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Abstract

In this paper we discuss two different models of dependent percolation on the graph
Z2. We show that they both exhibit phase transitions. This proves a conjecture of
Jonasson, Mossel and Peres [6], who proved a similar result on Z3.

1 Introduction

Since mathematical models only approximate physical systems the stability of the model
is important. A small change in the model should ideally result in a small change in the
qualitative behavior of the model. In this paper we consider the stability of phase transitions
in percolation. In Bernoulli percolation the existence of a phase transition is both one of
the most important results and one of the most elementary. However, in the models of
dependent percolation that have been studied, establishing a phase transition has been often
quite difficult. In this paper we show that two models of dependent percolation exhibit phase
transitions.

The pioneering work in studying the stability of statistical mechanics models was done
by McCoy and Wu [9] [10]. They studied the Ising model in a random environment. Their
models had interactions which depend only on a row or column. This produced models
which were both tractable and had physically realistic results. In addition to the Ising
model, people have studied other particle systems, such as the contact process and the voter
model, in random environments [11] [7] [8] [3]. The models that we study in this paper are
natural examples for percolation of this family of statistical mechanics models in a random
environment.

Let us also note that in addition to the stability of statistical mechanics models, phase
transitions in dependent percolation are also related to problems in distributive computing.
In 1990 Winkler made a conjecture about colliding random walks on graphs involving ‘clair-
voyant demons’. Noga Alon reformulated this conjecture in terms of the existence of a phase
transition in a simple model of oriented percolation. Before this conjecture was resolved
progress was made on a number of related topics. Winkler [12] and Balister, Bollobas, and
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Stacey [1] independently proved that there exists a phase transition for unoriented percola-
tion in this model. Also Gacs answered a related question of compatibility of independent
sequences [5]. Gacs recently proved Winkler’s conjecture.[4]. The location of phase transition
is still unknown.

The first of our models was introduced by Jonasson, Mossel and Peres [6]. This model
is on the graph with vertices Z2 and with edges between nearest neighbors (i.e., there is an
edge between (x, y) and (x′, y′) iff |x− x′|+ |y − y′| = 1.) To define the probability that an
edge is included in the graph (or open) we define two sequences of random variables. Let

{xi}i∈Z and {yi}i∈Z

be i.i.d. random variables. They have geometric distribution with parameter 2−1000. Thus

P (xi > λ) = C(2−1000)λ.

Let p be a number 0 < p < 1. Then set

Pp(e((i, j), (i + 1, j)) is open) = pxi

and
Pp(e((i, j), (i, j + 1)) is open) = pyi .

Each edge is either open or closed independently of all other edges conditioned on the values
given above. We refer to this model as percolation on the randomly stretched lattice
in Z2.

It is given this name for the following reason. Consider a graph generated by the coor-
dinate axis and lines parallel to the coordinate axis as follows. The distance between the ith

line to the right of the y axis and the i + 1st line is xi. The distance between the jth line to
the left of the y axis and the j − 1st line is x−j. In a similar manner the {yi} determine the
distance between the horizontal lines. Then the probability that the edge between two adja-
cent vertices is open is pd, where d is the distance between the vertices. All edges are open
independently of each other. This generates the same percolation process as was described
above.

For each p this defines a measure Pp on Ω = {0, 1}E(Z2). Let ω ∈ Ω be a realization of
percolation. An open cluster C for ω is a maximal connected subset of edges such that all
edges e ∈ C are open (ω(e) = 1 for all e ∈ C). Jonasson, Mossel and Peres were able to
show that a similar process on Z3 exhibits a phase transition [6]. That is they proved the
following theorem.

Theorem 1.1 [6] For percolation on the randomly stretched lattice in Z3 there exists a value
pc, 0 < pc < 1 such that if p < pc then

Pp(∃ an infinite open cluster) = 0.

If p > pc then
Pp(∃ an infinite open cluster) = 1.
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In this paper we establish that percolation on a randomly stretched lattice on Z2 also
exhibits a phase transition. The proof of Jonasson, Mossel and Peres works to show that for
the randomly stretched lattice in Z2 with p close to zero that there is no infinite cluster a.s.
Thus we need only to show that for p close to one that there is an infinite cluster a.s.

Before we do that we introduce a different model of dependent percolation which we
call percolation on a regularly stretched lattice. This model will also exhibit a phase
transition. We introduce this model because the proof of a phase transition is much simpler
than on the randomly stretched lattice, yet it contains the essential ideas of the proof of a
phase transition on the randomly stretched lattice.

The only difference between these two models is the choice of the {xi}i∈Z and {yi}i∈Z.
Instead of random variables as they were for the randomly stretched lattice they will be
deterministic. Let x0 = y0 = 1. Given i let xi = yi = q if 4q−1 | i but 4q - i. Then the edges
are open or closed independently with the probabilities listed above.

2 Phase transition on the regularly stretched lattice

In this section we show that the regularly stretched lattice exhibits a phase transition. First
we show that for small p there is no infinite connected cluster. The proof is identical to the
proof in [6] that percolation on a randomly stretched lattice does not have an infinite cluster
when p is small.

Theorem 2.1 On the regularly stretched lattice if p < 1
4

then

Pp(∃ an infinite connected cluster) = 0.

Proof. For any j let

δj =
{(

(±4j, c), (±4j + 1, c)
)

, |c| ≤ 4j
}⋃{(

(d,±4j), (d,±4j + 1)
)

, |d| ≤ 4j
}

.

This group of edges separates a square containing 0 from infinity. Each edge in δj has length
j. Then

Pp(∃ an open edge in δj) ≤ 4(2 · 4j + 1)pj

≤ 16(4p)j.

Now suppose the vertex (a, b) is in an infinite cluster. Then if 4j > |a|, |b| then there
exists an open edge in δj. Thus by Borel Cantelli if p < 1/4 then

Pp(∃ an infinite connected cluster) = 0. �
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To show that when p is close to 1 that there is an infinite cluster we use an argument
reminiscent of Chayes, Chayes, and Durrett’s proof that there exists crossings of a square in
certain examples of fractal percolation [2].

First we define Bn(a, b) to be the set of vertices (i, j) such that a < i ≤ a + 4n−1 and
b < j ≤ b + 4n−1. An n box is a graph that has vertices Bn(a, b) where 4n|a and 4n|b. It
consists of all edges between two vertices in Bn(a, b). If a 6= 0 and b 6= 0 and Bn(a, b) is an n
box then all the edges emanating from Bn(a, b) have length n in the regularly stretch lattice.

