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HOLOMORPHIC ONE-FORMS ON VARIETIES OF
GENERAL TYPE

BY CHRISTOPHERD. HACON1 AND SÁNDOR J. KOVÁCS2

ABSTRACT. – It has been conjectured that varieties of general type do not admit nowhere van
holomorphic one-forms. We confirm this conjecture for smooth minimal varieties and for varieties
Albanese variety is simple.

 2005 Elsevier SAS

RÉSUMÉ. – Selon une conjecture connue, les variétés de type général n’admettent pas de1-formes
holomorphes partout non-nulles. Nous vérifions cette conjecture pour les variétés lisses minimales
celles dont la variété d’Albanese est simple.

 2005 Elsevier SAS

1. Introduction

The impact of zeros of vector fields on the geometry of the underlying variety has been s
extensively, cf. [6,4,5,9,8,10,3,1,2]. For instance, it is known that the existence of a nowhe
vector field on a compact complex manifold implies that all of its characteristic numbers v

Carrell asked whether something similar is implied by the existence of a nowhere van
holomorphic one-form. He proved that this is the case for surfaces, namely ifS is a compac
complex surface admitting a nowhere vanishing holomorphic one-form, thenc1(S)2 andc2(S)
are zero [7]. On the other hand, he also gave an example of a threefoldX , a P1-bundle over
an abelian surface, for whichc1(X)3 �= 0. This suggests that one needs to treat varieties
negative Kodaira dimension differently.

Having to pay attention to the Kodaira dimension of the variety makes it natural to app
the problem from the point of view of classification theory and first restrict to the ca
minimalvarieties. For a minimal varietyX , KX is nef, thereforec1(X)dimX �= 0 is equivalent
to KdimX

X > 0 which is equivalent toX being of general type.
We are also led to varieties of general type via a different path. IfX admits a nowhere

vanishing holomorphic one-form, then [16, Theorem 3.1] implies that for genericP ∈ Pic0(X),
one hasHi(X,Ωj

X ⊗P) = 0 for all i, j. In particular,χ(X,ωX) = 0. On the other hand, whe
X is of maximal Albanese dimension (i.e.,dimX = dimalbX(X)) andAlb(X) is simple, then
X is a variety of general type if and only ifχ(X,ωX) > 0.

All of these considerations naturally lead to the following conjecture.

1 The author was partially supported by NSA grant MDA904-03-1-0101 and by a grant from the Sloan Founda
2 The author was partially supported by NSF grant DMS-0092165 and a Sloan Research Fellowship.
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CONJECTURE 1.1. – Let X be a smooth projective variety of general type. ThenX does not
admit a nowhere vanishing holomorphic one-form.

Once we focus on varieties of general type, restricting to the case of minimal varieties
right thing to do according to a conjecture of Carrell:

CONJECTURE 1.2 (Carrell). – Let X be a smooth projective variety of general type. IfX
admits a nowhere vanishing holomorphic one-form, thenX is minimal.

Remark1.2.1. – This is known for surfaces and using the classification of extr
contractions one can easily see that it also holds for threefolds. This was explicitly ch
in [24, Lemma 2.1].

Conjecture 1.1 has been confirmed for canonically polarized varieties (i.e., whose can
divisor is ample) in [29] and for threefolds in [24].

An immediate consequence of this conjecture is that a variety of general type does no
any smooth morphisms onto an abelian variety. For other applications the reader is refe
[29].

In this article we first prove Conjecture 1.1 for smooth minimal varieties.

THEOREM 1.3. – LetX be a smooth projective minimal variety of general type. ThenX does
not admit a nowhere vanishing holomorphic one-form.

This completely confirms Conjecture 1.1 assuming Conjecture 1.2. Using Remark 1.2
also gives a new proof of the threefold case [24, Theorem 1].

Using different methods than the ones used to prove Theorem 1.3, we also c
Conjecture 1.1 for varieties whose Albanese variety is simple.

THEOREM 1.4. – LetX be a smooth projective variety of general type. If its Albanese va
is simple, thenX does not admit a nowhere vanishing holomorphic one-form.

