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Abstract

Any measure preserving endomorphism generates both a decreasing sequence of

σ-algebras and an invertible extension. In this paper we exhibit a dyadic measure

preserving endomorphism (X, T, µ) such that the decreasing sequence of σ-algebras

that it generates is not isomorphic to the standard decreasing sequence of σ-algebras.

However the invertible extension is isomorphic to the Bernoulli two shift.

1 Introduction

Consider the one sided Bernoulli two shift. This transformation has state space X = {0, 1}N
and (1/2,1/2) product measure µ. The action on X is T (x)i = xi+1. In this paper we

consider two properties that the one sided Bernoulli two shift has and give an example of an

endomorphism which shares one of these properties but not the other.

The first property is the decreasing sequence of σ-algebras that the one sided Bernoulli

two shift generates. A decreasing sequence of σ-algebras is a measure space (X,F0, µ), and

a sequence of σ-algebras F0 ⊃ F1 ⊃ F2.... Let F be the Borel σ-algebra of X and let

Fi = T−iF . This sequence has the property that Fi|Fi+1 has 2 point fibers of equal mass

for every i. A decreasing sequence of σ-algebras with this property (and an endomorphism

which generates such a sequence) is called dyadic. This example has the property that

∩Fi is trivial. A. Vershik, who began the modern study of such decreasing sequences of

σ-algebras [9], refers to this example as the “standard dyadic” example. Any measure pre-
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serving endomorphism (X,T,F , µ) generates a decreasing sequence of σ-algebras by setting

Fi = T−iF .

Two decreasing sequences of σ-algebras are called isomorphic if there exists a 1-1

measure preserving map between the two spaces that carries the i-th σ-algebras to each

other. In [8] Vershik showed that there exist dyadic sequences of σ-algebras with trivial

intersection that are not isomorphic to the standard dyadic example. In [8] Vershik also

gave a necessary and sufficient condition for a dyadic decreasing sequence of σ-algebras to

be standard. An equivalent description of standardness for dyadic sequences is for there to

exist a sequence of partitions {Pi} of X into two sets, each of measure 1/2, such that

1. the partitions Pi are mutually independent and

2. for each i, Fi =
∨∞

n=i Pn.

It is important to note that in the case that the decreasing sequence of σ-algebras

comes from an endomorphism there is no assumption that the Pi are stationary. (i.e. Pi

is not necessarily T−1(Pi−1).) If an endomorphism generates a decreasing sequence of σ-

algebras that is isomorphic to the standard dyadic decreasing sequence of σ-algebras then

we call that endomorphism standard.

Any measure preserving endomorphism (X, T,F , µ) also generates an invertible mea-

sure preserving automorphism (X̄, T, F̄ , µ̄). We say that the system (X̄, T, µ̄) is isomorphic

to the (invertible) Bernoulli 2 shift if there exists a partition P of X̄ into two sets, each of

measure 1/2, such that

1. the partitions T iP are mutually independent and

2. F̄ =
∨∞

n=−∞ T iP .

If a dyadic endomorphism has an invertible extension which is isomorphic to the (invertible)

Bernoulli 2 shift then we say the endomorphsim is Bernoulli.

Both Bernoulliness and standardness are then equivalent to finding a mutually inde-

pendent sequence of partitions which generate the entire σ-algebra. There is no a priori

reason that a standard endomorphism must be Bernoulli or that a Bernoulli endomorphism

must be standard as in the case of standardness the partitions must be past measurable but

not necessarilly stationary and for Bernoulliness they must be stationary but not necessarilly

past measurable. In this paper we show that in fact neither condition is stronger than the

other.
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It is already known that standard does not imply Bernoulliness of an endomorphism.

Feldman and Rudolph proved in [3] that a certain class of dyadic endomorphisms generate

standard decreasing sequences of σ-algebras. Among these is an endomorphism which Burton

showed has a two sided extension which is not isomorphic to a Bernoulli shift [1]. In this

paper we construct a dyadic endomorphsim with entropy log 2 that is Bernoulli but the

endomorphism is not standard. In [8] Vershik created an infinite entropy endomorphism

which is Bernoulli but not standard. To complete the picture we mention that the one sided

Bernoulli 2 shift is both Bernoulli and standard. The [T, T−1] endomorphism was proved

not to be Bernoulli by Kalikow [6] and not to be standard by Heicklen and Hoffman [5].

