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Convex vs nonconvex approaches for sparse estimation:
Lasso, Multiple Kernel Learning and Hyperparameter Lasso

Aleksander Aravkin, James V. Burke, Alessandro Chiuso and Gianluigi Pillonetto

Abstract— We consider the problem of sparse estimation in
a Bayesian framework. We outline the derivation of the Lasso
in terms of marginalization of a particular Bayesian model. A
different marginalization of the same model leads to a different
nonconvex estimator where hyperparameters are optimized.
The arguments are extended to problems where groups of vari-
ables have to be estimated. An approach alternative to Group
Lasso is derived, also providing its connection with Multiple
Kernel Learning. Our estimator is nonconvex but one of its
versions requires optimization with respect to only one scalar
variable. Theoretical arguments and numerical experiments
show that the new technique obtains sparse solutions more
accurate than the other two convex estimators.

Index Terms— Lasso, Group Lasso, marginal density

I. INTRODUCTION

We consider estimation of the parameters 6 € R in a
linear regression model. We also assume that the vector 0 is
sparse, i.e. many of its components are equal to zero or have
a negligible influence on the output y, and that the number
of “unknowns” m is very large and possibly larger than the
number n of data available. In this scenario a key point is
that the estimation procedure should be sparsity-favoring, i.e.
able to extract from the large number of variables entering
the model just that subset which influences the system output
significantly. Linear problems of this sort have recently
attracted the interest of many researchers in statistics and
machine learning, e.g. see [13], [6], [1].

We specifically became interested in a version of this prob-
lem since it also pops up in a “dynamic Bayesian network™
identification scenario as discussed in [4], [2], [3]. Having
this last application domain in mind, in this paper we shall
be mainly concerned with a “group” version where the
explanatory factors used to predict the output y can be
grouped, i.e. the parameter vector 0 can be partitioned as
6= o? 6()]" To be concrete, in a dynamic
network scenario the “explanatory variables” may be the past
histories of different input signals and the “groups” 6 be
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Fig. 1. Bayesian networks describing the stochastic model for sparse
estimation (a) and group sparse estimation (b)

the impulse responses from the i-th input to the output y.
Several approaches have been put forward in the literature
for joint estimation and variable selection problems. We
cite the well known Lasso [13], Least Angle Regression
(LAR), [7] their “group” versions Group Lasso (GLasso) and
Group Least Angle Regression (GLAR) [16], Multiple Ker-
nel Learning (MKL) [8], [10] as well as methods based on
hierarchical Bayesian models such as the Relevance Vector
Machine (RVM) [14] and the exponential hyperprior in [2].
Motivated by the stunning performance of the exponential
hyperprior approach in the dynamic network identification
scenario, see [2], [4], we believe an in depth comparison
with other available methods is due. In this paper we initiate
this comparison, discussing the relation among Lasso (and
GLasso), the Exponential Hyperprior (HGLasso algorithm
hereafter) and MKL by putting all these methods in a
common Bayesian framework (similar to that discussed in
[9]). Both Lasso/GLasso and MKL boil down to convex
optimization problems, while HGLasso does not. However,
one of the versions of HGLASSO here proposed requires
optimization with respect to only one scalar variable. We
discuss advantages and drawbacks of the nonconvex formula-
tion and propose also a “forward selection” type of procedure
for initializing the non-convex search, which may be seen as
an instance of the “screening” type of approach for variable
selection discussed in [15]. An optimization procedure for
the HGLasso algorithm is also proposed.

II. LASSO AND HLASSO

Let =0, 6...6,]" be an unknown parameter vector
while y € R" denotes the vector containing some noisy data.



In particular, our measurements model is

y=GO+v (1)

where G € R and v is the vector whose components are
white noise of known variance 2

A. The Lasso approach

When 0 is assumed to be sparse, one popular approach to
reconstruct the parameter vector is the so called Lasso [13]
where the estimate of 6 given by

(y—G6)"(y—
202

m

|6i]
i=1

6, = argmin Go) | n 2
where 7. € Ry is the regularization parameter. One can easily
see that the above optimization problem is convex.

