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Math 300 Introduction to Mathematical Reasoning Fall 2017

More About Finite Sets

Please read this handout after Section 9.1 in the textbook.

The Cardinality of a Finite Set

Our textbook defines a set A to be finite if either A is empty or A ≈ Nk for some natural number k,
where Nk = {1, . . . , k} (see page 455). It then goes on to say that A has cardinality k if A ≈ Nk,
and the empty set has cardinality 0.

These are standard definitions. But there is one important point that the book left out: Before we
can say that the cardinality of a finite set is a well-defined number, we have to ensure that it is
not possible for the same set A to be equivalent to Nn and Nm for two different natural numbers
m and n. This may seem obvious, but it turns out to be a little trickier to prove than you might
expect. The purpose of this section is to prove that fact.

The crux of the proof is the following lemma about subsets of the natural numbers.

Lemma 1. Suppose m and n are natural numbers. If m > n, then there is no injective function

from Nm to Nn.

Proof. We will prove by induction on n that the following statement holds for every natural number
n:

For every m ∈ N, if there is an injective function f : Nm → Nn, then m ≤ n. (1)

Note that the implication above is the contrapositive of the one in the theorem statement.

We begin with the base case, n = 1. Assume for the sake of contradiction that statement (1) is
false when n = 1: Thus for some m ∈ N, there is an injective function f : Nm → N1 = {1} and
m > 1. Then m ≥ 2, so 1 and 2 are both elements of Nm, and the fact that 1 is the only element
of N1 implies that f(1) = 1 and f(2) = 1; but this contradicts the assumption that f is injective.

Now for the inductive step, let k ∈ N and assume that (1) holds for n = k. We need to prove the
analogous statement for n = k + 1, namely

For every m ∈ N, if there is an injective function f : Nm → Nk+1, then m ≤ k + 1.

To prove this, let m ∈ N be arbitrary, and assume there exists an injective function f : Nm → Nk+1.
Either k + 1 ∈ range(f) or not; and if k + 1 is in the range of f , then either k + 1 = f(m) or
k + 1 = f(j) for some j < m. Thus we can divide the argument into the following three cases.

Case 1: k + 1 /∈ range(f). We can define a new function f ′ : Nm → Nk just by shrinking the
codomain of f : f ′(i) = f(i) for each i ∈ Nm. This function is still injective, because if i1, i2 are
elements of Nm such that f ′(i1) = f ′(i2), then the definition of f ′ shows that f(i1) = f(i2), so
i1 = i2 because f is injective. We now have produced an injective function f ′ : Nm → Nk, so the
inductive hypothesis implies m ≤ k < k + 1.

Case 2: k + 1 = f(m). If m = 1, then m ≤ k + 1 automatically, so we can assume m ≥ 2. In this
case, we can define a new function f ′ : Nm−1 → Nk by f ′(i) = f(i). The facts that f is injective
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Fig. 1: Case 3.

and f(m) = k + 1 together imply that f(i) 6= k + 1 whenever 1 ≤ i ≤ m − 1, and thus f ′ is a
well-defined function from Nm−1 to Nk. It is injective by exactly the same argument as in Case 1.
Now the inductive hypothesis implies m− 1 ≤ k, and therefore m ≤ k + 1 as desired.

Case 3: n + 1 = f(j) for some j < m. In this case, we define a function g : Nm → Nm that
interchanges j and m and leaves everything else alone:

g(j) = m,

g(m) = j,

g(i) = i if i 6= j and i 6= m.

(See Figure 1.) An easy verification shows that g ◦ g is the identity map of Nm, so g is bijective
(because it is its own inverse function). Then the function f ◦ g : Nm → Nk+1 is injective (because
it is a composition of injective functions), and it takes m to k+1 because f(g(m)) = f(j) = k+1.
Thus we can apply the argument of Case 2 to f ◦ g, and conclude again that m ≤ k + 1.

Using this lemma, we can prove the main theorem of this section.

Theorem 2 (Cardinality of a Finite Set is Well-Defined). Suppose A is a set. If m and n are

natural numbers such that A ≈ Nn and A ≈ Nm, then m = n.

Proof. Suppose A is a set such that A ≈ Nn and A ≈ Nm, and assume for the sake of contradiction
that m 6= n. After interchanging the names of m and n if necessary, we may assume that m > n.
The hypothesis means there are bijections f : A → Nn and g : A → Nm. The map f ◦ g−1 : Nm → Nn

is a composition of bijections, and hence it is injective, contradicting the lemma.

Thanks to this theorem, if A is any nonempty finite set, there a unique natural number n for which
there exists a bijection from A to Nn. This natural number is denoted by card(A) and is called the
cardinality of A.
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Properties of Finite Sets

In addition to the properties covered in Section 9.1, we will be using the following important
properties of finite sets.

Theorem 3 (Fundamental Properties of Finite Sets). Suppose A and B are finite sets.

(a) Every subset of A is finite, and has cardinality less than or equal to that of A.

(b) A ∪B is finite, and

card(A ∪B) = card(A) + card(B)− card(A ∩B).

(c) A×B is finite, and

card(A×B) = card(A) · card(B).

Proof. Part (b) is Theorem 9.6 in the textbook. For the proofs of parts (b) and (c), see the exercises
at the end of this handout.

The next theorem gives some very useful criteria for showing that a set is finite.

Theorem 4. Let A be a nonempty set.

(a) If there exists an injection from A to a finite set, then A is finite.

(b) If there exists a surjection from a finite set to A, then A is finite.

Proof. First suppose B is finite and there exists an injection f : A → B. We can define a new
function g : A → f(A) just by setting g(x) = f(x) for every x ∈ A as in the proof of Theorem 9.6 in
the textbook, and by the same argument as in that proof, g is a bijection. Thus A ≈ f(A). Since
f(A) is a subset of the finite set B, it is finite, and therefore A is finite by Theorem 9.3 in the text.

Now suppose B is finite and there exists a surjection f : B → A. The fact that A is nonempty
guarantees that B is also nonempty (can you see why?). Exercise 10 on page 461 of the text shows
that there is an injection h : A → B, and then it follows from part (a) above that A is finite.

Exercises

Note: In doing these exercises, you may use the results of any of the theorems and exercises in

Section 9.1 of the textbook.

1. (a) Prove that if A and B are disjoint finite sets, then A ∪ B is finite and card(A ∪ B) =
card(A)+card(B). [Hint: In the case that A and B are nonempty, consider the function
h : A ∪B → Nm+n defined by

h(x) =

{

f(x), if x ∈ A,

g(x) +m, if x ∈ B.

where f : A → Nm and g : B → Nn are bijections. What happens if A or B is empty?]
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(b) Prove that if A and B are any two finite sets (not necessarily disjoint), then A ∪ B =
(A−B) ∪ (B −A) ∪ (A ∩B), and these three sets are pairwise disjoint.

(c) Prove part (b) of Theorem 3. [Hint: Exercise 10 on page 253 might come in handy.]

2. Given natural numbers m and n, define a function f : Nm×Nn → Nmn by f(i, j) = (i−1)n+j.
Prove that f is bijective. [Hint: The Division Theorem might come in handy. You might
have to handle numbers in Nmn that are divisible by n as a separate case.]

3. Prove part (c) of Theorem 3. [Hint: Use Exercise 7(a) on page 460 of the textbook, together
with Exercise 2 above.]


