Simple connectivity of random 2-complexes.
with E. Babson and M. Kahle
math.CO/0711.2704
Exponential clogging time for a one dimensional DLA.
with I. Benjamini.
math.PR/0709.1276
Geodesics in First Passage Percolation.
math.PR/0508114
Tail Bounds for the Stable Marriage of Poisson and Lebesgue.
with Alexander E. Holroyd, Yuval Peres.
30 pages.
math.PR/0507324
A Stable Marriage of Poisson and Lebesgue.
with Alexander E. Holroyd, Yuval Peres.
39 pages.
to appear in
Ann. Probab.
math.PR/0505668
Recurrence of Simple Random Walk on Z2 is Dynamically
Sensitive.
math.PR/0503065
Nonuniqueness for specifications in l2+ε.
with Noam Berger, Vladas Sidoravicius.
16 pages.
math.PR/0312344
Return times of a
simple random walk
on percolation clusters.
with D. Heicklen.
Electron. J. Probab.
10 (2005), no. 8, 250--302 .
PDF
omega-Periodic graphs.
with Itai Benjamini,
EJC 12 R46 (2005)
pdf math.MG/0308092
Coexistence for Richardson type competing spatial growth models.
Ann.
Appl. Probab. 15 (2005), no.
1B, 739--747
math.PR/0405377
Phase transition in dependent percolation.
Comm.
Math. Phys. 254 (2005), no. 1, 1--22.
Tex, PDF
Mixing time for biased card shuffling.
with I. Benjamini, N. Berger, and E. Mossel.
Trans. Amer. Math. Soc. 357 (2005),
no. 8, 3013--3029
math.PR/0207199
An endomorphism whose
square is
Bernoulli.
Ergodic
Theory Dynam. Systems 24 (2004),
no. 2, 477--494.
Tex,
PDF
A family of
nonisomorphic Markov random fields.
Israel J. Math.
142 (2004), 345--366.
Tex,
PDF
If the (T, Id)
automorphism is Bernoulli then the (T, Id) endomorphism
is standard
with D. Rudolph
Studia
Math. 155 (2003),
no. 3, 195--206.
Tex,
PDF
The scenery factor of the [T, T-1] transformation is not loosely Bernoulli
Proc. Amer. Math. Soc. 131 (2003),
no. 12, 3731--3735
Tex,
PDF
Rational maps
are one sided Bernoulli.
with D. Heicklen.
Ann. of Math. 156 (2002), no.
1, 103--114.
math.DS/0411492
Uniform Endomorphisms which are
isomorphic to a Bernoulli shift
with D. Rudolph
Ann.
of Math. 156 (2002),
no. 1, 79--101.
math.DS/0411494
A dyadic endomorphism which is
Bernoulli but not standard.
with D. Rudolph.
Israel
J. Math.
130 (2002), 365--379.
Tex,
PDF
A dyadic endomorphism
which is Bernoulli but not standard
with D. Rudolph
Israel J. Math.
130 (2002), 365--379.
Tex, PDF
Energy of flows on percolation
clusters.
with E. Mossel.
Potential Anal. 14 (2001),
no. 4, 375--385.
Tex,
PDF
Entropy and
dyadic equivalence of random walks on a random scenery
with D. Heicklen and D. Rudolph.
Adv. Math. 156 (2000),
no. 2, 157--179.
Tex,
PDF
A zero entropy T
such that the (T,Id) endomorphism is not standard.
Proc. Amer. Math. Soc. 128 (2000),
no. 1, 183--188.
Tex,
PDF
Energy of flows on Z2 percolation clusters
Random Structures Algorithms 16
(2000),
no. 2, 143--155.
Tex,
PDF
A Markov Random Field which
is K but not Bernoulli.
Israel J. Math.
112 (1999), 249--269.
Tex,
PDF
A loosely Bernoulli
counterexample machine.
Israel J. Math.
112 (1999), 237--247.
Tex,
PDF
A K counterexample machine.
Trans. Amer. Math. Soc. 351 (1999),
no. 10, 4263--4280.
Tex,
PDF
The behavior of Bernoulli
shifts relative to their factors
Ergodic Theory Dynam. Systems 19
(1999),
no. 5, 1255--1280.
Tex,
PDF
Unpredictable nearest neighbor processes.
Ann. Probab. 26 (1998),
no. 4, 1781--1787.
Tex,
PDF
T, T-1
is not standard
with D. Heicklen
Ergodic Theory Dynam. Systems 18
(1998),
no. 4, 875--878.
Tex,
PDF