Now, we outline a derivation of the Lasso in terms of
marginalization of a suitable probability density function, as
also discussed in [9]. Our Bayesian model is depicted in Fig.
1(a). Nodes and arrows are either dotted or solid depending
on being representative of, respectively, deterministic or
stochastic quantities/relationships. Here, A denotes a vector
whose components {4;}”, are independent exponential ran-
dom variables, with the same probability density given by

py(Ai) = ye i (A) 3)

where y is a positive scalar while x(r) =1 if t >0, 0
otherwise. In addition

0;| A ~ A (0, 1), v~ (0,021, 4)

where 4 (u,X) is the Gaussian density of mean y and
autocovariance X while [, is the n X n identity matrix. The
following result then holds, see also [9] for details.
Proposition 1: Given the Bayesian network in Fig. 1(a),
let
6 = arg max

p(6,A]y)dA
eRrm JRm

&)

Then 6 = 6 provided that v, = /27.

B. The HLasso approach

The above result provides a hint for defining a different
estimator. Instead of marginalizing with respect of A, one
could integrate out 6, finding the estimate of A optimizing
the marginal density p(A|y). Then, according to the empirical
Bayes approach, the minimum variance estimate of 0 is
computed with A set to its estimate. We call the resulting
estimator Hyperparameter Lasso (HLasso). It is defined
by the following proposition that exploits the fact that 6
conditional on A is Gaussian, so that the marginal density of
A becomes available in closed form.

Proposition 2: Given the Bayesian network in Fig. 1(a),
let

i:argmax/ p(6,A]y)do (6)
AERT m
Then
A — arg min ~1o det(2)+l T(z) 'y + fm 7)
= gxeMZ 8 v) TRy &)y Yi:l i
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where

X, =GAG' +07°l,,

Then, given A = A, the HLasso estimate of 6 is given by
OuL :=E[By,A] = AG " (£,(1)) 'y (®)
|

A =diag{X;}

Note that the objective in (7) used to determine A depends
on m variables as in the Lasso case but the optimization
problem is not convex any more.

III. GLASSO AND HGLASSO

We now consider a situation where explanatory factors
able to predict y can be represented by groups of components
contained in 6. To be more specific, we factorize 0 as follows

6=[1 6> )

and denote with k; the dimension of the i-th block, so that
m= Zf:] k;. Partitioning also the matrix G as done for 0O,
we obtain the measurement model

oPT

P N
y=Y GVe0 1y (10)
i=1

Hereafter, we assume that many of the blocks {9<i)} are null.

A. The GLasso approach
One of the leading approaches adopted to solve this

problem is the so called Group Lasso (GLasso) [16]. It
determines the estimate of 0 as

-GO)'(y—G6o LA
b ) O )JFYGLZHGO)” (11)

éGL = arg min
& oerr 202 =
where || - || denotes the classical Euclidean norm. It is easy

to see that, as in the Lasso case, the objective is convex.

However, as we will discuss in the next subsection, GLasso

cannot be derived from the Bayesian models in Fig. 1.

The next proposition, taken from Section 2 in [16], charac-

terizes O¢z, by the Karush Kuhn Tucker (KKT) conditions.
Proposition 3: Assume that GUTGWY = . for i

1,...,p. Then, a necessary a sufficient condition for 0 =

) 9@ 6()]T to be a solution of (11) is
. 10] 2 ;
—G(’)T(y—GG)Jrﬁ —0, veDxo (12
|-GV (=GOl <o’ v =0 (13

B. The HGLasso approach

The alternative approach we propose, discussed also in
[2], relies upon the group version of that in Fig. 1(a) and
is illustrated in Fig. 1(b). In the network, A is now a p-
dimensional vector with { —th component given by A; € R..
In addition, conditional on A, each block 00 of the vector 6
is zero-mean Gaussian with covariance A, i=1,..,p, i.e.