Now we will inductively define what it means for an n box to be good. Let ω be a
realization of percolation. A 1 box is good if every edge in the 1 box is open. Assume we
have defined a good n− 1 box in such a way that if an n− 1 box is good then there exists
a unique cluster which intersects all four sides of the n− 1 box. This is called the crossing
cluster. An n box is good if

1. at least 15 of the 16 n− 1 boxes inside the n box are good and

2. between each pair of adjacent n − 1 boxes which are good there exists an open edge
which connects the crossing clusters of the good n− 1 boxes.

It is easy to check that a good n box also contains a crossing cluster.

Lemma 2.1 Every good n box has a crossing cluster.

Proof. This follows easily by induction. The crossing cluster of the good n box contains
the union of the crossing clusters of the good n− 1 boxes. �

The key idea in the proof of the phase transition for the regularly stretched lattice is the
following lemma.

Lemma 2.2 Let Bn(a, b) and Bn(a + 4n, b) be good n boxes. There are at least 2n edges
which intersect the crossing clusters of both Bn(a, b) and Bn(a + 4n, b).

Proof. Each pair of adjacent n boxes, Bn(a, b) and Bn(a + 4n, b), contains four pairs of
adjacent n− 1 boxes, Bn(a + 3 · 4n−1, b + i4n−1) and Bn(a + 4n, b + i4n−1) for i = 0, 1, 2, 3. If
both Bn(a, b) and Bn(a+4n, b) are good then at least six of the above n− 1 boxes are good.
Thus for at least two of the above pairs both of the adjacent n− 1 boxes are good. By the
induction hypothesis each of these pairs has at least 2n−1 edges which connect the crossing
clusters of the n− 1 boxes and thus connect the crossing clusters of the n boxes. Thus there
are at least 2n edges which connect the crossing clusters of Bn(a, b) and Bn(a + 4n, b). �

Lemma 2.3 If p > 1− 2−1000 then for any n box Bn(a, b)

Pp(Bn(a, b) is good) ≥ 1− 1

1000
e−n.
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Proof. The proof is by induction. The lemma is clearly true when n = 10. The probability
that the first condition for any n box to be not good is less than(

16

2

)
Pp(Bn−1(a, b) is not good)2 ≤ 120

(
1

1000

)2

e−2n+2 ≤ .5

(
1

1000
e−n

)
.

If Bn−1(a, b) and Bn−1(c, d) are neighboring n−1 boxes which are both good then there must
be at least 2n pairs of vertices, one in each of the crossing clusters, which are separated by
one edge. This is true by Lemma 2.2. Each of these edges is open with probability pn. The
probability that all 2n are closed is

(1− pn)2n ≤ 2−(2npn) ≤ 2−1.5n

There are
(
16
2

)
pairs of adjacent n−1 boxes in an n box. Thus the probability that condition

2 is not satisfied is less than
(
16
2

)
2−1.5n

. Thus

P (Bn(a, b) is good) ≥ 1− .5

(
1

1000
e−n

)
−
(

16

2

)
2−1.5n ≥ 1− 1

1000
e−n. �

From this it is easy to conclude that there is an infinite open cluster.

Theorem 2.2 If p > 1− 2−1000 then

Pp(∃ an infinite open cluster) = 1.

Proof. There exists some N such that Bn(0, 0) is good for all n ≥ N a.s. Thus there is
some vertex (i, j) which is contained in a good n box for all n. Thus it is in the crossing
cluster for all n and is connected to an infinite number of other vertices. �

3 Creating a regular lattice from a random lattice

In trying to adapt the proof in the previous section to the case of the randomly stretched
lattice we have two main obstacles to overcome. First we must figure out how to fit a regular
lattice onto the random {xi} and {yi}. That is the subject of this section. Then in the next
section we check to see that the proof still applies to the lattice structure that we imposed.

Each integer y defines a row which is the set of all edges that connect (x, y) to (x, y + 1)
for some x. Each integer x defines a column which is the set of all edges that connect (x, y)
to (x+1, y) for some y. In the regularly stretched lattice there were rows and columns which
it was hard for the percolation cluster to get through. On the randomly stretched lattice we
will group neighboring rows and columns into bands. In the regular lattice the row generated
by i was assigned the number yi. In this model each band will be assigned a number. A
higher number indicates that that there are fewer paths across the band. We will assign the
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rows (and columns) into bands in such a way that if two bands are both assigned a high
number then they must be exponentially far apart. This will allow us to mimic the proof in
the previous section.

Starting with {xi} we will construct a sequence of functions fl : Z → N. An l band is a
collection of consecutive integers [i, j]. A necessary condition for [i, j] to be an l band is that

fl(i) = fl(i + 1) = · · · = fl(j).

A band is an interval of integers which is an l band for all l greater than some L.
Each i ∈ Z is a 1 band. We assign the 1 bands labels by f1(i) = dxie, the smallest integer

greater than or equal to xi. We also use the notation bxic for the largest integer less than
or equal to xi.

We now begin the inductive procedure in which we combine multiple n bands into a single
n + 1 band and assign this band a higher number. Find i such that |i + .1| is the smallest
for which there exists j, with the following properties

1. j 6= i,

2. |j| ≤ |i|, and

3. min(f1(i), f1(j))− 1
6
log2 |i− j| > 1.

The 2 bands then consist of the interval [j, i] (or [i, j] if i < j) and every integer k 6∈ [j, i].
We set

f2(k) =

{
f1(k) k 6∈ [j, i]
f1(i) + f1(j)− b 1

18
log2 |i− j|c k ∈ [j, i].

Now assume that n bands and fn have been defined. Let i be the integer such that |i+ .1|
is the smallest for which there exist a j with the following properties

1. j is not in the same n band as i,

2. |j| ≤ |i|, and

3. min(fn(i), fn(j))− 1
6
log2(1 + # of n bands between i and j) > 1.

Then the n + 1 bands are the union of the n bands intersecting the interval [i, j] and every
n band not intersecting the interval [i, j]. We set

fn+1(k) =

{
fn(k) n band of k ∩ [i, j] = ∅
fn(i) + fn(j)− b 1

18
log2(1 + # of n bands in (i, j))c n band of k ∩ [i, j] 6= ∅

Let f(k) = lim
n→∞

fn(k) and let a band be an interval of integers for which there is an N such

that the interval was a n band for all n > N .
We will now work towards proving that f(k) exists and is finite for all k a.s.

