Homework Assignments (most recent first)

Number Reading Practice
Problems
Written
Problems
Due Date
9 §9.3, 9.4
More About Countable Sets
p. 460, #2, 3, 5ab, 7a
p. 473 #1, 2, 3, 5, 6
p. 461, #9, 10;
#1, 2, 3 from this handout
p. 473 #4, 7, 12;
#1 from this handout
Wed 12/6
Portfolio
#2
    This problem Mon 12/4
8 §6.6, 6.7;
§9.1
More About Finite Sets;
§9.2
p. 357 #1, 2, 5 p. 358 #6, 7, 11, 12, 13 Wed 11/29
Portfolio
#1
    Second draft due Fri 12/1
7 §§6.2, 6.3, 6.4
Inverse Functions
p. 274 #1ad, 2a, 3ab
p. 292 #4
p. 303 #1, 3cd
p. 317 #1, 2a, 3ab, 9a
p. 330 #1, 2, 4, 5a, 9
p. 274 #4b, 5b
p. 318 #2b, 4cd, 8, 9b
p. 331 #5b, 6, 10ab
Wed 11/22
Portfolio
#1
    This problem Fri 11/17
6 §5.4
§§5.5, 5.6;
§6.1
p. 238 #1ab, 7ab, 15ab
p. 251 #1ac, 2, 9a
p. 262 #1ae, 3, 4
p. 263 #10 (optional)
p. 239 #6ac, 17b
p. 252 #7, 10
p. 262 #2bch, 5, 9
Wed 11/15
5 §§4.3, 4.4
§§5.1, 5.2, 5.3
p. 184 #18c, 19
p. 196 #2
p. 208 #8
p. 224 #1, 3, 6a, 7cdefgh, 11
p. 184 #18ab
p. 196 #3, 10
p. 207 #2b, 10
p. 226 #6bc, 8cdefghi, 15
Wed 11/1
4 §§3.6, 3.6, 4.1;
The Division Theorem

§4.2
NEW: Mathematical Induction
p. 126 #5, 6ab
p. 137 #1, 3, 13a
p. 153 #1, 4ab
p. 180 #3a, 8a
p. 126 #6cd
p. 138 #5a, 7, 13b
p. 154 #11a
p. 154 #12
p. 180 #3bc, 8b
Wed 10/25
3 NEW:
Some Remarks on Writing Mathematical Proofs
Theorems 42, 51, 61, 64 on the Axioms handout
p. 96 #1abc, 2a, 3b, 4
p. 112 #1abcd
Theorems 64, 75, 78, 90 on the Axioms handout
(two-column proofs)
p. 96 #3ah, 9
p. 112 #5
(paragraph proofs)
Wed 10/18
2 §§3.1, 3.2;
Axioms for the Real Numbers
§§3.3, 3.4;
Proof Templates handout
§3.5
p. 74 #1, 2ab, 3ace, 4ae, 5ae

Theorems 5, 7, 8, 9, 12 on the Axioms handout

Theorems 30, 41, 45 on the Axioms handout

p. 74 #3bdfg, 4bcdf, 5bcdf

Theorems 6, 10, 11, 20 on the Axioms handout
(two-column proofs)
Wed 10/11
1 §§1.1, 1.2, 1.3, 2.1*;
Mathematical Statements;
Homework Guidelines
§§2.2, 2.3, 2.4, 2.5
**All Progress Checks;
p.12 #1abc, 6abc, 9
p. 40 #1, 2, 5
p. 49 #3abcde
p. 40 #3, 6, 9
p. 49 #3fghi, 6
Wed 10/4

*Chapter, page, and problem numbers refer to the textbook, Mathematical Reasoning, by Ted Sundstrom.

**You should try all Progress Checks in the assigned reading, and check your answers against the back of the book.