6|2, ~ N(0, i) (14)

Then, the new estimator we propose first optimizes the
marginal density of A. Then, still according to the empirical



Bayes approach, the minimum variance estimate of 6 is com-
puted with A thought as known and set to its estimate. We
call this scheme Hyperparameter Group Lasso (HGLasso). It
is described in the following proposition.

Proposition 4: Consider the Bayesian network in Fig. 1
(b) and define

A =arg m%)’(’ /mp(G,My)dG (15)
Then, A is given by
1 1 +
arglnelﬁ%n Elogdet(Z) 7Y I y—|—}/zi|l| (16)
where
Y, =GAG' +6%l,,  A=blockdiag({Xl.}) (17)

In addition, given A = 2., the HGLasso estimate of 6 is given
by
AGT (2,(2))!

E[0y,A] = (18)

OngL =

It can easily be seen that the objective in (16) is not convex.
However, the optimization must be performed in R”, in place
of R™ as in the GLasso case, with possibly p << m.

Now, let the vector u denote the dual variables associated to
the constraint A > 0. The Lagrangian for the problem (16)
is then given by

L(A,p) := Llogdet(Z,(A)) + 1y
Using the fact that

— P EATGOTE Q) by

the following result holds.
Proposition 5: The necessary conditions for A to be a
solution of (16) are

TEA) " y+" A —uTa
(19)

%tr (GU)sz(?L)—lG("))

L=0L+Y! LGOGOT W=,
(GUTWG —GTWY|3 +2y— 2 =0, i=1,....p
wri=0, i=1,....p, 0<pu, A and 0=<W, X

C. Comparing GLasso and HGLasso

The two estimators discussed above do not derive from
the same Bayesian model as in the previous case. In fact,
consider the problem of integrating out A from the joint
density of 6 and A described by the model in Fig. 1(b). Then,
the result is the product of multivariate Laplace densities. In
particular, define B(i)(-) as the modified Bessel function of
the second kind and order k;/2 — 1. Then, following also
[12], we obtain

_ (@nP £ )2 k/4B (ZVV HTe)
/leR’i p(ev}L)d)L - (27[)”1/2 ll:—ll(z (6(1) )k i/4=2
(20)
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whereas the prior density underlying the GLasso should be
such that

ey

P
p(8) = exp(— 1. Y. V0T 611
i=1

IV. MKL AND HGLASSO
A. MKL and its Bayesian interpretation

In order to introduce the Multiple Kernel Learning (MKL)
approach, it is useful to start considering the following
measurements model

P

y=f+v=Y fO+v (22)

i=1
In the MKL framework, f in (22) represents the sampled
version of a scalar function assumed to belong to a (gener-
ally infinite-dimensional) reproducing kernel Hilbert space
(RKHS). For our purposes, we can consider a simplified
scenario, where the domain of the functions in the RKHS
is the finite set [1,...,n]. In this way, f represents the entire
function and y is the noisy version of f sampled on all its
domain. In addition, f is assumed to belong to the RKHS
Hg whose kernel is defined by the matrix

P
2) =Y LK
i=1

Then, each function f() is an element of the RKHS H()
induced by the kernel A,K®), with norm denoted by || - )
According to the MKL approach, the estimates of the un-
known functions f() are obtained jointly with those of the
scale factors A; solving the following inequality constrained
problem

(23)

(y— f)

({fA(l)}vi) =

argmin
{0} 2eRE

+ZW

p

Y <M (24)
i=1

where M plays the role of a regularization parameter. Hence,

the “scale factors” contained in A € R;‘ are optimization

variables, thought of as “tuning knobs” adjusting the kernel

K(A) to better suit the measured data. Using the extended

version of the representer theorem, e.g. see [5], [8], the
solution is
FO=LkWDe,  i=1,....p (25)
where
5 —K(A))T(y—K(2
{¢,A} = argmin b= K(A)e) z(y ( )C)—FCTK()L)C
CER”JLGR,J; o
p
YhsM (26)

It can be shown that every local minimum of the above
objective is also a global minimum, see [5] for details.