Lemma 3.1 If [j, k] is an n band and fn(j) = m then |k − j + 1| ≤ 32m−1.
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Proof. The proof is by induction on m. The statement is true for m = 1 and m = 2 because
for these we must have j = k. Now suppose [j, k] is an n band, j 6= k, and fn(j) = m > 2.
Then there exists some n′ such that [j, k] is an n′ band but [j, k] is not an n′ − 1 band.
Let j′, k′, p, and q be defined so that [j, j′] and [k′, k] are n′ − 1 bands, p = fn′−1(j) and
q = fn′−1(k). Then p, q < m so the induction hypothesis holds for all n′ − 1 bands in [j, k].
For any l < min(p, q) there are at least 64l−1 − 1 n′ − 1 bands in between any two n′ − 1
bands in [j, k] each with labels ≥ l. Let

N = the number of n′ − 1 bands between [j, j′] and [k′, k].

Then there are at most N/64l−1 n′ − 1 bands with labels l between [j, j′] and [k′, k]. Thus

|k − j + 1| = |k − k′ + (k′ − j′) + (j′ − j) + 1|
≤ |k − k′ + 1|+ |j′ − j + 1|+

∑
|b′ − b + 1|

n′−1 bands in (j′,k′)

≤ |k − k′ + 1|+ |j′ − j + 1|+
∑

l

∑
|b′ − b + 1|

n′−1 bands in (j′,k′) with label l

≤ 32q−1 + 32p−1 +
∑

l

(N/64l−1)32l−1

≤ 32q−1 + 32p−1 + 2N

≤ 2 · 32max(p,q)−1 + 26min(p,q)−5 (1)

≤ 1

16
32m−1 + 26min(p,q)−5 (2)

≤ 1

16
32m−1 +

1

2
2(15/2) min(p,q)−5 (3)

≤ 1

16
32m−1 +

1

2
32(3/2) min(p,q)−1

≤ 1

16
32m−1 +

1

2
32m−1 (4)

≤ 32m−1.

Line 1 is true because min(fn′−1(j), fn′−1(k))− 1
6
log2(1+N) > 1. Line 2 is true because m ≥

max(p, q) + 1. Line 3 is true because min(p, q) ≥ 2. Line 4 is true because m ≥ 3
2
min(p, q).

�

Lemma 3.2 If [j, j′] and [k′, k] are two n bands which are combined to form an n + 1 band
[j, k] then

N = the number of n bands in (j′, k′) ≥ (k′ − j′ − 1)/2.

Proof. Let Nl be the number of n bands in (j′, k′) with labels l. Then N =
∑

Nl. Also
Nl ≤ N/64l−1 because if not then there would have been two other n bands which would
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have combined.

k′ − j′ − 1 =
∑

[b,b′] a band in (j′,k′)

(b′ − b + 1)

≤ N1 + N2 +
∑
l≥3

(N/64l−1)32l−1

≤ N1 + N2 + N/2

≤ 2N

so N ≥ (k′ − j′ − 1)/2. �

Before we proceed we must introduce some more notation. If the interval [j, k] is an n
band then we say j and k are the n generators of the n band. The n− 1 generators of
the n band [j, k] are the n− 1 generators of the n− 1 bands containing j and k. Suppose
for all n, all n bands and some i the n− i generators of an n band have been defined. Then
for any n band define the n− (i + 1) generators of the n band as the union of the n− (i + 1)
generators of the n − (i + 1) bands which contain an (n − i) generator of the n band. We
call the 1 generators of an n band the generators of an n band.

We say that a generator g of a band [i, j] is a maximal generator of [i, j] if the following
condition is satisfied. For each pair of k bands [i1, j1] and [i2, j2] which form k+1 band [i1, j2]
such that g ∈ [i1, j2], the label of the k band that contains g is at least as big as the label of
the k band that doesn’t contain g.

Lemma 3.3 Let i1 < i2 < · · · < ik be the generators of an n band with
k∑
1

f1(ij) = m. Then

k∑
2

blog2(ij − ij−1 + 1)c ≤ 37m.

Proof. For each j, 1 < j ≤ k, let nj be the value such that there exists a and b so nj bands
[ia, ij−1] and [ij, ib] are merged into nj+1 band [ia, ib]. Let qj be the number of nj bands
between [ia, ij−1] and [ij, ib]. By the previous lemma

1

2
(ij − ij−1 + 1) ≤ 1 + qj.

By the assumption that
k∑
1

f1(ij) = m we have that

k∑
j=2

b 1

18
log2(1 + qj)c ≤ m.
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Thus

k∑
2

b 1

18
log2(

1

2
(ij − ij−1 + 1))c ≤ m

k∑
2

(
1

18
blog2(

1

2
(ij − ij−1 + 1))c − 1

)
≤ m

k∑
2

blog2(
1

2
(ij − ij−1 + 1))c ≤ 36m

k∑
2

blog2(ij − ij−1 + 1)c ≤ 37m. �

Lemma 3.4 For any j and l

P (∃n such that j is contained in an n band with label ≥ l) ≤ 2−399l.

Proof. If there exists an n and l then ∃ generators i1, . . . , ik and m such that∑
k

f1(ik) = m ≥ l.

By Lemma 3.1 we have that i1 ≤ j ≤ i1 + 32l−1 − 1. By Lemma 3.3 there are at most
237m choices of blog2(i2 − i1 + 1)c, . . . , blog2(ik − ik−1 + 1)c. Given a choice of blog2(i2 − i1 +
1)c, . . . , blog2(ik − ik−1 + 1)c there are at most 237m choices of (i2 − i1), . . . , (ik − ik−1). Thus
there are at most 32l−1(274m) ≤ 279m choices of i1, . . . , ik. For each choice of i1, . . . , ik there
are at most 2m choices for f1(i1), . . . , f1(ik). Thus there are at most 280m choices of i1, . . . , ik
and f1(i1), . . . , f1(ik). Each choice has probability ≤ 2−1000(m−k) ≤ 2−500m. Thus

P (∃n such that j is contained in an n band with labels ≥ l) ≤
∑
m≥l

2−400m

≤ 2−399l. �

Lemma 3.5 For each j ∈ Z there exists N such that for all n > N the n band containing
j is the same a.s.

