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Abstract. In this paper, we study the following time-dependent stochastic

differential equation (SDE) in Rd:

dXt = σ(t,Xt−)dZt + b(t,Xt)dt, X0 = x ∈ Rd,

where Z is a d-dimensional non-degenerate α-stable-like process with α ∈
(0, 2), and uniform in t > 0, x 7→ σ(t, x) : Rd → Rd ⊗ Rd is β-order Hölder

continuous and uniformly elliptic with β ∈ ((1 − α)+, 1), and x 7→ b(t, x) is

β-order Hölder continuous. The Lévy measure of the Lévy process Z can be

anisotropic or singular with respect to the Lebesgue measure on Rd and its

support can be a proper subset of Rd. We show in this paper that for every

starting point x ∈ Rd, the above SDE has a unique weak solution. We further

show that the above SDE has a unique strong solution if x 7→ σ(t, x) is Lipschitz

continuous and x 7→ b(t, x) is β-order Hölder continuous with β ∈ (1−α/2, 1).

When σ(t, x) = Id×d, the d × d identity matrix, and Z is an arbitrary non-

degenerate α-stable process with 0 < α < 1, our strong well-posedness result

in particular gives an affirmative answer to the open problem in [22].
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1. Introduction

The main purpose of this paper is to establish the strong well-posedness as well

as weak well-posedness for a class of stochastic differential equations driven by any

non-degenerate α-stable-like Lévy process with α ∈ (0, 2), and with time-dependent

Hölder drift b. More precisely, we are mainly concerned with the following time-

dependent SDE:

dXt = σ(t,Xt−)dZt + b(t,Xt)dt, X0 = x ∈ Rd, (1.1)

where σ : R+ × Rd → Rd ⊗ Rd and b : R+ × Rd → Rd are two Borel measurable

functions, and Z is a pure jump Lévy process on Rd whose Lévy measure ν when

restricted to the unit ball centered at the origin is bounded between the Lévy

measures of two α-stable Lévy processes with α ∈ (0, 2). When σ(t, x) and b(t, x)

are Lipschitz continuous in x ∈ Rd, it is well known that by first removing large

jumps of Z and applying Picard’s iteration method, one can show that SDE (1.1)

has a unique strong solution. This paper is concerned with the strong existence and

strong uniqueness of solution to SDE (1.1) when b(t, x) is only Hölder continuous
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in x, as well as weak existence and uniqueness for solutions of SDE (1.1) when both

σ(t, x) and b(t, x) are only Hölder continuous in x.

To be precise, in this paper Z is a Lévy process on Rd with Lévy exponent

ψ(ξ) := logE
[
e−iξ·Z1

]
=

∫
Rd

(
eiξ·z − 1− iξ · z1{|z|61}

)
ν(dz), (1.2)

where ν is a positive measure on Rd \ {0} so that
∫
Rd min{|z|2, 1}ν(dz) < ∞. To

state our condition on Lévy measure ν, for α ∈ (0, 2), denote by L(α)
non the space of

all non-degenerate α-stable Lévy measures ν(α); that is,

ν(α)(A) =

∫ ∞
0

(∫
Sd−1

1A(rθ)Σ(dθ)

r1+α

)
dr, A ∈ B(Rd), (1.3)

where Σ is a finite measure over the unit sphere Sd−1 in Rd with∫
Sd−1

|θ0 · θ|Σ(dθ) > 0 for every θ0 ∈ Sd−1. (1.4)

Since the left hand side of the above is a continuous function of θ0 ∈ Sd−1, condition

(1.4) is equivalent to

inf
θ0∈Sd−1

∫
Sd−1

|θ0 · θ|Σ(dθ) > 0.

For R > 0, denote by BR the closed ball in Rd centered at the origin with radius

R. We assume that there are ν1, ν2 ∈ L(α)
non, so that

ν1(A) 6 ν(A) 6 ν2(A) for A ∈ B(B1). (1.5)

For the drift coefficient b(t, x) and diffusion matrix σ(t, x), we assume that there

are constants β, θ ∈ ((1− α)+, 1] and Λ > 0 so that for all t > 0 and x, y ∈ Rd,

|b(t, x)| 6 Λ and |b(t, x)− b(t, y)| 6 Λ|x− y|β , (1.6)

Λ−1|ξ| 6 |σ(t, x)ξ| 6 Λ|ξ|, ‖σ(t, x)− σ(t, y)‖ 6 Λ|x− y|θ, (1.7)

where ‖ · ‖ denotes the Hilbert-Schmidt norm of a matrix, and | · | denotes the

Euclidean norm. We call a pure jump Lévy process Z whose Lévy measure ν

satisfies condition (1.5) an α-stable-like Lévy process. The following is the main

result of this paper.

Theorem 1.1. Under conditions (1.5), (1.6) and (1.7), for each x ∈ Rd, there is

a unique weak solution to SDE (1.1). Moreover, if β ∈ (1 − α/2, 1] in (1.6) and

θ = 1 in (1.7), then there is a unique strong solution to SDE (1.1).

