Math 441TopologyFall 2012Assignment #7 Supplement (CORRECTED)

Exercise S4: Suppose X is a compact topological space and $f: X \to \mathbb{R}$ is a continuous function that is everywhere positive: f(x) > 0 for all $x \in X$. Show that there is some positive number ε such that $f(x) \ge \varepsilon$ for all $x \in X$. Give a counterexample when X is not compact.

Exercise S5: Suppose X is a noncompact Hausdorff space. Let ∞ be some object not in X, and let $X^* = X \cup \{\infty\}$. Define a topology on X^* by declaring the open sets to be of the following two types:

- (i) Open subsets of X (in its given topology);
- (ii) Sets of the form $\{\infty\} \cup (X \setminus K)$, where K is a compact subset of X.

(You may accept the fact that this is a topology.) Prove that X^* is compact. (The space X^* is called the *one-point compactification of* X.)

Exercise S6: Prove that the one-point compactification of \mathbb{R}^2 is homeomorphic to S^2 . [Hint: Define $f: (\mathbb{R}^2)^* \to S^2$ by

$$f(u,v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, \frac{u^2 + v^2 - 1}{u^2 + v^2 + 1}\right), \qquad (u,v) \in \mathbb{R}^2;$$

$$f(\infty) = (0,0,1),$$

and use the closed map lemma to show that f is a homeomorphism.]