Proof. This follows easily from Lemma 3.4 and Borel-Cantelli. �

We say that two (n) bands [i1, j1] and [i2, j2] with labels ≥ l are neighboring (n) bands
with labels ≥ l if there exists no (n) band [i3, j3] with j1 < i3 ≤ j3 < i2 with label ≥ l.
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Lemma 3.6 Between any two neighboring bands with labels ≥ l there exists at least 64l−1−1
other bands.

Proof. If not then the bands would have been combined at some level. �

We call a sequence {xi} regular if the procedure above generates bands such that for
all l and all neighboring bands with labels greater than or equal to l, [i1, j1] and [i2, j2], the
number of bands in (j1, j2) is in the interval [64l−1 − 1, 6 · 64l−1). It is easy to check that if
{xi} is regular then for any l and between any two bands neighboring bands with labels ≥ l
there exists between 10 and 383 bands with labels l − 1.

Lemma 3.7 For almost every sequence {xi} there exists a sequence {x̃i} such that

1) x̃i ≥ xi for all i,

2) the k bands for {x̃i} are the same as the k bands for {xi} for all k, and

3) {x̃i} is regular.

Proof. First, for any L, we prove the statement with condition 3) replaced by

3′) for all l ≤ L and neighboring bands with labels ≥ l, [i1, j1] and [i2, j2], the number of
bands in (j1, j2) is in the interval [64l−1 − 1, 3 · 64l−1).

We do this by induction on L. It is trivially true for L = 1. Suppose {xL
i } is a sequence

with this property for L. We will construct a sequence {xL+1
i } with this property for L + 1.

Let [i1, j1] and [i2, j2] be neighboring bands with labels ≥ L + 1. Also let

N = the number of bands in (j1, i2).

We will show that either 64L − 1 ≤ N < 3 · 64L or it is possible to pick one i ∈ (j1, j2) and
to increase one xL

i to xL
i +1. This produces a new sequence with the same k bands for all k,

the label of the band containing i is increased by one. From this it is easy to conclude that
the modified version of the lemma is true.

We have that N ≥ 64L − 1 because, if it were not, then the bands [i1, j1] and [i2, j2]
would have been combined into a single band. Thus we only need to consider the case where
N ≥ 3 · 64L. In this case, by the induction hypothesis, there exists a band [i3, j3] with label
L and j1 < i3 < i2. Furthermore we can demand the number of bands in (j2, i3) is in the
interval [64L − 1, 64L + 3 · 64L−1]. Thus the number of bands in (j3, i2) is at least

3 · 64L − (64L + 3 · 64L−1 + 1) > 64L − 1.

Choose i′ ∈ [i3, j3] to be a maximal generator of [i3, j3]. Setting

xi =

{
xL

i i 6= i′

xL
i + 1 i = i′.
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Inductively it is true that for all k, the k bands for {xL
i } and {xi} are the same, the labels

of any k bands for {xL
i } and {xi} that do not contain i′ are the same, and the labels for the

k bands for {xL
i } that contain i′ are one less than the labels of the same k bands for {xi}.

Thus we can create {xL+1
i }.

By the above procedure we get an increasing (in L) sequence of sequences {xL
i }. It is

clear that limL xL
i exists for all i except possibly one band. Call that band [i4, j4]. Set

x̃i =

{
limL xL

i i 6∈ [i4, j4]

xi i ∈ [i4, j4].

Then this sequence has the property that between any two neighboring bands with labels
≥ l the number of bands in between is in the interval [64l−1, 6 · 64l−1). Such a sequence is
regular and the lemma is true. �

When we defined what it means for a sequence to be regular we were concerned with
neighboring bands with labels ≥ l being too far apart. We now define what it means for a
sequence to be very regular. In addition to the bands being regular we demand a regularity
condition of the k bands that are combined in order to form a k + 1 band.

A vertical band is a band that is generated from the {xi}. A horizontal band is a
band that is generated from the {yi}. Suppose [i1, j1] and [i2, j2] are neighboring horizontal
bands with label ≥ n and [i3, j3] and [i4, j4] are neighboring vertical bands with label ≥ n.
Then the graph with vertices

V = {(x, y) : j3 + 1 ≤ x ≤ i4, j1 + 1 ≤ y ≤ i2}

and edges

E = {edges between two vertices in V with at most one edge in δV }

is called an n box. We write [j3 + 1, i4] × [j1 + 1, i2] is an n box. We will also call any
subgraph [j3 +1, i4]× [j1 +1, i2] an n box if there exists {x̄i} and {ȳi} which are regular such
that

x̄m = xm for all m such that j3 < m ≤ i4,

ȳm = ym for all m such that j1 < m ≤ i2,

and [j3 + 1, i4]× [j1 + 1, i2] is an n box (for {x̄i} and {ȳi}).
Suppose [i5, j5] is a horizontal (vertical) band with label n and [j3 +1, i4]× [j1 +1, i2] is an

m box. Then we say (j3, i4]× [i5, j5 + 1] ([i5, j5 + 1]× [j1 + 1, i2]) is a horizontal (vertical)
(m,n) strip. This graph has vertices

V = {(x, y) : j3 + 1 ≤ x ≤ i4, i5 ≤ y ≤ j5 + 1}

and edges

E = {edges between two vertices in V with at most one edge in δV }.
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We will also call any subgraph [j3 + 1, i4]× [i5, j5 + 1] an (m, n) strip if there exists {x̄i} and
{ȳi} which are regular such that

x̄m = xm for all m such that j3 < m ≤ i4,

ȳm = ym for all m such that i5 < m ≤ j5,

and [j3 + 1, i4]× [i5, j5 + 1] is an (m, n) strip (for {x̄i} and {ȳi}).
Any k band of the form [a, a] is very regular. Any 1 box is very regular. Any 2 box

[a, b] × [c, d] is very regular if 11 ≤ b − a ≤ 384 and 11 ≤ d − c ≤ 384. We now inductively
define what it means for a k band with label l to be very regular and for an n box to be very
regular. Let [a, b] be a k band with label l which was formed by combining k− j band [a, a′]
and [b′, b] into k− j + 1 band [a, b]. We say that [a, b] is very regular if there exists m ≤ 384,
c1 = a′, c2, c3, . . . , cm, d1, d2, . . . , dm = b′, and q such that

1) all k − j bands in [a, b] are very regular k − j bands

2) [ct, dt]× [ct, dt] in {xi} × {xi} is a very regular q box for all t, and

3) [dt, ct+1 − 1] is a very regular k − j band with label q.