2 Notation

We begin to introduce some notation to help understand the tree structure of a dyadic

endomorphism. Consider a rooted 2-ary tree with 2n vertices at depth n ≥ 0. Each vertex

at depth n connects to two vertices at the depth n + 1. For each pair of vertices at depth

n + 1 which connect to the same vertex at depth n we label one of the vertices 0 and the

other vertex 1. This then gives each vertex a second label which is a nontrivial finite word of

zeros and ones. This is given by sequence of values we see along the unique path of vertices

from the root to the given vertex. In this form we can concatenate vertices v′ and v by

concatenating their labels. Call this labeled tree T . If we truncate the tree at depth n > 0

we call it Tn.

We also use the notation v ∈ T (or v ∈ Tn) to indicate that v is a vertex of T (or Tn).

set of vertices For v ∈ T and at depth i (i.e. v ∈ Ti \ Ti−1) we write |v| = i and we write v as

a list of values v1, . . . , vi from {0, 1} where this is the list of labels of the vertices along the

branch from the root to v. We say that v′ is an extension of v if v′ = vv′′ for some v′′ ∈ T .

We also say that v is a contraction of v′.

Let (X, T, µ,F) be a uniformly 2 to 1 endomorphism. Then each x ∈ X has two inverse

images. There exists a measurable two set partition K of X such that almost every x has

one preimage in each element of K. Label the sets of K as K0 and K1. For each i ∈ {0, 1}
and x ∈ X define Ti(x) to be the preimage of x in Ki. We now define a set of partial

inverses for T . For v = (v1, . . . , vi) ∈ T define Tv(x) = Tvi
(...(Tv1(x))). Also define the tree

name of x by Tx(v) = K(Tv(x)). More generally for any finite set P we call a function h

from T to P a T , P name. For us a subtree of T will be a path connected set of vertices.

Notice that this means a subtree will have a root which is the unique vertex in it of least
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depth, and will consist of a collection of connected paths descending from this root. If T ′

is any subtree of T then a T ′, P name h is any function from T ′ to P . A T ′, P name on a

subtree gives rise to a collection of names indexed by intervals in −N by listing in negative

order the names that appear along vertices of the subtree (with multiplicities). Be sure to

keep in mind that in this translation vertices at depth n in the tree correspond to point in

T−n for the action, i.e. there is a switch in sign. More accurately, such a name on a subtree

gives rise to a measure or distribution on such finite names where each name of length t is

given mass 2−t (again counting multiplicities). If this original tree name is the tree name of a

point, then this distribution will be the conditional distribution of the various past cylinders

given the path to the root of the subtree.

We say that a vertex v is in the bottom of the subtree T ′ if no extension of v is a

vertex in T ′. We define T ′′′, the concatenation of two subtrees T ′ and T ′′, as follows. Let

T ′′′ = T ′ ∪
( ⋃

bottom of T ′
vT ′′

)

where the second union is taken over all v which are in the bottom of T ′. That is to say

we attach to each vertex in the bottom of T a copy of the subtree T ′. We concatenate tree

names in an analogous manner by extending the labeling of T to be the labeling of T ′ on

each of the copies of T ′ attached at the bottom of T .

Let A be the collection of all bijections of the vertices of T that preserve the tree

structure. We refer to this as the group of tree automorphisms. Let An be the bijections

of the vertices of Tn preserving the tree structure. To give a representation to such automor-

phisms A notice that from A we obtain a permutation πv of {0, 1} at each vertex giving the

rearrangement of its 2 immediate extensions. An automorphism of Tn will be represented by

an assignment of a permutation of {0, 1} to each vertex of the tree including the root and

excepting those at depth n.

Fix a partition P . The Hamming metric between two Tn, P names W and W ′ is given

by

d̄n(W,W ′) =
# of v ∈ Tn \ Tn−1 such that W (v) 6= W ′(v)

2n
.

Now define

v̄n(y, y′) = v̄P
n (y, y′) = inf

A∈An

(
d̄n(A(Ty), Ty′)

)
.

In the case that {Fn} comes from a dyadic endomorphism Vershik’s standardness criterion

is the following.
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Theorem 2.1 [8] {Fn} is standard iff for every finite partition P ,

∫
v̄P

n (y, y′)d(ν × ν) → 0.

Remark 2.1 A proof of this can also be found in [4].

