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HOLOMORPHIC ONE-FORMS ON VARIETIES OF
GENERAL TYPE

BY CHRISTOPHERD. HACON! AND SANDOR J. KOVACS?

ABSTRACT. — It has been conjectured that varieties of general type do not admit nowhere vanishing
holomorphic one-forms. We confirm this conjecture for smooth minimal varieties and for varieties whose
Albanese variety is simple.
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RESUME. — Selon une conjecture connue, les variétés de type général n'admettent pdsroes
holomorphes partout non-nulles. Nous vérifions cette conjecture pour les variétés lisses minimales et pour
celles dont la variété d'Albanese est simple.
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1. Introduction

The impact of zeros of vector fields on the geometry of the underlying variety has been studied
extensively, cf. [6,4,5,9,8,10,3,1,2]. For instance, it is known that the existence of a nowhere zero
vector field on a compact complex manifold implies that all of its characteristic numbers vanish.

Carrell asked whether something similar is implied by the existence of a nowhere vanishing
holomorphic one-form. He proved that this is the case for surfaces, namglysi compact
complex surface admitting a nowhere vanishing holomorphic one-form,ci{éh? andc(.9)
are zero [7]. On the other hand, he also gave an example of a thre€faddP!-bundle over
an abelian surface, for which (X)? # 0. This suggests that one needs to treat varieties with
negative Kodaira dimension differently.

Having to pay attention to the Kodaira dimension of the variety makes it natural to approach
the problem from the point of view of classification theory and first restrict to the case of
minimal varieties. For a minimal varietX, Kx is nef, therefore:; (X)4™X £ 0 is equivalent
to K{mX > 0 which is equivalent toX being of general type.

We are also led to varieties of general type via a different path¥ ladmits a nowhere
vanishing holomorphic one-form, then [16, Theorem 3.1] implies that for gerericPic’ (X),
one hasH*(X, Q% @ £2) =0 for all 4, j. In particular,x(X,wx) = 0. On the other hand, when
X is of maximal Albanese dimension (i.dim X = dimalbx (X)) andAlb(X) is simple, then
Xis a variety of general type if and only if(X,wx) > 0.

All of these considerations naturally lead to the following conjecture.
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600 C.D. HACON AND S.J. KOVACS

CONJECTURE 1.1. — Let X be a smooth projective variety of general type. Thedoes not
admit a nowhere vanishing holomorphic one-form.

Once we focus on varieties of general type, restricting to the case of minimal varieties is the
right thing to do according to a conjecture of Carrell:

CONJECTURE 1.2 (Carrell). — Let X be a smooth projective variety of general typeXif
admits a nowhere vanishing holomorphic one-form, theis minimal.

Remark1.2.1.— This is known for surfaces and using the classification of extremal
contractions one can easily see that it also holds for threefolds. This was explicitly checked
in [24, Lemma 2.1].

Conjecture 1.1 has been confirmed for canonically polarized varieties (i.e., whose canonical
divisor is ample) in [29] and for threefolds in [24].

An immediate consequence of this conjecture is that a variety of general type does not admit
any smooth morphisms onto an abelian variety. For other applications the reader is referred to
[29].

In this article we first prove Conjecture 1.1 for smooth minimal varieties.

THEOREM 1.3. — Let X be a smooth projective minimal variety of general type. Thetoes
not admit a nowhere vanishing holomorphic one-form.

This completely confirms Conjecture 1.1 assuming Conjecture 1.2. Using Remark 1.2.1 this
also gives a new proof of the threefold case [24, Theorem 1].

Using different methods than the ones used to prove Theorem 1.3, we also confirm
Conjecture 1.1 for varieties whose Albanese variety is simple.

THEOREM 1.4. — Let X be a smooth projective variety of general type. If its Albanese variety
is simple, thenX does not admit a nowhere vanishing holomorphic one-form.

Definitions and notationl.5. — Letf: X — Y be a proper morphism. A line bundl&’
on X is called f-nef if deg(Z|c) > 0 for every proper curveC' C X such thatf(C) is
a point. .Z is called f-big if rank f,.£™ > ¢ - m™ wherec > 0 is a constant ana is the
dimension of the general fibre ¢f If Y = Spec k for an algebraically closed field, then f-nef
(respectivelyf-big) is simply callednef (respectivelybig). Forf € H°(X,Qx), Z(6) denotes
the zero locus of. Let . be a torsion-free sheaf oki and.: U — X the locus where7 is
locally free. ThenS™ (%) denotes the reflexive hull of theth symmetric power of#, i.e.,

S™(F) =1,5™(F|v).

