Math 441 Topology Fall 2012 Assignment #4 Supplement

Problem S2: Let X be a set, and let \mathscr{T}_1 and \mathscr{T}_2 be topologies on X. Let X_1 and X_2 denote the topological spaces (X, \mathscr{T}_1) and (X, \mathscr{T}_2) , respectively, and let $i: X_1 \to X_2$ denote the identity map of X.

- (a) Show that i is continuous from X_1 to X_2 if and only if \mathscr{T}_1 is finer than \mathscr{T}_2 .
- (b) Show that $i: X_1 \to X_2$ is a homeomorphism if and only if $\mathscr{T}_1 = \mathscr{T}_2$.

Problem S3: Suppose X and Y are topological spaces and $f: X \to Y$ is a continuous map.

- (a) If f has a continuous left inverse $g: Y \to X$, prove that f is a topological embedding.
- (b) Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be the function f(x) = 1/x. Prove that f is a topological embedding that does not have a continuous left inverse.