It is now useful to define ¢ as the Gaussian vector with
independent components of unit variance such that

0 =/ Aid; 27)
We also factorize ¢ as done for 0, i.e.
9=[o'" o 97" (28)

Then, the following connection with the Bayesian model in
Fig. 1(b) holds.

Proposition 6: Consider the joint density of ¢ and A
conditional on y induced by the Bayesian network in Fig.
1(b). Let also K = GOGWOT  Then, there exists a value qf
¥ such that the maximum a posteriori estimate of A is the A
in (26). In addition, one has

T 27 \—1 P

o oy (K(A)+07h) "y
A = arg min + Ai (29
e min 5 yi:Zl i (29)
Finally, the maximum a posteriori estimates of the blocks of

¢ are _ _

0 = /A60Te (30)

where ¢ is the same as in (26) and given by
&)= (K(A)+0’L) "y 31)

It is also of interest to give the KKT conditions for the
objective (29). This is obtained in the next proposition.

Proposition 7: The necessary and sufficient conditions for
A to be a solution of (29) are

Y =K(A)+0c%, (32)
WE=1, (33)
—IGOTWy|3+2y—2u; =0, i=1,....p (34)
wAi=0, i=1,....p (35)
0<u, Aand 0<W.X (36)

[

Finally, we notice that, starting from (30), a natural
estimator for () is

60 — \/Z‘d;(i)
We stress that the above expression does not provide the
maximum a posteriori estimate of 00, In fact, it is not
difficult to see that the joint density of 6 and A, conditional
on y, is not bounded above around the origin. Hence, this

kind of MAP estimator would always return an estimate of
6 equal to zero.

(37)

B. Comparing MKL and HGLasso

Proposition 6 points out how MKL derives from the
same Bayesian model underlying HGLasso but the estimate
of A is now obtained maximizing a joint, in place of a
marginal, density. The expression of the estimator (29) is
interesting when compared with that reported in (16). In
fact, recall that, under the assumptions stated in Proposition
6, £,(A) = K(1) + 621,. Hence, the two objectives in (29)
and (16) are identical except that the term Jlogdet(X,) is
missing in the MKL objective (29). Notice also that this is
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the component which makes problem (16) non convex. On
the other hand, this term allows HGLasso to favor sparser
solutions than MKL since it makes the marginal density of
A more concentrated around zero.

V. SPARSITY VS. SHRINKING: COMPARISON VIA
OPTIMALITY CONDITIONS

In this section we compare the sparsity conditions for
HGLasso, MKL and GLasso; we show that HGLasso guar-
antees a more favorable tradeoff between sparsity and shrink-
age, in the sense that it induces greater sparsity with the same
shrinkage (or, equivalently, for a given level of sparsity it
guarantees less shrinkage). In order to illustrate this behavior,
we consider a specific example with 2 groups of dimension
1, i.e.

y=G6MeW +G2eP 1y yeR? 0, eR,6, R (38)

where G =[1 87, G® =0 1]7, v ~ A4(0,6%). We
assume 1) = 0, 02 = 1; our aim is now to understand
how the hyperparameter Y influences sparsity and estimates
of 6%, In particular, we would like to understand which
values of y guarantee that 61 = 0 and how the estimator
6@ varies with 7. In order to do so we consider the KKT
conditions obtained in Propositions 5 and 7.

For simplicity of exposition consider the case 6§ =0 in
the definition of G?), i.e. G® =[1 8] =[1 0]" and define
y:=[y1 y2] ". Necessary conditions for 21 =0 and 1, be the
hyperparameters estimators using the HGLasso estimator (for
fixed ) are:

YHGL > ﬁ (i—o?)
2L = max(&,0}

= —416L0° ~ 14/ (1441461.0%)? ~8Y61 (074260 )

AYHGL
(39)
and
WKL > 5eyi
£ = V-0 (40)
%MKL max{&,0}

for MKL. It is clear that MKL requires a more stringent
condition on 7y (i.e. larger y) in order to set A}MKL =0

(and hence éﬁl)@ = 0). Of course having a larger y tends
to yield smaller A, and hence more shrinking on 6@ This

is illustrated in figure 2 where we report the estimators é,gz();L

(solid) and 6.7}, (dotted) for 6% = 0.005, § = 0.5. The
estimators are arbitrarily set to zero for the values of y which
do not yield 6() =0. In particular we obtain that GHLasso
sets é;{lc);L =0 for yygr > 5 while MKL sets é}S,},)(L =0 for
Yukr > 20. In addition it is clear that MKL tends to yield
more shrinking on égl)a (recall that 6@ = 1).