3 Construction

The construction will be done by cutting and stacking. Cutting and stacking in Z can be

viewed in two ways. One can regard the construction as building a sequence of Rokhlin

towers of intervals labeled by symbols from some labeling set P . Successive towers are built

by slicing up and restacking. The map is defined on ever larger parts of the space until it

is eventually defined almost everywhere. One can also view the stack as a distribution on

the set of all finite names (most of course given mass zero). For each length k ∈ N one

can construct a measure on cylinders of length k from each stack by calculating the density

of occurrence of that cylinder within the stack. These measures on cylinders will converge

weak* to a shift invariant measure on P Z. The constructed action then is the shift map on

P Z. Usually both these views give the same action although this depends on whether the

labels in the first description give a generating partition for the action. For our construction

we will follow the latter perspective by constructing names on finite subtrees. We have

already described how to translate such a name into a distribution on names on intervals in

−N. This translation links our work to the traditional cutting and stacking construction of

Z actions.

The construction will build inductively one TH(n) name, Bn for each n. From this

sequence of names we will construct a sequence of measures on Tk, P -names by calculating

the density of occurrences of the subtree name within each Bn. These measure will converge

weak* to a measure on T , P names. This measure extends to a shift invariant measure on P Z

and its restriction to PN will be the endomorphism we are interested in. Disjoint occurrences

of copies of the name Bn in the past trees of points will place a block structure on these

tree names. We consider two points x and y and their 2m inverse images under (T−m). The

construction will be done in such a way that it will be impossible to find a pairing of the

2m inverse images of x with those of y by a tree automorphism that will match up the block

structures of the paired inverse images. But there is a bijection of the inverse images which

does not preserve the tree structure and which matches up the block structure.
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To do the construction we will need three sequences of integers, H(n), the height of

n tree, N(n), the number of copies of n − 1 trees concatenated to form the n tree, and a

parameter F (n). These sequences will be defined inductively. Let H(1) = 1000. Given that

H(n− 1) has been defined choose F (n) so that
√

F (n) > 2n+100H(n− 1). Also choose N(n)

so that H(n) = 3F (n) + N(n)H(n− 1) ≥ 2n+100F (n).

An element of the partition P is of the form (a, n, v), where a ∈ {0, 1}, n ∈ N, and

v ∈ T . Notice that P will not be a finite partition. Both standardness and Bernoullicity are

characterized by the behavior of finite partitions. We will explain how this issue is handled

at the appropriate points.

For any v ∈ T define

fn(v) = minimum {3F (n), the smallest k ≤ |v| such that
∑k

1 vi = F (n)}.

We will now inductively define TH(n), P names which we call Bn. The name B1, is

defined so that each vector v ∈ TH(1) gets a distinct label. For any v ∈ TH(1) assign B1(v) =

(v|v|, 1, v).

Now assume that Bn has been defined. Create the subtree that consists of all vectors

v ∈ T3F (n) such that
∑|v|

1 vi ≤ F (n). Give each of these vertices a label in P which is not

seen in Bn. Now concatenate this tree name with N(n) copies of Bn−1. Then for any vertex

v ∈ TH(n) which has not yet received a label assign it a label which has not been used before.

To make this precise for any v ∈ TH(n) such that
∑|v|

1 vi < F (n) or |v| > fn(v) +

N(n)H(n−1) assign Bn(v) = (v|v|, n, v). If v ∈ TH(n) such that |v|−fn(v) ∈ [1, N(n)H(n−1)]

let

v̂i = vi+fn(v)+b(|v|−fn(v))/H(n−1)cH(n−1),

where bxc is the greatest integer less than or equal to x. Then define Bn(v) = Bn−1(v̂). This

inductively defines Bn.

The TH(n) name Bn defines a measure µn on P Tk , k ≤ H(n) as follows. Any h ∈ P Tk

receives mass

µn(h) =
∑ 1

(H(n)− k + 1)2|v|

where the sum is taken over all v ∈ TH(n)−k such that h(v′) = Bn(vv′) for all v′ ∈ TH(n−1).

The measures µn, which project, as we have described, to measures on names labeled by

[−n, . . . ,−1] we still refer to as µn. As these measures on names are precisely what would

arise if one did traditional cutting a stacking to create the distribution on names associated
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with Bn we conclude the µn converge in the weak * topology to a shift invariant measure µ̂

on P Z. Restrict µ̂ to PN to give the endomorphism T we claim is Bernoulli but not standard.