2. Smooth minimal models

The main goal of this section is to prove the following.

THEOREM 2.1. — LetY be a projective variety with only rational singularities of dimension
n, and let¢: X — Y be a resolution of singularities of . Let ¢” Qy = im[¢*Qy — Qx].
Assume that there exist@)a H°(X, qs# Qy ) such that the zero locus 6fis empty. Then for any
ample line bundleZ onY, H"(Y,.¥) = 0.

Before we can prove this theorem we need some preparation.

Let X be a smooth variety of dimension Let ® be the functor of regular functions and
the functor of Kahler differentials, i.e®x = ¢x and¥x = Qx. Then anyd € H°(X,Qx)
induces a morphisfix : ®x — ¥ x. In fact it induces a morphisriy, : x, — ¥, via pull
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HOLOMORPHIC ONE-FORMS ON VARIETIES OF GENERAL TYPE 601

back for everyX; that admits a morphisng,; : X; — X, to X. In other word9) induces a natural
transformation from® to W in the category ofX-schemes. Then by [23, 2.6, 2.9] there exists a
functorially definedQ, < Ob(D(X)) for all » > —1 such that for every € N there exists a
distinguished triangle,

p—1 i3 p +1
() gOX - QX _)g(’x -

FurthermoreQj ~O0if r>n—1andQy ' ~wx.
SupposeZ(6) is empty. Then by [14, Appendix B.3.4] the Koszul complex

0 0x 25l 2% 0% 2. M gt Mogn g,
induced by taking the wedge product withs exact. Lets~! =0, and
& =ker(A9): Q% — QL
fori=1,...,n—1.ThenQ; =~ St forr=0,...,n—2.1n particularggx ~0x.
Next, results regarding the generalized De Rham complexes are summarized in the following
theorem.

THEOREM 2.2 [11] [17, 111.1.12, V.3.3, V.3.6, V.5.1]. -For every complex schemg of
dimension n there exists &b € Ob(Dgy(Y")) with the following properties
(2.2.1) Leto.: X. — Y be any hyperresolution &f. Then{2y- ~ R¢..C2 .
(2.2.2) The definition is functorial, i.e., tb: X — Y is a morphism of complex schemes, then
there exists a natural mag* of filtered complexes

¢":Qy — Rp. Q.
Furthermore,Qy € Ob(Dglt_rcoh(Y)) and if ¢ is proper, theng* is a morphism in
Dglt,coh (Y)

(2.2.3) Let ;- be the usual De Rham complex of Kéahler differentials considered with the
“filtration béte”. Then there exists a natural map of filtered complexes

Qy — Oy
and if Y is smooth, it is a quasi-isomorphism.
(2.2.4) LetQ}, = Gri.Qy [p]. ThenQ}. ~ R¢.,.QF for any hyperresolution. : X. — Y.
(2.2.5) If Y is projective andZ is an ample line bundle ok, then
HY(Y,Q) @ £)=0 forp+q>n.
To extend the definition 0@2}( to singular varieties we need the following.
LEMMA 2.3.-Let¢.: X. — Y be a hyperresolution of". Letgb# Qy be defined as i(2.1).
Letd € HO(X,, ¢>#Qy) andfy, : 0x, — Qx, be the morphism induced by the sectibriThen

R¢..9y isindependent of the hyperresolution chosen.
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602 C.D. HACON AND S.J. KOVACS

Proof. —Let « be a morphism of hyperresolutions.

X/ o X//

% lg

X—X
idx
Then by [23, 4.1] there exists a commutative diagram:

-1 ! 1
Rglgg , ——— Rglﬂg(/ R Rggg , ;
X! . X!

o]

1p—1 1OP 11D +1
RE' gexn 2 RE' QX” RS' —ex”

Now Re'Q%, ~ QY ~ Re”"Q%,, by (2.2.4), and the statement follows from [11, 2.1.4] ard (
by descending inductiongn O

DEFINITION 2.4.— LetY be a variety of dimension. Let¢.: X. — Y be a hyperresolution
of Y and letd € HO(X0,¢#QY). We defineQ, = R¢..Q,  forr > —1. By the lemma, this
is independent of the hyperresolution chosen, in particulaf i smooth, it agrees with the
previous definition of2; .