An l box is very regular if

1) {xi} and {yi} are regular and

2) all bands with labels l − 1 and l − 1 boxes inside the l box are very regular.

We say a sequence {xi} is very regular if all the bands generated by {xi} are very regular.

Lemma 3.8 If

1) [a, b] is a k band with label l

2) a′ is a maximal generator of [a, b]

3) the label of the j band containing [a, b] is lj

4) for all j > k such that a′ is a generator of the j band containing [a, b] the 64lj j bands
on either side of the band containing [a, b] have label < lj + 1

and we set

xi =

{
xi if i 6= a′

xa′ + 1 if i = a′

then we have

i) the j bands of {xi} and the j bands of {xi} are the same for all j

ii) for all j bands [ej, fj] of {xi} which has a′ as a generator has label lj + 1 and
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iii) for all j bands of {xi} that do not have a′ as a generator have the same label as for
{xi}.

Proof. We prove the lemma by induction on j. It is clearly true for j = 1. We assume that
it is proven for j. By condition 4 and ii) and iii) for j we have that i) holds for j + 1. As
the j bands are the same ii) and iii) for j imply that ii) and iii) hold for j + 1. �

Lemma 3.9 If in addition the hypotheses in Lemma 3.8 we add

5) [a, b] is very regular (for {xi})

then we get the additional conclusion

iv) [a, b] is very regular (for {xi}).

Proof. We can prove the lemma by proving that for any j all j bands in [a, b] are very
regular. We do this by induction. It is clearly true for j = 1. Assume it is proven for j. All
the j bands are very regular since [a, b] is very regular (for {xi}). All the other conditions
are also satisfied since [a, b] is very regular (for {xi}). Thus the j + 1 bands are regular (for
{xi}). �

Lemma 3.10 For almost every sequence {xi} there exists a sequence {x̂i} such that

1) x̂i ≥ xi for all i and

2) {x̂i} is very regular.

Proof. By Lemma 3.7 we may assume that {xi} is regular. We construct sequences {xj
i}

such that {xj
i} is nondecreasing as j increases. The k bands of {xj

i} are the same as the k
bands of {xi} for all j and k. Also the k bands of {xj

i} are very regular for all k ≤ j. We
do this inductively. It can be done for j = 1. Suppose it can be done for j. Then there is
at most one j + 1 band [a, b] which is not a j band. Hence there is at most one j + 1 band
which is not very regular (for {xj

i}).
We now employ the method in Lemma 3.7 as well as Lemma 3.9 to make [a, b] very

regular for {xj+1
i }. We show inductively for any L and all l ≤ L and neighboring j bands in

[a, b] with labels ≥ l (call them [i1, j1] and [i2, j2]) the number of j bands in (j1, i2) is in the
interval [64l−1, 3 · 64l−1). It is trivial for L = 1.

Let [i1, j1] and [i2, j2] be neighboring j bands with labels ≥ L + 1. Also let

N = the number of j bands in (j1, i2).

We have that N ≥ 64L because if it were not then the j bands [i1, j1] and [i2, j2] would be
combined into a single j +1 band for {xj

i}. If N < 3 ·64L we do nothing. If N ≥ 3 ·64L there
exists a j band [i3, j3] which is very regular, has label L and j1 < i3 < i2. Furthermore we
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can demand that the number of k bands in (j2, i3) is in the interval [64L−1, 64L +3 ·64L−1).
Thus the number of k bands in (j3, i2) is at least 3 · 64L − (64L + 3 · 64L−1) > 64L.

Let i′ be a maximal generator of [i3, j3]. Set

xi =

{
xj

i + 1 i = i′

xj
i i 6= i′.

Then by Lemma 3.9 the m bands of {xi} are the same as the m bands as {xj
i} for all m. The

j band [i3, j3] has label L + 1. Continuing in this manner we can show that the induction
hypothesis is true for L + 1. By repeating this procedure we construct {xj

i}. Then set
x̃i = limj xj

i . The sequence {x̃i} is very regular as all the j bands in {xj
i} were very regular.

It dominates {xi} since each of the {xj
i} dominates {xi}. Thus the lemma is true.

4 Phase transition on the randomly stretched lattice

We show that if {xi} and {yi} are very regular then the stretched lattice determined by {xi}
and {yi} has an infinite cluster for p close to 1 a.s. We will do this by mimicking the proof
that percolation on the regularly stretched lattice has an infinite cluster for p close to 1 a.s.
This is enough to establish a phase transition as Jonasson, Mossel, and Peres have proven
that if p is sufficiently close to one then there is no infinite cluster a.s.

Fix {xi} and {yi} which are very regular. Let ω ∈ {0, 1}E(Z2) be the realization of
percolation. We will inductively define what it means for an n box to be good for ω. A
cluster C in a subgraph S is a maximal connected subgraph of S such that ω(c) = 1 for
all c ∈ C. For an n box a crossing cluster is a cluster in the n box which contains vertices
on all four edges of the n box. Inductively it will be clear that every good n box contains a
crossing cluster. A crossing of a horizontal (m,n) strip [a, b]× [c, d] is a cluster in the (m, n)
strip which contains at least one vertex in [a, b]× [c] and at least one vertex in [a, b]× [d].

An n ≤ 200 box is good if all the edges in the n box are included in ω. Given an n box,
n > 200, suppose we have defined what it means for an n − 1 box to be good and it being
good implies that the n− 1 box contains a crossing cluster. Let

a1 = the number of n− 1 boxes in the n box which are not good and

a2 = the number of pairs of neighboring good n− 1 boxes such that the (n− 1, n− 1)

strip between them doesn’t have a crossing that

intersects the crossing clusters of the good n− 1 boxes.