Definitions and notation1.5. – Let f :X → Y be a proper morphism. A line bundleL
on X is called f -nef if deg(L |C) � 0 for every proper curveC ⊆ X such thatf(C) is
a point. L is calledf -big if rankf∗L m > c · mn where c > 0 is a constant andn is the
dimension of the general fibre off . If Y = Speck for an algebraically closed fieldk, thenf -nef
(respectivelyf -big) is simply callednef (respectivelybig). For θ ∈ H0(X,ΩX), Z(θ) denotes
the zero locus ofθ. Let F be a torsion-free sheaf onX andι : U ↪→ X the locus whereF is
locally free. ThenŜm(F ) denotes the reflexive hull of themth symmetric power ofF , i.e.,
Ŝm(F ) = ι∗S

m(F |U ).

2. Smooth minimal models

The main goal of this section is to prove the following.

THEOREM 2.1. – Let Y be a projective variety with only rational singularities of dimens
n, and letφ :X → Y be a resolution of singularities ofY . Let φ

#
ΩY = im[φ∗ΩY → ΩX ].

Assume that there exists aθ ∈H0(X,φ
#
ΩY ) such that the zero locus ofθ is empty. Then for an

ample line bundleL onY , Hn(Y,L ) = 0.

Before we can prove this theorem we need some preparation.
Let X be a smooth variety of dimensionn. Let Φ be the functor of regular functions andΨ

the functor of Kähler differentials, i.e.,ΦX = OX andΨX = ΩX . Then anyθ ∈ H0(X,ΩX)
induces a morphismθX :ΦX → ΨX . In fact it induces a morphismθXi :ΦXi → ΨXi via pull
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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back for everyXi that admits a morphism,φi :Xi → X , toX . In other wordsθ induces a natura
transformation fromΦ to Ψ in the category ofX-schemes. Then by [23, 2.6, 2.9] there exis
functorially definedQr

θX
∈ Ob(D(X)) for all r � −1 such that for everyp ∈ N there exists a

distinguished triangle,

Q
p−1
θX

→ Ωp
X → Q

p
θX

+1−→ .(�)

Furthermore,Qr
θX

� 0 if r > n− 1 andQ
n−1
θX

� ωX .
SupposeZ(θ) is empty. Then by [14, Appendix B.3.4] the Koszul complex

0 → OX
∧θ−→ Ω1

X
∧θ−→Ω2

X
∧θ−→ · · · ∧θ−→Ωn−1

X
∧θ−→Ωn

X → 0,

induced by taking the wedge product withθ is exact. LetE −1 = 0, and

E i = ker(∧θ) :Ωi
X → Ωi+1

X

for i = 1, . . . , n− 1. ThenQ
r
θX

� E r+1 for r = 0, . . . , n− 2. In particularQ0
θX

� OX .
Next, results regarding the generalized De Rham complexes are summarized in the fo

theorem.

THEOREM 2.2 [11] [17, III.1.12, V.3.3, V.3.6, V.5.1]. –For every complex schemeY of
dimension n there exists anΩ·

Y ∈ Ob(Dfilt(Y )) with the following properties:
(2.2.1) Letφ· :X· → Y be any hyperresolution ofY . ThenΩ·

Y �Rφ·∗Ω·
X·

.
(2.2.2) The definition is functorial, i.e., ifφ :X → Y is a morphism of complex schemes, th

there exists a natural mapφ∗ of filtered complexes

φ∗ :Ω·
Y → Rφ∗Ω·

X .

Furthermore,Ω·
Y ∈ Ob(Db

filt,coh(Y )) and if φ is proper, thenφ∗ is a morphism in
Db

filt,coh(Y ).
(2.2.3) Let Ω·

Y be the usual De Rham complex of Kähler differentials considered with
“filtration bête”. Then there exists a natural map of filtered complexes

Ω·
Y → Ω·

Y

and ifY is smooth, it is a quasi-isomorphism.
(2.2.4) LetΩp

Y = Grp
F Ω·

Y [p]. ThenΩp
Y �Rφ·∗Ω

p
X·

for any hyperresolutionφ· :X· → Y .
(2.2.5) If Y is projective andL is an ample line bundle onY , then

Hq
(
Y,Ωp

Y ⊗L
)

= 0 for p + q > n.

