Christopher Hoffman

Publications and Preprints:

Last updated November 20, 2007

Simple connectivity of random 2-complexes. 
with E. Babson and M. Kahle
math.CO/0711.2704

Exponential clogging time for a one dimensional DLA.
with I. Benjamini.
math.PR/0709.1276

Geodesics in First Passage Percolation.
math.PR/0508114

Tail Bounds for the Stable Marriage of Poisson and Lebesgue.
 
with Alexander E. Holroyd, Yuval Peres. 30 pages.
math.PR/0507324

A Stable Marriage of Poisson and Lebesgue.
 
with Alexander E. Holroyd, Yuval Peres. 39 pages.
to appear in  Ann. Probab.
math.PR/0505668

Recurrence of Simple Random Walk on Z2 is Dynamically Sensitive.

math.PR/0503065

Nonuniqueness for specifications in l2+ε.

with Noam Berger, Vladas Sidoravicius. 16 pages.
math.PR/0312344

Return times of a simple random walk on percolation clusters.
with D. Heicklen.
Electron. J. Probab. 10 (2005), no. 8, 250--302 .
PDF

omega-Periodic graphs.
with Itai Benjamini
EJC 12 R46 (2005)
pdf  math.MG/0308092

Coexistence for Richardson type competing spatial growth models.

Ann. Appl. Probab.  15 (2005), no. 1B, 739--747
math.PR/0405377

Phase transition in dependent percolation.

 Comm. Math. Phys. 254 (2005), no. 1, 1--22.  
Tex, PDF

Mixing time for biased card shuffling.

with I. Benjamini, N. Berger, and E. Mossel.
Trans. Amer. Math. Soc. 357 (2005), no. 8, 3013--3029
math.PR/0207199

An endomorphism whose square is Bernoulli.
Ergodic Theory Dynam. Systems 24 (2004), no. 2, 477--494.
Tex, PDF

A family of nonisomorphic Markov random fields.
Israel J. Math. 142 (2004), 345--366.
Tex, PDF

If the (T, Id) automorphism is Bernoulli then the (T, Id) endomorphism is standard
with D. Rudolph
Studia Math. 155 (2003), no. 3, 195--206.
Tex, PDF

The scenery factor of the [T, T
-1] transformation is not loosely Bernoulli
Proc. Amer. Math. Soc. 131 (2003), no. 12, 3731--3735
Tex, PDF


Rational maps are one sided Bernoulli.
with D. Heicklen.
Ann. of Math.  156 (2002), no. 1, 103--114.
math.DS/0411492

Uniform Endomorphisms which are isomorphic to a Bernoulli shift
with D. Rudolph
Ann. of Math.  156 (2002), no. 1, 79--101.
math.DS/0411494

A dyadic endomorphism which is Bernoulli but not standard.
with D. Rudolph.

Israel J. Math. 130 (2002), 365--379.
Tex, PDF

A dyadic endomorphism which is Bernoulli but not standard
with D. Rudolph
Israel J. Math. 130 (2002), 365--379.
Tex,
PDF

Energy of flows on percolation clusters.
with E. Mossel.
Potential Anal. 14 (2001), no. 4, 375--385.
Tex, PDF

Entropy and dyadic equivalence of random walks on a random scenery
with D. Heicklen and D. Rudolph.
Adv. Math. 156 (2000), no. 2, 157--179.
Tex, PDF

A zero entropy T such that the (T,Id) endomorphism is not standard.
Proc. Amer. Math. Soc. 128 (2000), no. 1, 183--188.
Tex, PDF

Energy of flows on Z
2 percolation clusters
Random Structures Algorithms 16 (2000), no. 2, 143--155.
Tex, PDF

A Markov Random Field which is K but not Bernoulli.
Israel J. Math. 112 (1999), 249--269.
Tex, PDF

A loosely Bernoulli counterexample machine.
Israel J. Math. 112 (1999), 237--247.
Tex, PDF

A K counterexample machine.
Trans. Amer. Math. Soc. 351 (1999), no. 10, 4263--4280.
Tex, PDF

The behavior of Bernoulli shifts relative to their factors
Ergodic Theory Dynam. Systems 19 (1999), no. 5, 1255--1280.
Tex, PDF

Unpredictable nearest neighbor processes.

Ann. Probab. 26 (1998), no. 4, 1781--1787.
Tex, PDF

T, T-1 is not standard
with D. Heicklen
Ergodic Theory Dynam. Systems 18 (1998), no. 4, 875--878.
Tex, PDF