Proof of Theorem 2.1. By (x) there exists a distinguished triangle,
() Q7 - 0 — 928
for everyp € N, so by (2.2.5),

H—P (Y" ggy ® g) _ Hn—(l)—l) (Y" Q}é;l ® f)
is surjective for allp, and then
HO(Y,gZ‘Y ®$) — .. —>H"(Y,ggy ®f)
is also surjective. Now (Y, 9, ® Z)=0sinceQy, =0, sowe obtain that
H"(Y,Qy, ®.£)=0.

On the other hand, the previous observation in the ¢age = 0, (2.2.2), (2.2.3),4*x) and
[23, 4.1] implies that the following diagram is commutative:

Oy Q5 Q3.

o

R¢.Ox — Ry, Q% — > Ry
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Now p has a left inverse, and hence in turn the morphigm— ng has a left inverse. Finally
that implies that" (Y, .¢) — H" (Y, ggy ®.Z)=0isinjective. O

The following lemma is a simple corollary of the Basepoint-free theorem. This fact is well
known to experts in higher dimensional birational geometry, but since it seems not that well
known otherwise we include a proof for the convenience of the reader.

LEMMA 2.5.— Let X be a projective variety with rational Gorenstein singularities and
assume thawx is nef and big. ThegD ~_, H°(X,w?) is a finitely generated:-algebra and
Y =Proj(P;._, H°(X,w¥)) has rational Gorenstein singularities and, is an ample line
bundle.

Proof. -@_-_, H(X,w?) is a finitely generate@-algebra by [20, (3.11)]. The Basepoint-

m=0

free theorem [20, (3.3)] (cf. [26]) implies that for >> 0, W' is generated by global sections.
Then the morphism given by the global sections.§f maps toY’, it is independent ofn >> 0
and is its own Stein factorization. |.e., there exist a birational morphkisii — Y and ample
line bundles#,, onY such that} = ¢*.#,,. Hence

wy 2wt e (wg’g)_l ~ O (M1 @ M)

and sop.wy >~ M1 @ A, is an ample line bundle. In particular, it is reflexivé is normal
and¢ is birational, sap.wx agrees withuy- on an open subsét such thatodim(Y \U,Y) > 2.
They are both reflexive, soy ~ ¢.wx is an ample line bundle.

This implies thatY” has canonical singularities and then it has rational singularities by [13]
(cf. [22]). In particular,Y is Cohen—Macaulay and combined withy being a line bundle that
implies thatY is Gorenstein. O

We are now ready to prove our main theorem.

Proof of Theorem 1.3. €onsider the Albanese morphism &f,
albx : X — Alb(X)

and the natural morphism frofd to its canonical model

¢;X_>Y:Proj<@ HO(X,w””)>.

m=0

By a result of Reid (cf. [19, (8.1)]xbx factors throughyp. Therefore, using the notation of
(2.1), HY(X,Qx) = H°(X, ¢7Qy). By (2.5)Y has rational singularities anad is an ample
line bundle, so (1.3) follows from (2.1) and the fact th&t (Y,wy ) #0. O

3. Varietieswhose Albanese variety issimple

We are going to study the Albanese morphisnXo&nd employ different strategies depending
on whether it is surjective or not.

Casel. —alby is not surjective.
PROPOSITION 3.1. —Let Z C A be a proper closed subvariety of the abelian varidtyif A
is simple, then for every holomorphic one-fofra H°(A, %), 0]z has a non-empty zero set.
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604 C.D. HACON AND S.J. KOVACS

Proof. —Let W C H?(4, Q) be the set of those holomorphic one-forths H°(A, %) such
thatf|; vanishes at some pointe Z. Itis easy to see thad is closed and so it suffices to show
that is dense inH° (4, Q).

Letr = dim Z and letZ, be the set of smooth points &f. For anyz € Z;, one has that the
tangent spacé, (Z) = C9" C T.(A) = H°(A, QY)Y = CY. Let Z C P9~ ! be the closure of
the imagez, of the corresponding projective bundie:= P(T(Z,)~+) under the corresponding
map. One sees that# = P91, thenW is dense i1 (A4, Q).

Suppose thag #P9~!,j.e.,dim Z < g— 1. Letp € Z be a general point, thelim Z < g—1
implies that the corresponding fib&t, is positive dimensional. Consider now the projection
m: P — Z, and the subvariety,, given by the closure of (P,) N Zy C A; one has

dimZ,=9g—-1—-dimZ >0.

