Math 441 Topology Assignment #8 (CORRECTED Nov. 28)

Exercise S7: Endow the set \mathbb{Z} of integers with the topology defined by declaring a subset $U \subset \mathbb{Z}$ to be open if and only if it *symmetric*, meaning that $n \in U \implies -n \in U$. Prove that \mathbb{Z} with this topology is limit point compact but not compact.

Fall 2012

Exercise S8: If X is a compact metric space, prove that there is a countable basis for its topology. [Hint: begin by covering X with open balls of radius 1/n.]

Exercise S9: If X is a topological space, a subset $S \subset X$ is said to be *dense* if every nonempty open subset of X contains a point of S. Prove that every compact metric space contains a countable dense subset.