Sparsity
-
Convex vs. nonconvex approaches for sparse estimation:
GLasso, multiple kernel learning, and HGLasso,
with A.Y. Aravkin, A. Chiuso, and G. Pillonetto,
Journal of Machine Learning Research, 15(2014) 217-252.
-
Optimization viewpoint on Kalman smoothing, with applications to robust and sparse estimation.
with A.Y. Aravkin and G. Pillonetto,
In Compressed Sensing & Sparse Filtering, eds., A. Carmi, L. Mihaylova, and S. Godsill.
Springer. pp. 237-281, 2014.
-
On the MSE properties of empirical Bayes methods for sparse estimation,
with A.Y.Aravkin, A.Chiuso, and G.Pillonetto,
IFAC Systems Identification, Volume 16, Part 1, Pages 965-970, 2012.
-
A statistical and computational theory for robust and sparse Kalman smoothing,
with A.Y.Aravkin and G.Pillonetto,
IFAC Systems Identification, Volume 16, Part 1, Pages 894-899, 2012.
-
Convex vs. non-convex approaches to sparse estimation: LASSO, multiple kernel learning,
and
hyperparameter LASSO,
with A.Y.Aravkin, A.Chiuso, and G.Pillonetto,
Proceedings of the IEEE Conference on Decision and Control (CDC), 2011,
pp. 156--161.
-
A nonlinear sparsity promoting formulation and algorithm for full-waveform inversion,
with
A.Y.Aravkin, T. van Leeuwen, and F.J.Herrmann,
73rd EAGE Expanded Abstracts, 2011.