Note that when the groups have dimension 1, as stated
in Proposition 8, GLasso is equivalent to MKL with a
proper rescaling of the regularization parameter, so that the
comparison between HGLasso and MKL can be extended to
GLasso.
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Fig. 2. Estimators 6@ as a function of 7. The curves are plotted only for
the values of ¥ which yield also o =0 (different for HGLasso (Yugr > 5)
and MKL (ymxr > 20)).

Proposition 8: Assume that k;y = ... =k, = 1 for i =
1,...,p and G = I, so that GLasso reduces to Lasso. Then,
the regularization paths of Lasso and MKL are the same.

VI. IMPLEMENTING HGLASSO

In this section we discuss the implementation of our
HGLasso approach. This will also lead to the introduction
of three different variants of this estimator.

A. Projected Quasi-Newton Method

The objective (16) is a differentiable function of A with

simple box constraints (A > 0). In order to compute the
derivatives, the matrices GG need to be computed only
once, and the inverse of the matrix X,(A) needs to be
computed once per iteration. Hence, the evaluation of the
objective may be costly, as it depends on computing inverses
of possibly large matrices and large matrix products. On the
other hand, the dimension of A can be small, and projection
onto the feasible set is trivial.
We tried several methods, available from the Matlab pack-
age minConf, to optimize (16). The fastest method we
implemented turned out to be a limited memory projected
quasi-Newton algorithm detailed in [11]. It uses L-BFGS
updates to build a diagonal plus low-rank quadratic approx-
imation to the function, uses the Projected Quasi-Newton
Method to minimize the quadratic approximation subject to
the constraints present in the original problem, and uses a
backtracking line search to generate new parameter vectors
satisfying an Armijo-like sufficient decrease condition.

B. Bayesian Forward Selection

In this section we introduce a forward-selection type of
procedure which will be useful to define a computationally
efficient version of the HGLASSO estimator. In order to
obtain an estimator of A we consider the constraint Kk = A; =
Ay =...=A, and treat k as a deterministic hyperparameter
whose knowledge makes X, completely known. Therefore
we set:

1 1
K = arg min Elogdet( )+§yTZ;1y 41

KER+
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The forward-selection procedure is then designed as follows;
let I C{1,2,..,p} be the subset of currently selected groups
and, considering now the Bayesian model in Fig. 1(b), define
the marginal log posterior

L(1,x,7) = log [py(Luly)|
[1171, ey

(42)

where 11 =
otherwise.
Then do the following:

i]ﬂp] and i]’,' =k ifiel and i],,' =0

o set §:= lK and initialize / :=0
« repeat the following procedure:
(a) for je€{l,..,p}\I, define I;- :=1Uj and compute
L(TiR. 7).
(b) select ji=arg maxiey, . m}\,L(
(© if L(I; KY) L(I;k,9) >0
set [ := I and go back to (a)

else
finish.

Note that the set I contains the indexes of selected variables
different from zero.

#.7) -

L(I;%,7)

C. The three variants of HGLasso

The numerical procedures described above permit to in-
troduce the following three “versions” of HGLasso; first an
estimator of A is constructed as:

o HGLa:  is obtained from (41) after which the forward-
selection procedure is utilized to sparsify the solution,
obtaining the estimate A of the hyperparameter vector
whose components are equal to either 0 or K.

« HGLDb:The optimization problem (16) is solved using

the Projected Quasi-Newton method with starting point

A obtained by HGLa.

HGLc: this estimator performs the same operations of

HGLD except that the components of A set to zero by

HGLa are kept at zero.