To extend the definition ofQp
θX

to singular varieties we need the following.

LEMMA 2.3. –Let φ· :X· → Y be a hyperresolution ofY . Let φ
#
ΩY be defined as in(2.1).

Let θ ∈ H0(X0, φ
#
ΩY ) andθXi :OXi → ΩXi be the morphism induced by the sectionθ. Then

Rφ·∗Q
r
θ is independent of the hyperresolution chosen.
X·

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. –Let α be a morphism of hyperresolutions.

X ′
·

ε′
·

α
X ′′

·

ε′′
·

X
idX

X

Then by [23, 4.1] there exists a commutative diagram:

Rε′·Q
p−1
θX′

·
Rε′·Ω

p
X′

·
Rε′·Q

p
θX′

·

+1

Rε′′· Q
p−1
θX′′

·
Rε′′· Ωp

X′′
·

Rε′′· Q
p
θX′′

·

+1

Now Rε′·Ω
p
X′

·
� Ωp

Y � Rε′′· Ωp
X′′

·
by (2.2.4), and the statement follows from [11, 2.1.4] and�)

by descending induction onp. �
DEFINITION 2.4. – LetY be a variety of dimensionn. Let φ· :X· → Y be a hyperresolutio

of Y and letθ ∈ H0(X0, φ
#
ΩY ). We defineQr

θY
= Rφ·∗Q

r
θX·

for r � −1. By the lemma, this
is independent of the hyperresolution chosen, in particular ifY is smooth, it agrees with th
previous definition ofQr

θY
.

Proof of Theorem 2.1. –By (�) there exists a distinguished triangle,

Q
p−1
θY

→Ωp
Y →Q

p
θY

+1−→(��)

for everyp ∈ N, so by (2.2.5),

Hn−p
(
Y,Qp

θY
⊗L

)
→ Hn−(p−1)

(
Y,Qp−1

θY
⊗L

)
is surjective for allp, and then

H0
(
Y,Qn

θY
⊗L

)
→ · · · → Hn

(
Y,Q0

θY
⊗L

)
is also surjective. NowH0(Y,Qn

θY
⊗L ) = 0 sinceQ

n
θY

= 0, so we obtain that

Hn
(
Y,Q0

θY
⊗L

)
= 0.

On the other hand, the previous observation in the caseZ(θ) = ∅, (2.2.2), (2.2.3), (��) and
[23, 4.1] implies that the following diagram is commutative:

OY

ρ

Ω0
Y Q

0
θY

Rφ∗OX
�

Rφ∗Ω0
X

�
Rφ∗Q

0
θX
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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Now ρ has a left inverse, and hence in turn the morphismOY → Q
0
θY

has a left inverse. Finall
that implies thatHn(Y,L )→ Hn(Y,Q0

θY
⊗L ) = 0 is injective. �

The following lemma is a simple corollary of the Basepoint-free theorem. This fact is
known to experts in higher dimensional birational geometry, but since it seems not tha
known otherwise we include a proof for the convenience of the reader.

LEMMA 2.5. – Let X be a projective variety with rational Gorenstein singularities a
assume thatωX is nef and big. Then

⊕∞
m=0 H0(X,ωm

X ) is a finitely generatedk-algebra and
Y = Proj(

⊕∞
m=0 H0(X,ωm

X )) has rational Gorenstein singularities andωY is an ample line
bundle.

Proof. –
⊕∞

m=0 H0(X,ωm
X ) is a finitely generatedk-algebra by [20, (3.11)]. The Basepoin

free theorem [20, (3.3)] (cf. [26]) implies that form 	 0, ωm
X is generated by global section

Then the morphism given by the global sections ofωm
X maps toY , it is independent ofm 	 0

and is its own Stein factorization. I.e., there exist a birational morphismφ :X → Y and ample
line bundlesMm onY such thatωm

X = φ∗Mm. Hence

ωX � ωm+1
X ⊗

(
ωm

X

)−1 � φ∗(Mm+1 ⊗M−1
m

)
and soφ∗ωX �Mm+1 ⊗M−1

m is an ample line bundle. In particular, it is reflexive.Y is normal
andφ is birational, soφ∗ωX agrees withωY on an open subsetU such thatcodim(Y \U,Y ) � 2.
They are both reflexive, soωY � φ∗ωX is an ample line bundle.