As the labels used to fill in the top and bottom of the tree name only appear there,

the block structure on the past trees of points are unique.

Let K0 be the set of x ∈ X such that P (x) is of the form (0, ∗, ∗) and K1 be the

set of x ∈ X such that P (x) is of the form (1, ∗, ∗). One sees from the construction that

T : K0 → X and T : K1 → X are both 1-1 and onto. This defines partial inverses T−1
0 and

T−1
1 both of which have constant R.N. derivatives of 1/2 and hence T is a uniformly dyadic

endomorphism. By the method described in the previous section we can define Tv for any

v ∈ T and Tx for any x ∈ X.

We say that a point x ∈ X is in the n block if there exists vx ∈ TH(n) such that for

all v′ ∈ TH(n)−|vx| we have

Tx(v
′) = Bn(vxv

′).

We say that x is in the top of the n block if |vx| = 0. For general tree names we will use

the corresponding definitions of being in the n block or being in the top of the n block.

Lemma 3.1 For any n ≥ 2 and k ∈ [0, H(n−1)) and l ≥ 3F (n) the number of v ∈ Tl \Tl−1

such that f(v′) = k mod H(n− 1) is less than 2l+1/H(n− 1).

Proof: It causes no loss of generality to assume that l = 3F (n). Since
√

F (n) >> H(n−1)

this follows from the local central limit theorem. See, for example, [2] page ??.

¤
A slightly different version of this lemma is the following.

Corollary 3.1

sup
k

2−k (# of ṽ such that |ṽ| = k and TṽBn is in the top of the n− 1 block) ≤ 2/H(n− 1).

Proof: It causes no loss of generality to assume that k ≥ 3F (n). This is because if k ≤ 3F (n)

then the quantity we are trying to maximize is greater for k + H(n − 1) than for k. Then

this is just a restatement of the previous lemma. ¤

Lemma 3.2 The endomorphism (X, T, µ) has entropy log 2.

Proof: By definition P is a generating partition for the endomorphism. Thus the en-

tropy of the endomorphism is the same as the entropy of the endomorphism relative to P .
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For almost every point x ∈ X and integer k there is an n such that x is in the n block

and Hn − |vn(x)| > k. As there is only one n block and x is in the n block, condition-

ing on P (x), P (T 1(x)), ..., P (THn(x)) determines vx. Thus, as there is only one n block,

conditioning on the sequence P (x), P (T 1(x)), ..., P (THn(x)), ... there are 2k possibilities for

P (T−1(x)), ..., P (T−k(x)) and they are all equally likely. Thus the entropy of the endomor-

phism is log 2. ¤

4 The sequence of σ-algebras is not standard

Let ε1 = 1 and εn = εn−1(1 − 2−n−95). Choose ε = lim εn > 0. The main part of the proof

that (X,T, µ) does not generate a standard decreasing sequence of σ-algebras is the following

inductive statement.

Lemma 4.1 Given any n ∈ N, v ∈ TH(n) \ T3F (n), and j, 0 < j ≤ H(N)− |v|, we have

v̄j(TvBn, Bn) > εn.

Before we start the proof of this lemma we will sketch the proof and introduce some

notation. We argue by induction in n. The main idea is to break up the sum in the

calculation of v̄j(TvBn, Bn) into the weighted average of terms of the form v̄k(Tv′Bn−1, Bn−1).

The variation in the value of fn will ensure that for most of the terms being averaged

|v′| > 3F (n − 1). Arguing inductively in n we will bound v̄j(TvBn, Bn) in terms of values

v̄k(Tv′Bn−1, Bn−1). Now we introduce notation to make this precise.

Given n ∈ N, v ∈ TH(n), j ∈ N such that 0 < j ≤ H(n) − |v|, and an automorphism

A ∈ Aj we will define a few subsets of Tj. First let V1 be all ṽ ∈ Tj \ Tj−1 such that TvṽBn

is not in the n− 1 block or TA(ṽ)Bn is not in the n− 1 block.