Then the n box is good if a1 + a2 is at most one.
We define a (9, m) tree in a horizontal (m, n) strip inductively in m. A (9, m) tree is a

set of vertices in the boundary of the (m, n) strip. For any n and any (2, n) strip [a, b]× [c, d]
and any set I of 9 elements in [a, b] we define two (9, 2) trees T and T ′ in a (2, n) strip by

T = {(i, j) : i ∈ I, j = c} and T ′ = {(i, j) : i ∈ I, j = d.}
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Each (m, n) strip contains at least (9, m) disjoint (m− 1, n) strips. A 9 tree in an (m, n)
strip is the union of nine (9, m− 1) trees in disjoint (m− 1, n) strips within the (m, n) strip.
Thus each (9, m) tree in an (m, n) strip consists of 9m−1 vertices. For any m′ < m the 9m−1

vertices are in 9m−m′
(9, m′) trees in disjoint (m′, n) strips.

Lemma 4.1 Every pair of good n boxes separated by an (n, n) strip defines at least one
(9, n) tree on each side of the (n, n) strip.

Proof. The proof is by induction. Every pair of good 2 boxes separated by an (2, 2) strip
has at least 9 pairs of vertices, one in each of the 2 boxes, such that every pair is separated
by one edge. This forms a (9, 2) tree in the (2, 2) strip. Every pair of good n boxes separated
by an (n, n) strip has at least 11 pairs of n− 1 boxes, one in each of the n boxes, such that
every pair is separated by an (n− 1, n− 1) strip. In each of the good n boxes at least 10 of
the 11 n − 1 boxes are good. Thus every pair of good n boxes separated by an (n, n) strip
has at least 9 pairs of n−1 boxes, one in each of the boxes, such that every pair is separated
by an (n− 1, n− 1) strip and both the n− 1 boxes are good. With the induction hypothesis
this forms a (9, n) tree in the (n, n) strip. �

Many of our calculations will require the following lemma.

Lemma 4.2 For any c, p1, . . . , pn, 0 < pi < 1, and a =
∑n

1 pi

1−
n∏
1

(1− pi) ≥ min
(
1− e−c,

a

c
(1− e−c)

)
.

Proof. We have that
∑n

1 −pi = −a and
∑n

1 ln(1− pi) ≤ a. Thus

n∏
1

(1− pi) ≤ e−a

and

1−
n∏
1

(1− pi) ≥ 1− e−a.

The inequality
1− zd ≥ d(1− z)

holds for 0 ≤ z, d ≤ 1. If a ≤ c then applying this with z = e−c and d = a/c gives

1−
n∏
1

(1− pi) ≥ 1− e−a = 1− (e−c)a/c ≥ a

c
(1− e−c).

�
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For any set T ∈ Z2 define

R(T ) = {(x, y) ∈ Z2 : there exists x′ ∈ Z such that (x′, y) ∈ T}.

For any set V ∈ Z define
R(V ) = {(x, y) ∈ Z2 : y ∈ V }.

We can define C(T ) and C(V ) in an analogous manner.
For the rest of the paper we fix the following. Let B be any n box. Let B1 = [a1, b1] ×

[c1, d1] and B2 = [a1, b1] × [c2, d2] be good n boxes. Let S̄ = [a1, b1] × [d1, c2] be the (n, n)
strip between B1 and B2. Let R1 ⊂ R(d1) and R2 ⊂ R(c2) be two (9, n) trees defined by
the crossing clusters of B1 and B2. Let S = [ã, b̃] × [c̃, d̃] be a (b2n/3c, n) strip, T ⊂ R(d̃)
be a (9, b2n/3c) tree in S and T ′ ⊂ C(T ) ∩ R(c̃) be a collection of (9, k) trees in S with
k ≤ b2n/3c.

Lemma 4.3 There exists pc < 1 such that if p > pc then

1. Pp (B is good) > 1− 4−n and

2. Pp (∃ a crossing of S that intersects T and T ′) > |T ′|
9b2n/3c .

3. P ( ∃ a crossing of S̄ intersecting R1 and R2) ≥ 1− 4−n.

The proof is by induction with base case n = 200. Statement 1 is similar to the induction
hypothesis for the regularly stretched lattice. Statement 3 is also similar to a step for the
regularly stretched lattice. It does not work as an inductive step. Statement 2 is introduced
because it is possible to induct on this statement. Statement 3 then follows easily from
statement 2. When the height of S is one (c̃ = d̃) the proof of 2 is a simple calculation. The
proof of statement 2 when the height of S is greater than one is the most complicated part
of the proof of Lemma 4.3. Before we prove Lemma 4.3 we require a few additional lemmas.

Now we consider the case that the height of S is greater than one. Because {xi} and
{yi} are very regular S has the following structure. We can break S up into 3 parts. On the
bottom we have a (b2n/3c, m) strip S1 = [ã, b̃] × [c̃, c̃′]. On the top we have a (b2n/3c, r)
band S2 = [ã, b̃] × [d̃′, d̃]. In the middle are up to 384 rows of q boxes separated by l bands
with labels q. By the definition of very regular and the way the labels were assigned to bands
m, r > q and

m + r − bq/3c − n = 0 or 1. (5)

In particular if q > 100 then

b2n/3c > b2m/3c+ b2r/3c − q + 30. (6)

The outline of our argument is as follows. If

1. there are “enough” crossings of S1 which intersect T ′,
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2. there is at least one crossing of S2 which intersects T ,

3. there exists v contained in a crossing of S1 which intersects T ′ and w contained in a
crossing of S2 which intersects T such that v and w are contained in a column of q
boxes, and

4. v and w are connected

then there exists a crossing of S intersecting T ′ and T .
In Lemma 4.4 we bound from below the probability that there is at least one crossing

of S1 intersecting T ′. We define what “enough” is in line 7. In Lemma 4.5 we give a lower
bound on the probability of 1. Then we use Lemma 4.4 to bound the probability of 2 and
3 conditioned on 1 occurring. Then we bound the probability of 4 in Lemma 4.6. Then the
proof of Lemma 4.3 part 2 is done by combining the above bounds.

Let S ′ = [a′, b′] × [c′, d′] be a (J, j) strip with j ≤ n and J ≥ b2j/3c. Let Ŝ = ∪Ŝi be a
union of (l, j) strips in S ′. We write Ŝi = [fi, gi] × [c′, d′]. Let T̄ ⊂ R(d′) be a (9, J) tree in
S̄ which intersects each Ŝi in a (9, b2j/3c) tree. Let T̂ ⊂ C(T̄ ) ∩ R(c′) be a union of (9, l)
trees in disjoint (l, j) strips in Ŝ where l ≤ b2j/3c.