This implies thatY has canonical singularities and then it has rational singularities by
(cf. [22]). In particular,Y is Cohen–Macaulay and combined withωY being a line bundle tha
implies thatY is Gorenstein. �

We are now ready to prove our main theorem.

Proof of Theorem 1.3. –Consider the Albanese morphism ofX ,

albX :X → Alb(X)

and the natural morphism fromX to its canonical model

φ :X → Y = Proj

( ∞⊕
m=0

H0
(
X,ωm

X

))
.

By a result of Reid (cf. [19, (8.1)])albX factors throughφ. Therefore, using the notation
(2.1),H0(X,ΩX) = H0(X,φ#ΩY ). By (2.5)Y has rational singularities andωY is an ample
line bundle, so (1.3) follows from (2.1) and the fact thatHn(Y,ωY ) �= 0. �

3. Varieties whose Albanese variety is simple

We are going to study the Albanese morphism ofX and employ different strategies depend
on whether it is surjective or not.

Case I. – albX is not surjective.

PROPOSITION 3.1. –Let Z � A be a proper closed subvariety of the abelian varietyA. If A
is simple, then for every holomorphic one-formθ ∈H0(A,Ω1

A), θ|Z has a non-empty zero set
ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Proof. –LetW ⊂ H0(A,Ω1
A) be the set of those holomorphic one-formsθ ∈H0(A,Ω1

A) such
thatθ|Z vanishes at some pointz ∈ Z. It is easy to see thatW is closed and so it suffices to sho
thatW is dense inH0(A,Ω1

A).
Let r = dimZ and letZ0 be the set of smooth points ofZ. For anyz ∈ Z0, one has that th

tangent spaceTz(Z) ∼= Cg−r ⊂ Tz(A) ∼= H0(A,Ω1
A)∨ ∼= Cg . Let Z ⊂ Pg−1 be the closure o

the imageZ0 of the corresponding projective bundleP := P(T (Z0)⊥) under the correspondin
map. One sees that ifZ = Pg−1, thenW is dense inH0(A,Ω1

A).
Suppose thatZ �= Pg−1, i.e.,dimZ < g−1. Letp ∈ Z be a general point, thendimZ < g−1

implies that the corresponding fiberPp is positive dimensional. Consider now the project
π :P → Z0 and the subvarietyZp given by the closure ofπ(Pp)∩Z0 ⊂ A; one has

dimZp = g − 1− dimZ > 0.

For generalx ∈ Zp, one has forLp the line corresponding top that Lp ⊂ Tx(Z)⊥ and so
Tx(Zp)⊂ Tx(Z)⊂ Hp := L⊥

p . It follows thatZp generates a proper abelian subvarietyAp � A.
This is a contradiction, soW = H0(A,Ω1

A). �
COROLLARY 3.2. – Let X be a projective variety andα :X → A a morphism to a simpl

abelian variety. IfZ := α(X) �= A, then every holomorphic one-form

θ ∈ α∗H0
(
A,Ω1

A

)
⊂ H0

(
X,Ω1

X

)
has a non-empty zero set.

Case II. – albX is surjective.

Notation 3.3. – LetX be a projective variety and letα :X → A be a surjective morphism t
an abelian variety. Let∆⊂ A be the locus whereα is not smooth.

PROPOSITION 3.4. – Under the assumptions of(3.3)assume that∆ contains an irreducible
divisor D of general type. Then every holomorphic one-formθ ∈ α∗H0(A,Ω1

A) ⊂ H0(X,Ω1
X)

has a non-empty zero set.

