Homework
Assignment | Due Date | Reading Assigment | Practice Problems | Required Problems |
1 | 10/3 | Munkres, §§1-4 (except pp. 15-16); Functions handout |
§1: #2 §2: #6 |
§1: #9 §2: #1, 2, 4, 5 §3: #4 |
2 | 10/10 | Munkres, §§5-7; Metric Spaces handout; Munkres, §§12-13 |
Metric Spaces handout: All non-required exercises; §13: #1, 2 |
Metric Spaces handout: Ex. 3.7, 3.9, 3.11, 3.14, 3.17; §13: #3, 4 |
3 | 10/17 | Munkres §15, §16(pp. 88-90 down to the end of the proof); §17(pp. 92-94) | §13: #7 (except ); §16: #3; §17: #3; |
§16: #1,6; §17: #1,2; Supplementary exercise S1 |
4 | 10/24 | Munkres, rest of §17, all of §18 | §17: #6, 7, 14, 20 §18: #2, 7(b) |
§17: #11, 12, 13; §18: #4, 7(a); Supplementary exercises S2, S3. |
5 | 10/31 | Munkres, §19, §20 (pp. 119-123), §21 (Lemma 21.2 only), §22. | §18: #10 §19: #4 §22: #5 |
§19: #3(finite products only) §20: #3(a) §21: #1 §22: #2, 3, 4 |
6 | 11/14 | Munkres, §23, §24 | §23: #1, 4 §24: #3, 11 |
§23: #3, 5*, 9 *For the converse of #5, either prove it or give a counterexample. §24: #1, 2, 10 |
7 | 11/21 | Munkres, §26, §27 | §26: #1, 2. | §26: #3, 4, 5; Supplementary exercises S4, S5, S6 (CORRECTED 11/19) |
8 | 11/28 | Munkres, §28 | Supplementary exercises S7, S8, S9 | |
9 | 12/5 | Simply Connected Spaces handout (see corrections) | Simply Connected Spaces handout: Ex. 10 |
Simply Connected Spaces handout: Ex. 1, 2, 3, 4, 7, 8, 9 |