Lemma 4.4 Suppose the conclusions of Lemma 4.3 are satisfied for j ≤ n− 1. Then

P (∃ a crossing of Ŝ intersecting T̂ and T̄ ) ≥ min

(
.9,

|T̂ |
3 · 9b2j/3c

)
.

Proof. T̂ is the union of (9, l) trees so T̂ =
⋃

Ti where each Ti is a union of (9, l) trees in
(b2j/3c, j) strip Si. By the induction hypothesis we have

P (∃ a crossing of Ŝi intersecting T̂i and T̄ ) ≥ |T̂i|
9b2j/3c .

By Lemma 4.2 with c = 3

P (∃ a crossing of Ŝ intersecting T̂ and T̄ ) ≥ min

(
1− e−3,

Σ|T̂i|
3 · 9b2j/3c

)

≥ min

(
.9,

|T̂ |
3 · 9b2j/3c

)
.

�

We have defined a (b2n/3c, n) strip S, a (9, b2n/3c) tree T ′, a union of (9, k) trees T ′,
and constants q, m and k. Let q∗ = max(100, q) and M = max(b2m/3c, 100, q). Also let

k′ = min(k, b2m/3c). Given T define T̄ = R(c̃′) ∩ C(T ). Define T̃ to be the union of the
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(9, q∗) trees in T̄ such that for each T̃i ⊂ T̃ there exists ṽi ∈ T̃i, vi ∈ T ′∩C(T̃i) and a crossing
of S1 containing ṽi and vi. Define ∗ to be the event that

|T̃ | ≥ max

(
|T ′|9q∗−1

1000 · 9M
, 9q∗−1

)
. (7)

Lemma 4.5 If Lemma 4.3 is satisfied for j ≤ n− 1 then

P (∗) > min

(
.9,

|T ′|
100 · 9b2m/3c

)
.

Proof. We break the proof up into cases based on the size of |T ′| and whether M = q∗,
M = 100, or M = b2m/3c. If |T ′| ≤ 1000 · 9b2m/3c and M = b2m/3c then by Lemma 4.4

P (∗) ≥ min

(
.9,

|T ′|
3 · 9b2m/3c

)
.

If |T ′| ≤ 1000 · 9M and M = q∗ then we write T ′ =
⋃N

i=1 Ti where each Ti is a union of (9, k′)
trees in a (b2m/3c, m) strip. Then for all i by Lemma 4.4

P (∃ a crossing intersecting Ti and T̄ ) ≥ min

(
.9,

|Ti|
3 · 9b2m/3c

)
.

If for one i the minimum is .9 then we are done. Otherwise by Lemma 4.2 we have

P (∃ a crossing intersecting T ′ and T̄ ) > min

(
.9,

|T ′|
9 · 9b2m/3c

)
.

If |T ′| > 1000 · 9M then write T ′ =
N⋃

i=1

T ′
i where each T ′

i is a union of (9, k′) trees in a union

of (M, m) strips. Do this in such a way that for each i

3 · 9M ≤ |T ′
i | = 4 · 9M .

and if i 6= j the unions of (M, m) strips for i and j are disjoint. Thus N is at least

|T ′|
4 · 9M

≥ 100.

By the fact that |T ′
i | ≥ 3 · 9M we have that

P (∃ a crossing of S̃i intersecting T ′
i and T ∗) ≥ .9.

Thus we have N ≥ 100 independent events with probability greater than or equal to .9. The
probability that at least dN/10e of these events happen is greater than the probability that
11 events happen with N = 100. This probability is at least .9.
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Finally if M = 100 then q ≤ 100 and m ≤ 150. Thus

P (∗) ≥ 1− 4−200.

�

Let G be a graph which is composed of the union of a column of q boxes, [e, f ]× [g1, h1]
through [e, f ] × [gl, hl], where q ≥ 200 and l ≤ 384. Also in G are horizontal (q, q) strips
[e, f ] × [h1, g2] through [e, f ] × [hl−1, lk]. Thus G = [e, f ] × [g1, hl]. We call such a graph a
column of q boxes. Let v ⊂ R(g1) and w ⊂ R(hl) be vertices on the bottom and top of
G. We say G is normal for v and w if there exists a cluster in G connecting v and w.

Lemma 4.6 Suppose the conclusions of Lemma 4.3 are satisfied for q ≤ n. Then

P (G is normal for v and w) ≥ .99

Proof. G is normal for v and w if

1. all of the q boxes in G are good,

2. v and w are in the crossing clusters of their respective q boxes, and

3. all of the (q, q) strips in G have a cluster which connects the crossing clusters of the
good q boxes on the top or bottom of the (q, q) strip.

Thus by the induction hypothesis

P (condition 1 is satisfied) > (1− 4−q)384 > 1− 2−100.

If the j box containing v (or w) is good for all j, 200 ≤ j ≤ q, then v (or w) is in the crossing
cluster of the q box. Thus

P (condition 2 is satisfied) > (1− 2
∑

j≥200

4−j) > 1− 4−199.

By Lemma 4.3

P (condition 3 is satisfied) > (1− 4−q)384 > 1− 2−100.

Thus
P (G is normal for v and w) > 1− 3 · 2−100 > .99.

�

Proof of Lemma 4.3: The proof is by induction. Choose pc such that for p > pc the lemma
is true for all n ≤ 200. Assume that the lemma is true for all j < n.

Since {xi} and {yi} are regular there are at most 3842 n − 1 boxes in an n box and we
have that

Pp(a1 = 1) ≤ 3842(4−n+1) ≤ 4104−n
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and
Pp(a1 ≥ 2) ≤ (3842)2(4−n+1)2 ≤ 4304−2n ≤ 4−504−n.

There are at most 2(384)2 (n − 1, n − 1) strips in an n box. If such a strip is between two
good n − 1 boxes then the probability that there exists a crossing which connects to both
the crossing clusters of the good n boxes is calculated as follows.

By the induction hypothesis

Pp(a2 ≥ 2) ≤ (2(384)2)2(4−n+1)2 ≤ 4204−2n ≤ 4−504−n

and
Pp(a2 ≥ 1|a1 = 1) ≤ 2(384)2(4−n+1) ≤ 4204−n.

Thus

Pp(a1 + a2 ≥ 2) ≤ Pp(a1 ≥ 2) + Pp(a2 = 1|a1 = 1) · Pp(a1 = 1) + Pp(a2 ≥ 2)

≤ 2(4−50)4−n + 4304−2n

≤ 4−n.

