natural morphisms on the higher co-
homology sheaves must be zero

R'f.Ov(=E) > 0— R .0y,  R'f.Ov(=E) - 0— h'(Q}).
Hence the statement follows by (3.2.4). O

The following is probably known to experts, but | could not find a reference, so
a proof is included here

LEMMA 3.3. LetU be a complex Cohen—Macaulay scheme of dimensidinen
R .0y =0for0<i <n—dmx, — 1.

Proof. Apply RFH omy (—, wy) to the short exact sequence$ f.oy — wy —
Q@ — 0.

By the Grauert—-Riemenschneider vanishing theorgm, ~qs Rf.wv, SO by

Grothendieck dualityR #omy(Q, wy) — Oy — Rf.Oy % forms a distin-
guished triangle, hence for> 0, R’ £,.0y ~ &xti,™(Q, wy).

Let x € U be a closed point. The local ring af @,, is a Cohen—Macaulay
ring of dimensionn, so (R’ £,0y), =~ &xt;™(Q, wy), =~ Exty (@, we,) = 0
forl<i+1<dm@®, —dim@, (cf. BH93, 3.5.11). Now the statement follows
since dim@, < dimX,. O

Remark3.3.1. In this lemmaf may be an arbitrary resolution of singularities
(as opposed to the assumption in (3.1)).

THEOREM 3.4.Let U be a complex variety of dimensianwith log canonical
Gorenstein singularities. Assume thétg%) =0fori >n—dimX, —1ThenU
has Du Bois singularities

Proof. Consider the following commutative diagram where the rows are distin-
guished triangles

Oy Q0 F—=

Fol

Oy Rf.Oy R —*

Fori > 0, h'(F) ~ h(Q%) c h'(Q%) by (3.2), soh'(F) = 0 fori >
n—dmX, — 1.

This remains true after taking general hyperplane sections, so as in (2.1), one
may assume that diipz < 0, i.e., for a finite set of points?, U\ P has Du Bois
singularities.

The cohomology sheaves @t are supported o?, so H'(U\P, F) = 0
for all i and since dinP < 0, one finds thaﬁHI’;(U, F) = ng, hi(F)).
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HY(U,hi(F)) =0fori > n—dmx, — 1, soH,(U, F) = 0forq > n—
dmzx, — 1.

On the other handy’(R) = 0 fori < 0O, since®y >~ f,Oy, andh'(R) ~
R f,0Oy = 0for0 <i <n—dmx, —1 by (3.3). ThenH; (U, h'(R)) = 0
fori < n—dimx, — 1 and all; trivially, and thenH%(U, R) = 0 for ¢ <
n—dmXx, — 1.

ThereforeH% (U, F') — H%L(U, R') is zero for allg. Now the following com-
mutative diagram

YU, F) — HL(U, Oy) — HL(U, Q7))

0 ~

H, YU, R) — HL(U, Oy) — H,L(U, Rf.Oy)

implies, thatll', *(U, F') — HL(U, Oy) is zero, thuss (U, Oy) — H, (U, Q7))
is injective. The result now follows by (2.2). O

COROLLARY 3.5.LetU be a complex variety with log canonical Cohen—Macaulay
singularities. Assume that eithdim X + dimX, + 1 < dimU or ~ has Du Bois
singularities. Thery has Du Bois singularities

Proof. Passing to the index 1 cover, as in Corollary 2.7, one may assume that
U has Gorenstein singularities. By (1.1.5) dim Suppg%) < dmX — i, so the
assumptions imply that dim Supp(Q%) < dimU —dimz, —1—i foralli > 0.
Then the statement follows by (3.4). O

Finally let us regard the opposite direction, namely that Du Bois singularities are
not far from being log canonical.

THEOREM 3.6.Let U be a normal variety and assume thi, is Cartier andU
has Du Bois singularities. Thdii is log canonical

Proof. The distinguished triangle of (1.1.8f, — Q3®Rf.Oy — Rf.Op —~
implies that the natural morphisRf.©y(—E) — Rf.0y factors through_z?, qis
Oy . Hence there exists a morphif.. Oy (—E) — Oy thatis a quasi-isomorphism
on U\X. Applying R#Homy(—,w;) to this morphism one obtaine, —
Rf.oy(E)[n] and taking the—nth cohomology gives a morphism; —
fiwy (E) thatis an isomorphism afi\ X (in particular it is not the zero morphism).
By adjointness this gives a nonzero morphigriioy — wy(E). f*wy is a line
bundle, so this implies that*wy C wy (E), and thereford/ is log canonical. O
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