Christopher Hoffman

Publications and Preprints:

Last updated November 20, 2007

Simple connectivity of random 2-complexes. 
with E. Babson and M. Kahle

Exponential clogging time for a one dimensional DLA.
with I. Benjamini.

Geodesics in First Passage Percolation.

Tail Bounds for the Stable Marriage of Poisson and Lebesgue.
with Alexander E. Holroyd, Yuval Peres. 30 pages.

A Stable Marriage of Poisson and Lebesgue.
with Alexander E. Holroyd, Yuval Peres. 39 pages.
to appear in  Ann. Probab.

Recurrence of Simple Random Walk on Z2 is Dynamically Sensitive.


Nonuniqueness for specifications in l2+ε.

with Noam Berger, Vladas Sidoravicius. 16 pages.

Return times of a simple random walk on percolation clusters.
with D. Heicklen.
Electron. J. Probab. 10 (2005), no. 8, 250--302 .

omega-Periodic graphs.
with Itai Benjamini
EJC 12 R46 (2005)
pdf  math.MG/0308092

Coexistence for Richardson type competing spatial growth models.

Ann. Appl. Probab.  15 (2005), no. 1B, 739--747

Phase transition in dependent percolation.

 Comm. Math. Phys. 254 (2005), no. 1, 1--22.  
Tex, PDF

Mixing time for biased card shuffling.

with I. Benjamini, N. Berger, and E. Mossel.
Trans. Amer. Math. Soc. 357 (2005), no. 8, 3013--3029

An endomorphism whose square is Bernoulli.
Ergodic Theory Dynam. Systems 24 (2004), no. 2, 477--494.
Tex, PDF

A family of nonisomorphic Markov random fields.
Israel J. Math. 142 (2004), 345--366.
Tex, PDF

If the (T, Id) automorphism is Bernoulli then the (T, Id) endomorphism is standard
with D. Rudolph
Studia Math. 155 (2003), no. 3, 195--206.
Tex, PDF

The scenery factor of the [T, T
-1] transformation is not loosely Bernoulli
Proc. Amer. Math. Soc. 131 (2003), no. 12, 3731--3735
Tex, PDF

Rational maps are one sided Bernoulli.
with D. Heicklen.
Ann. of Math.  156 (2002), no. 1, 103--114.

Uniform Endomorphisms which are isomorphic to a Bernoulli shift
with D. Rudolph
Ann. of Math.  156 (2002), no. 1, 79--101.

A dyadic endomorphism which is Bernoulli but not standard.
with D. Rudolph.

Israel J. Math. 130 (2002), 365--379.
Tex, PDF

A dyadic endomorphism which is Bernoulli but not standard
with D. Rudolph
Israel J. Math. 130 (2002), 365--379.

Energy of flows on percolation clusters.
with E. Mossel.
Potential Anal. 14 (2001), no. 4, 375--385.
Tex, PDF

Entropy and dyadic equivalence of random walks on a random scenery
with D. Heicklen and D. Rudolph.
Adv. Math. 156 (2000), no. 2, 157--179.
Tex, PDF

A zero entropy T such that the (T,Id) endomorphism is not standard.
Proc. Amer. Math. Soc. 128 (2000), no. 1, 183--188.
Tex, PDF

Energy of flows on Z
2 percolation clusters
Random Structures Algorithms 16 (2000), no. 2, 143--155.
Tex, PDF

A Markov Random Field which is K but not Bernoulli.
Israel J. Math. 112 (1999), 249--269.
Tex, PDF

A loosely Bernoulli counterexample machine.
Israel J. Math. 112 (1999), 237--247.
Tex, PDF

A K counterexample machine.
Trans. Amer. Math. Soc. 351 (1999), no. 10, 4263--4280.
Tex, PDF

The behavior of Bernoulli shifts relative to their factors
Ergodic Theory Dynam. Systems 19 (1999), no. 5, 1255--1280.
Tex, PDF

Unpredictable nearest neighbor processes.

Ann. Probab. 26 (1998), no. 4, 1781--1787.
Tex, PDF

T, T-1 is not standard
with D. Heicklen
Ergodic Theory Dynam. Systems 18 (1998), no. 4, 875--878.
Tex, PDF