Let V2 be all ṽ ∈ Tj such that

1. either TvṽBn or TA(ṽ)Bn is in the top of an n− 1 block,

2. no extension of ṽ is in V1,

3. there is no v′′ ∈ Tj such that v′′ is an extension of v and Tvṽ′′Bn is in the top of an

n− 1 block, and

4. there is no v′′ ∈ Tj such that v′′ is an extension of A(ṽ) and Tv′′Bn is in the top of an

n− 1 block.
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Now for each v ∈ Tj \ Tj−1 either v is in V1 or v has exactly one contraction in V2. But

both can not happen. From this it is easy to verify that

1

2j
(# of ṽ ∈ V1) +

∑
ṽ∈V2

2−|ṽ| = 1 (1)

and

dj(TvBn, A(Bn)) =
1

2j
(# of ṽ ∈ V1 such that P (TvṽBn) 6= P (Tv′A(ṽ)Bn)) +

∑
ṽ∈V2

2−|ṽ|dj−|ṽ|(TvṽBn, Aṽ(Tv′A(ṽ)Bn)). (2)

We have used the notation Aṽ to denote the restriction of A to ṽTn−|ṽ|.

Since one of TvṽBn or Tv′A(ṽ)Bn is in the top of an n− 1 block we can almost use the

induction hypothesis to get a bound on the summands in line 2. Suppose it is TvṽBn that

is in the top of an n − 1 block. In order to apply the induction hypothesis we just need to

make sure that Tv′A(ṽ)Bn is not in the top 3F (n− 1) levels of the n− 1 block.

Now we define sets V3 and V4 so that V2 is the disjoint union of V3, where the induction

hypothesis applies, and V4, where it does not. Let h be the largest k ≤ j such that |v|+ k−
fn(v) = 0 mod H(n− 1). Let V3 consist of all ṽ ∈ V2 such that

1. TvṽBn is in the top of the n− 1 block and (h− fn(A(ṽ)) mod H(n− 1)) > 3F (n− 1)

or

2. TA(ṽ)Bn is in the top of the n− 1 block and |A(ṽ)| − h > 3F (n− 1)

Let V4 = V2 \ V3.

Lemma 4.2 Given n and let v ∈ TH(n) \ T3F (n). Then for any j ≤ H(n)− |v| we have

1

2j
(# of ṽ ∈ V1) +

∑
ṽ∈V3

2−|ṽ| > 1− 2−n−95.

Proof: By line 1 this is equivalent to showing that

∑
ṽ∈V4

2−|ṽ| < 2−n−95.

If TvṽBn is in the top of the n − 1 block then |ṽ| = h. The number of ṽ with |ṽ| = h and

(h− fn(A(ṽ)) mod H(n− 1)) ≤ 3F (n− 1) is
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≤ (3F (n− 1) + 1) sup
k

{
# of v′ ∈ Tj \ Tj−1 such that fn(ṽ) = k mod H(n− 1)

}

≤ 4F (n− 1)2h 2

H(n− 1)

≤ 2h 8F (n− 1)

H(n− 1)
.

The sum
∑

2−|A(ṽ)| over all ṽ such that TA(ṽ)Bn is in the top of the n − 1 block and

0 ≤ |A(ṽ)| − h ≤ 3F (n− 1) is

≤ (3F (n− 1) + 1) sup
k

2−k (# of ṽ such that |ṽ| = k and TṽBn is in the top of the n− 1 block)

≤ 4F (n− 1)
2

H(n− 1)

≤ 8F (n− 1)

H(n− 1)
.

Thus combining these two estimates gives

∑
ṽ∈V4

2−|ṽ| ≤ 2−h2h 8F (n− 1)

H(n− 1)
+

8F (n− 1)

H(n− 1)

≤ (16)2−n−99

≤ 2−n−95.

¤
Proof of Lemma 4.1: The base case is trivial. This is because if v 6= v′ then B1(v) 6= B1(v

′).
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For any automorphism A

dj(TvBn, A(Bn)) =
1

2j
(# of ṽ ∈ V1 such that P (TvṽBn) 6= P (Tv′A(ṽ)Bn))

∑
ṽ∈V3

2−|ṽ|dj−|ṽ|(TvṽBn, Aṽ(Tv′A(ṽ)Bn)) +

∑
ṽ∈V4

2−|ṽ|dj−|ṽ|(TvṽBn, Aṽ(Tv′A(ṽ)Bn))

≥ 1

2j
(# of ṽ ∈ V1 such that P (TvṽBn) 6= P (Tv′A(ṽ)Bn))

∑
ṽ∈V3

2−|ṽ|dj−|ṽ|(TvṽBn, Aṽ(Tv′A(ṽ)Bn))

≥ 1

2j
(# of ṽ ∈ V1) +

∑
ṽ∈V3

2−|ṽ|dj−|ṽ|(TvṽBn, Aṽ(Tv′A(ṽ)Bn)) (3)

≥ 1

2j
(# of ṽ ∈ V1) +

∑
ṽ∈V3

2−|ṽ| inf
3F (n−1)<|v′′|≤H(n−1)

v̄j−|ṽ|(Bn−1, Tv′′Bn−1)(4)

≥ εn−1
1

2j
(# of ṽ ∈ V1) + εn−1

∑
ṽ∈V3

2−|ṽ|

> εn−1(1− 2−n−95)

> εn.