Finally, the estimate OpcL is obtained using (18).

VII. SIMULATION RESULTS

We consider a Monte Carlo study of 500 runs where at
any run a linear model of the form (10) is considered with
p = 10 groups of dimensions k; =5, and n = 100. For each
run, 5 of the groups ) are set to zero, one is always taken
different from zero while each of the remaining 4 is set to
zero with probability p; = 0.5. The components of every
block not set to zero are independent realizations from a
uniform distribution on [—a,a] where a is an independent
realization (one for each block) from a uniform distribution

n [—100,100]. The value of 62 is equal to the variance of
the noiseless output divided by 25 and is assumed known.
The columns of G are correlated, being defined at every
run by Gij =Gij—1+02v;;, i=1,.,n j=2,..m
vij ~ A(0,1), where v;; are i.i.d. (as i and j vary) zero
mean unit variance Gaussian and G;; are i.i.d. zero mean
unit variance Gaussian random variables. Note that correlated
inputs renders the input selection problem more challenging.
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Fig. 3. Boxplot of the percentage errors in the reconstruction of 6 (top)

and of the absolute errors in the estimation of the null blocks of 6 obtained
by the 5 estimators after the 500 Monte Carlo runs.

We compare the following estimators:

« HGLa,HGLb,HGLc: these are the three variants of our
HGLasso procedure defined at the end of Section VI.

GLasso: the regularization parameter is determined via
cross validation, splitting the data set in two segments of
the same size and testing a finite number of parameters
from a pre-specified grid with 30 elements logarithmi-
cally distributed between 1072 and 10°9 where 7 is the
regularization parameter adopted by the three HLasso
procedures. Finally, GLasso is reapplied to the full data
set fixing the regularization parameter to its estimate.

MKL: the regularization parameter is estimated using
the same cross validation strategy adopted for GLasso.

The estimators are compared computing the following perfor-
mance indexes: (i) percentage estimation error Erry = 100 x

H?‘;ﬁ” % where 0 is the estimate of 6, (ii)absolute error on

“zero” parameters Errg= |07, i st [|6@] =0 where
6() is the estimate of the i-th block of 6 and (iii) percentage
of the blocks equal to zero correctly set to zero by the
estimator after the 500 runs. Fig. 3 displays the boxplots of
the 500 errors Err; and of Erry. It is apparent that all of the
three versions of the HGLasso outperform both GLasso and
MKL. In addition, from the results reported in Table I one
can see that the first and third versions of HGLasso obtain
the remarkable performance of 99.5% of blocks correctly
set to zero, while the second version obtains 72.5%. Instead,
GLasso and MKL correctly set to zero 26.2% and 18.1%
of the blocks, respectively. This result is partially explained
by the arguments in Section V; in a nutshell, MKL and
GLasso need to trade sparsity for shrinking. The value of the
regularization parameter y needed to avoid oversmoothing is
not large enough to induce “enough” sparsity, a drawback
that does not affect our new nonconvex estimators.

VIII. CONCLUSIONS

We have presented a comparative study of three methods
for sparse estimation, namely GLasso, MKL and the new
HGLasso. It is shown that HGLasso and MKL derive from
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HGLa HGLb HGLc MKL GLasso
99.5% 72.5% 99.5% 26.2% 18.1%
TABLE I

PERCENTAGE OF THE Q(i) EQUAL TO ZERO CORRECTLY SET TO ZERO

the same Bayesian model, yet in a different way; for GLasso,
instead, this holds only for the case in which the groups have
dimension 1. It is argued that the marginalization involved
in HGLasso is advantageous, especially when the size of the
groups is large. The tradeoffs between sparsity and shrinking
are also studied in a simple example using the Karush
Kuhn Tucker (KKT) conditions; our analysis suggests that
HGLasso is able to achieve higher levels of sparsity without
paying too much in terms of shrinking. This is indeed
confirmed by the simulation experiments. Future work will
include a thorough analysis of the optimality conditions and
of the Bayesian forward selection used for initialization.
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