This completes the proof of the first statement.
Now we consider the second statement. First we must consider the case that the height

of S is one. In this case the probability is easy to calculate. There are |T ′| edges which
would form an appropriate crossing if they were open. Thus

Pp(∃ a cluster in S which intersects T and T ′) ≥ 1− (1− pn)|T
′|

≥ min(1− e−1, |T ′|pn(1− e−1))

≥ |T ′|
9b2n/3c

by Lemma 4.2. Next it is easy to see that if either m < 200 or r < 200 then q < 200 and
that the induction hypothesis is easily proven.

Now we consider the case when m, r ≥ 200 and the height of S is greater than one. If
q ≥ 100 and

1. the event ∗ happens on S1. This forms T̃ ⊂ C(T ) ∩R(c̃′).

2. Set T ∗ = C(T̃ )∩R(d̃′). There exists a crossing of S2 intersecting T ∗ and T . This gives

us v ∈ T̃ and w ∈ T ∗. They are separated by a column of q boxes. And

3. the column of q boxes separating v and w is normal for v and w

then there exists a crossing of S that intersects T and T ′.
By Lemma 4.5

P (1) = P (∗) ≥ min

(
.9,

|T ′|
100 · 9b2m/3c

)
.
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If ∗ occurs then we get

|T̃ | ≥ max

(
9q∗−1,

9q∗−1|T ′|
1000 · 9M

)
.

If |T ′| ≤ 1000 · 9M then |T ∗| = |T̃ | ≥ 9q∗−1 and by Lemmas 4.5 and 4.6

P (2 and 3 | 1) ≥ P (∃ a crossing of S2 intersecting T ∗ and T
∣∣ |T ∗| = 9q∗−1)(.99)

≥ (.99) min

(
.9,

9q∗−1

3 · 9b2r/3c

)
≥ min

(
.8,

9q∗−1

4 · 9b2r/3c

)
.

If |T ′| < 100 · 9b2m/3c then

P (∃ a crossing of S intersecting T ′ and T ) ≥ P (1) · P (2 and 3|1)

≥ |T ′|
100 · 9b2m/3c min

(
.8,

9q∗−1

4 · 9b2r/3c

)
≥ min

(
|T ′|

200 · 9b2m/3c ,
9q∗−1|T ′|

400 · 9b2m/3c9b2r/3c

)
≥ |T ′|

9b2n/3c .

If 100 · 9b2m/3c ≤ |T ′| ≤ 1000 · 9M then

P (∃ a crossing of S intersecting T ′ and T ) ≥ P (1) · P (2 and 3 | 1)

≥ (.9) min

(
.8,

9q∗−1

4 · 9b2r/3c

)
≥ min

(
.5,

9q∗/31000 · 9b2m/3c

9b2r/3c+b2m/3c−q∗/2

)
≥ min

(
.5,

1000 · 9M

9b2n/3c

)
≥ min

(
.5,

|T ′|
9b2n/3c

)
≥ |T ′|

9b2n/3c .

If |T ′| ≥ 1000 · 9M and ∗ occurs then

|T̃ | = |T ∗| ≥ |T ′|9q∗−1

1000 · 9M
,

21



and by Lemma 4.4

P (2 | 1) ≥ P

(
∃ a crossing of S2 intersecting T ∗ and T

∣∣ |T ∗| = |T ′|9q∗−1

1000 · 9M

)
≥ min

(
.9,

|T ′|
3000 · 9M+b2r/3c−q∗+1

)
≥ min

(
.9,

2|T ′|
9b2n/3c

)
≥ 2|T ′|

9b2n/3c .

By Lemma 4.6
P (3 | 1 and 2) ≥ .99

If |T ′| ≥ 1000 · 9M then

P (∃ a crossing of S intersecting T ′ and T ) ≥ P (1) · P (2| 1) · P (3 | 1 and 2)

≥ (.9)
2|T ′|

9b2n/3c (.99)

≥ |T ′|
9b2n/3c .

For any two points (x1, y1), (x2, y2) ∈ Z2 we say the rectangle formed by v and w is the
graph of all edges where both of vertices have x coordinate between x1 and x2 and have y
coordinate between y1 and y2. If q < 100 we substitute 3 with

3′) all edges in the rectangle formed by v and w are open.

Then everything goes through as above. This is because the rectangle between v and w is a
portion of a 200 box. This completes the proof of statement 2.

Finally we prove statement 3. The (9, n) trees R and R′ defines a set of 9n−b2n/3c

(b2n/3c, n) strips in S̄ . Let S̃ be one. By the induction hypothesis the probability that
there is a crossing of S̃ which intersects R and R′ is at least 1

9
. As there are 9n−b2n/3c of these

(b2n/3c, n) strips and the events that there does not exist crossings that intersect both R
and R′ are independent. The probability that there exists an appropriate crossing is at least

1−
(

8

9

)9n−b2n/3c

≥ min

(
1− e−2n,

9n−b2n/3c−1

2n
(1− e−2n)

)
≥ 1− e−2n

≥ 1− 4−n.

�

Theorem 4.1 There exists pc < 1 such that for almost every {xi} and {yi} and all p > pc

Pp(∃ an infinite cluster) = 1.
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Proof. By Lemma 3.8 there exists {x̄i} and {ȳi} which are very regular and x̄i ≥ xi and
ȳi ≥ yi for all i. Thus the estimates in Lemma 4.3 apply. Let pc be as in Lemma 4.3. It is
easy to check that if v and w are two vertices in the same n box, v is in a good j box for all
j ≤ n and w is in a good j box for all j ≤ n, then v and w are the same cluster. Thus if v
is in a good n box for all n then v is in an infinite cluster. Thus

Pp(∃ an infinite cluster) ≥ Pp( 0 is in a good n box for all n)

≥ 1−
∞∑

n=200

4−n

≥ 1− 4−199.

As Pp(∃ an infinite cluster) equals 0 or 1

Pp(∃ an infinite cluster) = 1.

�

Theorem 4.2 For percolation on the randomly stretched lattice in Z2 there exists a value
pc, 0 < pc < 1 such that if p < pc then

Pp(∃ an infinite open cluster) = 0.

If p > pc then
Pp(∃ an infinite open cluster) = 1.

Proof. It follows from [6] that if p is sufficiently close to 0 then there is no infinite cluster
a.s. Thus Theorem 4.1 completes the proof. �
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