Line 3 is true because if ṽ ∈ V1 then either TvṽBn is not in the n− 1 block or TA(ṽ)Bn

is not in the n− 1 block. Since vṽ 6= A(ṽ) Bn(vṽ) 6= Bn(A(ṽ)).

Line 4 is true because one of TvṽBn or TA(ṽ)Bn is in top of the n − 1 block by the

definition of V2. The induction hypothesis applies because of the definition of V3. As the

above calculation is independent of A we have a bound on v̄. ¤
Now we are ready to prove that

∫
v̄P

n (y, y′)d(ν × ν) 6→ 0.

Lemma 4.3 For all n there exists Xn and Yn with µ(Xn), µ(Yn) > 1/5 with the following

property. For any x ∈ Xn and any y ∈ Yn

v̄H(n−1)(Tx, Ty) ≥ ε.

Proof: If a point x is in the n block then we get a vertex vx. Define

Xn = {x | |vx| − fn(vx) mod H(n− 1) ∈ (H(n− 1)/8, 3H(n− 1)/8)}.

Define

Yn = {y | |vy| − fn(vy) mod H(n− 1) ∈ (5H(n− 1)/8, 7H(n− 1)/8)}.
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Given x ∈ Xn and y ∈ Yn let k = H(n− 1)− [|vx| − fn(vx) mod H(n− 1)].

Now

v̄H(n−1)(Tx, Ty) ≥ inf
A∈Ak

1

2k

∑

|ṽ|=k

v̄H(n−1)−k(Tṽ(Tx), TA(ṽ)(Ty)).

By the choice of k all the v̄ terms are of the form v̄H(n−1)−k(Bn−1, Tv′′Bn−1) with v′′ ∈
TH(n−1) \ TH(n−1)/4. Thus

v̄H(n−1)(Tx, Ty) ≥ inf v̄H(n−1)−k(Bn−1, Tv′′Bn−1) ≥ ε,

where the inf is taken over all v′′ ∈ TH(n−1) \ TH(n−1)/4. The last inequality is by lemma 4.3.

By the definition of F (n) and H(n) we get

µ(Xn) = µ(Yn) ≥ 1

4
µ(Bn−1) ≥ 1

4

∏
j≥n

3F (j)

H(j)
≥ 1

5
.

which proves the lemma. ¤

Theorem 4.1 (X, T, µ) does not generate a standard decreasing sequence of σ-algebras.

Proof: From lemma 4.3 it follows that for all n
∫

vP
H(n)(y, y′)d(ν × ν) > ε/25.

Thus ∫
vP

j (y, y′)d(ν × ν) 6→ 0.

Now choose a finite partition P ′ which agrees with P on all but ε/100 of the space. Then it

is clear that for all n ∫
vP ′

H(n)(y, y′)d(ν × ν) > ε/50

and ∫
vP ′

j (y, y′)d(ν × ν) 6→ 0.

Thus by theorem 2.1 (X,T, µ) does not generate a standard decreasing sequence of σ-

algebras. ¤
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5 The two sided extension is Bernoulli

This is proven by showing that (T, P ) is v.w.B. Of course v.w.B. is a condition on finite

partitions but if one verifies it for a countable partition it still implies Bernoullicity. We will

use the same techniques used by Ornstein in [7]. For any v = (v1, ..., vk) and any i ≤ k let

v|i = (v1, ..., vi). Also let v|i = (vi+1, ..., v|v|). Thus v = v|iv|i. For a fixed n and any v1 ∈ T
let Sv1 be all extensions v′ of v1 such that |v′| = |v1|+ ln where ln is a number defined below.

The crux of the proof is the following matching lemma.