Proof. –ConsiderW ⊂ H0(A,Ω1
A) the set of those holomorphic one-formsθ ∈ H0(A,Ω1

A)
such thatα∗θ ∈ H0(X,Ω1

X) vanishes at some pointx ∈ X . As above,W is closed and so i
suffices to show that it is dense.

ConsiderD0 ⊂ D a (non-empty) open set such that for allz ∈D0 there is a pointx ∈ Xz with
rank(dαx) = g − 1 (cf. [18, III.10.6]) andD is smooth atz. Let x1, . . . , xg be local coordinate
of A atz such thatD is defined byxg = 0 andθ = θz ∈H0(A,Ω1

A) such thatθ(z) = dxg . Then,
θ spans the subspaceTz(D)⊥ ⊂ H0(A,Ω1

A) andθ|D vanishes atz andα∗θ vanishes at som
point x ∈ X such thata(x) = z (in fact at any such point withrank(dαx) = g − 1). SinceD is
of general type, by [15] (cf. [25, (3.9)]), its Gauss map is generically finite and so one see
the set{θz | z ∈ D0} ⊂W is dense inH0(A,Ω1

A). (Reasoning as in the previous propositi
we have thatP ∼= Z0 andP → Pg−1 is generically finite and so it is dominant.)�

PROPOSITION 3.5. – Under the assumptions of(3.3) assume that there exists a posit
integerm such thatα∗(ωm

X/A) is big. Thenα is not smooth in codimension one, i.e.,∆ contains
a divisor.

Proof. –Sinceα∗(ωm
X/A) is big, for any ample line bundleH on A there exists an intege

a > 0 such thatŜa(α∗(ω⊗m
X/A)) ⊗ H −1 is big. Letmk :Ak � A → A be multiplication by an

integerk, somk is an étale map such thatm∗
kH = (Hk)k with Hk an ample line bundle onAk.
4e SÉRIE– TOME 38 – 2005 –N◦ 4
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Let g = dimA, r = dimX − dimA, andk = 3r(g − 1)ma. Further letHk be a divisor onAk

such thatOA(Hk) �Hk and finally let

α′ :X ′ := X ×A Ak → Ak = A.

Then

m∗
k

(
Ŝa

(
α∗

(
ωm

X/A

))
⊗H −1

)
= Ŝa

(
α′

∗
(
ωm

X′/A

))
⊗

(
Hk

3r(g−1)
)−ma

is big (cf. [25, (5.1.1) (d)]) and henceα′
∗(ωm

X′/A) ⊗ (Hk
3r(g−1))−m is also big. SinceHk is

ample,3Hk is very ample. LetC be a curve obtained by intersectingg − 1 general elements i
|3Hk| andA := H

3r(g−1)
k |C . Then

degωC = (g − 1)(3Hk)g and degA = 3r(g − 1)Hk · (3Hk)(g−1) = r degωC .

Let Y = (α′)−1(C) andh = α′|Y :Y → C. If α is smooth in codimension one, thenα′ is smooth
in codimension one and soh is smooth. Since(

α′
∗
(
ωm

X′/A

)
⊗

(
Hk

3r(g−1)
)−m)∣∣C = h∗

(
ωm

Y/C

)
⊗A −m,

it follows that h∗(ωm
Y/C) ⊗ A −m is also big and hence ample. By [28, Proposition 4.1] (w

δ = 0, s = 0), one has

degA < dim(Y/C)degωC = r degωC .

This is impossible and henceα is not smooth in codimension one.�
Proof of Theorem 1.4. –SinceA is simple, by [27, 10.9] (cf. [25, Theorem 3.7]) any prop

subvariety ofA is of general type. By (3.2) we may assume thatalbX :X → A is surjective.
Then by (3.4), we may assume thatalbX is smooth in codimension one (again using [27, 10
to see that every divisor is of general type).

Now let X → Z → A be the Stein factorization ofalbX . Then Z → A is smooth and
hence étale in codimension one, soZ is birational to an abelian variety. It follows thatZ
is birational toA and albX :X → A is an algebraic fiber space. SinceX is of general type
(albX)∗(ωm

X/A) = (albX)∗(ωm
X ) is big for somem > 0, but by (3.5) this is impossible.�
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