For generalz € Z,, one has forL, the line corresponding tp that L, C 7,,(Z)* and so
T.(Z,) C Tw(Z) C Hy := L . It follows thatZ, generates a proper abelian subvarigfyC A.
This is a contradiction, sV = H°(4,Q%). O

COROLLARY 3.2.— Let X be a projective variety and.: X — A a morphism to a simple
abelian variety. IfZ := «(X) # A, then every holomorphic one-form

0 ca*H(AQ)) C H (X, Q)

has a non-empty zero set.
Casell. — albx is surjective.

Notation 3.3. — LetX be a projective variety and let: X — A be a surjective morphism to
an abelian variety. Lef C A be the locus where is not smooth.

PrROPOSITION 3.4. — Under the assumptions ¢8.3) assume thaf\ contains an irreducible
divisor D of general type. Then every holomorphic one-ferma* H%(A,QY) C H°(X, QL)
has a non-empty zero set.

Proof. —Consider ¢ H?(A,Y) the set of those holomorphic one-forg H°(A, Y})
such thata*0 € H°(X, QL) vanishes at some pointe X. As above WV is closed and so it
suffices to show that it is dense.

ConsiderD® c D a (non-empty) open set such that forat DY there is a point: € X, with
rank(dey,) = g — 1 (cf. [18, 111.10.6]) andD is smooth at. Letz1,...,z, be local coordinates
of A atz such thatD is defined byr, = 0 andd = 6, € H°(A, Q) such that(z) = dz,. Then,
¢ spans the subspa@e (D)* c H°(A,QY) andd|p vanishes at anda*6 vanishes at some
pointz € X such thata(z) = z (in fact at any such point withank(da,.) = g — 1). SinceD is
of general type, by [15] (cf. [25, (3.9)]), its Gauss map is generically finite and so one sees that
the set{6, | z € D°} Cc W is dense inH°(A,2}). (Reasoning as in the previous proposition,
we have thaP = Z, andP — P9~! is generically finite and so it is dominant.)J

PrRoPOSITION 3.5. — Under the assumptions (f3.3) assume that there exists a positive
integerm such thah*(w)“g/A) is big. Thernw is not smooth in codimension one, i.A contains
a divisor.

Proof. —Sincea*(wgg/A) is big, for any ample line bundlgZ on A there exists an integer
a > 0 such tha@“(a*(w?yﬂ‘)) ® 1 is big. Letmy,: Ay ~ A — A be multiplication by an
integerk, somy, is an étale map such thai; 77 = (4)F with 27, an ample line bundle oA,
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Letg=dim A, r =dim X — dim A, andk = 3r(g — 1)ma. Further letH, be a divisor onAy
such thatr' 4 (H},) ~ 4%, and finally let

o X=X x4 A — Ay = A.

Then
m;: (:g\a (a* (W?/A)) ®%ﬂf1) _ §a(a/* (w?g//A)) ® (%ﬂk?w(g—l))fma

is big (cf. [25, (5.1.1) (d)]) and henc€ (w7, ) ® (4> 9~1)=™ is also big. SinceH, is
ample,3H}, is very ample. LeC be a curve obtained by intersecting- 1 general elements in
13H,,| and.e7 := #°"9"|. Then

degwe = (g —1)(3Hy)? and deg” =3r(g—1)Hy - (3H) 9™V = rdegwe.

LetY = (o/)~}(C) andh = o/|y : Y — C. If a is smooth in codimension one, thehis smooth
in codimension one and gois smooth. Since

(a'* (W)"(l//A) ® (%pkf}r(gfl))fm) ’C s (W$/C) Qo™

it follows that h*(wg’ﬁ/c) ® «/~™ is also big and hence ample. By [28, Proposition 4.1] (with
6 =0, s=0), one has

deg 7 < dim(Y/C)degwe =rdegwe.
This is impossible and heneeis not smooth in codimension onen

Proof of Theorem 1.4. Since A is simple, by [27, 10.9] (cf. [25, Theorem 3.7]) any proper
subvariety ofA is of general type. By (3.2) we may assume thiity : X — A is surjective.
Then by (3.4), we may assume thdb x is smooth in codimension one (again using [27, 10.9]
to see that every divisor is of general type).

Now let X — Z — A be the Stein factorization oflbyx. Then Z — A is smooth and
hence étale in codimension one, Zois birational to an abelian variety. It follows that
is birational toA andalbx : X — A is an algebraic fiber space. Sindgis of general type,
(albx)*(w;’g/A) = (albx).(w%) is big for somen > 0, but by (3.5) this is impossible.0
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