Lemma 5.1 For all n and k ≤ n there exists V ⊂ THn and ln ∈ N with the following

property. Then for any v1, v2 ∈ V there exists a one to one map M : Sv1 → Sv2 such that

∑
v∈Sv

{
# of i such that Tv||v1|+i

Bn is in the top of the n− k block and

TM(v)||v2|+i
Bn is in the top of the n− k block

}

≥ 2ln
ln − 2H(n− 1)

H(n− k)
µ(Bn−k)(1− (9/10)k−1).

Proof: Fix n and the proof is by induction on k. Let V = TH(n)−ln−3F (n) \ T3F (n) where

ln = H(n)/2n. For k = 1 the statement is vacuously true.

Note that by the previous section M cannot preserve the tree structure. Along with any

v ∈ Sv1 there is a corresponding sequence in P ln . It is defined by nv = (Bn(v||v1|+i), ..., Bn(v||v1|+ln)).

For a given v ∈ Sv1 we say that the j blocks are the intervals of the form [i, i + h(j)) which

are contained in [1, ln] and Tv||v1|+1
is in the top of the j block. It causes no loss of generality

to assume that the extensions of v1 and v2 have the same number n − 1 blocks. We will

show we can choose M to have the following property. If the sequences corresponding to

two vertices in Sv1 disagree only inside n− k blocks in n− 1 blocks then M applied to these

vertices yields two vertices whose corresponding sequences differ inside n − k blocks inside

of n− 1 blocks. (i.e. If (nv)i = (nv′)i for all i inside n−k blocks inside n− 1 blocks of v then

(nM(v))i = (nM(v′))i for all i inside n− k blocks inside n− 1 blocks of M(v).)

Consider v ∈ Sv1 and all other v′ such that (nv)i = (nv′)i for all i inside n − k blocks

inside n− 1 blocks of v. We now describe how to modify M on this set. When we apply this

procedure to all such sets we get M ′ such that the induction hypothesis holds for k + 1.

Now consider the n−k blocks of v that are not the same as some n− k block of M(v).

Pair these with the n− k blocks of M(v) that are not the same as some n− k block of v in

such a way that the overlap of paired blocks is at least 1/3 of the length of these blocks.

13



Now pick one pair of n− k blocks. Say one of them is [i, i + H(n− k)) and the other

is [j, j + H(n− k)). Choose M ′ so that the number of v′ in this set with

(i + fn−k(v
′|i))− (j + fn−k(M

′(v′)|j)) = 0 mod H(n− 1)

is maximized. This can be done for at least half of the v′ in the set since since
√

F (n− k) >>

H(n−k−1). Now repeat this procedure for the other paired n−k blocks. Then repeat this

procedure for another v. Doing this we have matched at least 1/10 of the n− k − 1 blocks

inside the unmatched n− k blocks which justifies the induction hypothesis for k + 1. ¤

Theorem 5.1 The transformation (X̄, T, µ̄) is Bernoulli.

Proof: Since (X,T, µ) is dyadic and has entropy log 2 we need only to show that (X, T, µ̄)

is very weak Bernoulli. It also suffices to show that (X̄, T−1, µ̄) is very weak Bernoulli.

Given ε choose n and k so that

2ln(9/10)k−1 + (1− µ(Bn−k)) +
2H(n− 1)

ln
< ε

and
3F (n) + ln

H(n)
µ(Bn) > 1− ε.

Let G be the set of all x such that x is in the n block and vx ∈ Vn. Then

µ(G) =
3F (n) + ln

H(n)
µ(Bn) > 1− ε.

Now given any x, x′ ∈ G we get vx, vx′ ∈ Vn. Now choose M so that

1. the conclusion of the previous lemma is satisfied and

2. if M(v) = v′ and [i, i+H(n−k)) is an n−k block for both v and v′ then (nv)j = (nv′)j

for all j ∈ [i, i + H(n− k)).

Now the fraction on n−k blocks inside n−1 blocks that are unmatched is at most (9/10)k−1.

The fraction of an n − 1 block that is not part of n − k blocks is less than (1 − µ(Bn−k)).

While the fraction of [1, ln] that is not in an n− 1 block is at most 2H(n−1)
ln

. Thus

1

2lnln

∑

v∈S(v)

# of i =∈ [1, ln] such that (nv)i 6= (nM(v′))i

≤ (9/10)k−1 + (1− µ(Bn−k)) +
2H(n− 1)

ln
< ε.

Thus T−1 is very weak Bernoulli. ¤
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