Remark 1.2. Condition (1.4) is clearly satisfied if Zt = (Z
(1)
t , · · · , Z(d)

t ) is a cylin-

drical α-stable process, that is, each component is an independent copy of a non-

degenerate one-dimensional (possibly asymmetric) α-stable process. Note that the

Lévy measure of a cylindrical α-stable process Zt is singular with respect to the

Lebesgue measure on Rd. In this case, Theorem 1.1 in particular answers affirma-

tively an open question from [22], and improves a result in [11, Corollary 1.4(iii)]

for cylindrical α-stable processes from α ∈ (2/3, 2) to all α ∈ (0, 2).

Remark 1.3. It follows from Theorem 1.1 and a standard localization argument

(see, e.g., [14, 25]) that if conditions (1.6) and (1.7) are satisfied locally on each

ball BR with Λ depending on R, then for each x ∈ Rd, there exists a unique strong

solution to SDE (1.1) up to the explosion time ζ with limt↑ζ Xt =∞.

The new feature or contributions of this paper are
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• the driving Lévy process Z is any non-degenerate α-stable-like Lévy process

on Rd with α ∈ (0, 2) whose Lévy measure can be singular with respect to

the Lebesgue measure on Rd and its support can be a proper subset of Rd;
• the SDE (1.1) has variable diffusion matrix σ(t, x);

• weak existence and uniqueness of solutions to (1.1) are established for β-

Hölder continuous multiplicative coefficients σ(t, x) and β-Hölder continu-

ous drift b(t, x) with β ∈ ((1− α)+, 1).

Note that the (time-dependent) infinitesimal generator corresponding to the so-

lution X of SDE (1.1) is Lt + b(x) · ∇, where

Ltu(x) :=

∫
Rd

(
u(x+ σ(t, x)z)− u(x)− 1{|z|61}σ(t, x)z · ∇u(x)

)
ν(dz), (1.8)

which is a nonlocal operator of order α under assumption (1.5). When α > 1, Lt

is the dominant term, which is called the subcritical case. When α ∈ (0, 1), the

gradient ∇ is of higher order than the nonlocal operator Lt so the corresponding

SDE (1.1) is called supercritical. The critical case corresponds to α = 1. Strong

solution and pathwise uniqueness for SDEs driven by Lévy processes with non-

Lipschitz drifts, especially for supercritical SDEs, is known to be a challenging

problem; see [11, 21, 22].

The study of weak and strong well-posedness of SDE (1.1) with irregular coeffi-

cients has a long history and there is a large amount of literatures devoted to this

topic especially when Z is a Brownian motion. When Z is a standard d-dimensional

Brownian motion, σ(t, x) = Id×d and b is bounded measurable, Veretennikov [27]

proved that SDE (1.1) has a unique strong solution, which extended a result of

Zvonkin [32] in one-dimension. Using Girsanov’s transformation and results from

PDEs, Krylov and Röckner [17] obtained the existence and uniqueness of strong

solutions to SDE (1.1) when σ is the identity matrix and b satisfies

‖b‖LqT (Lp(Rd)) :=

[∫ T

0

(∫
Rd
|b(t, x)|pdx

)q/p
dt

]1/q

<∞, 2

q
+
d

p
< 1.

These results have been extended to SDEs with Sobolev diffusion coefficients and

singular drifts in [28, 29] by using Zvonkin’s idea.

However, things become quite different when Z is a pure jump Lévy process.

In one-dimensional case, Tanaka, Tsuchiya and Watanabe [26] proved that if Z

is a symmetric α-stable process with α ∈ [1, 2), σ(t, x) ≡ 1 and b(t, x) = b(x) is

bounded continuous when α = 1 or bounded measurable when α ∈ (1, 2), then

SDE (1.1) has a unique pathwise strong solution for every x ∈ R. They further

showed that for α ∈ (0, 1), the SDE (1.1) has a unique weak solution when b(x) is a

bounded non-decreasing function that is β-Hölder continuous with β > 1− α, and

for any β ∈ (0, 1−α) there is a bounded β-Hölder continuous function b(x) so that

both strong and weak uniqueness fails. For one-dimensional multiplicative noise

case where σ(t, x) = σ(x), see [2] and [16, Theorem 1]. For multidimensional case,

Priola [21] proved pathwise uniqueness for (1.1) when σ(t, x) = Id×d, Z is a non-

degenerate symmetric but possibly non-isotropic α-stable process with α ∈ [1, 2)

and b(t, x) = b(x) ∈ Cβ(Rd) with β ∈ (1 − α/2, 1) is time-independent. Priola’s

result was extended to drift b in some fractional Sobolev spaces in the subcritical

case in Zhang [30] and to more general Lévy processes in the subcritical and critical

cases in Priola [22]. Recently, for a large class of Lévy processes, Chen, Song and
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Zhang in [11] established strong existence and pathwise uniqueness for SDE (1.1)

when σ(t, x) = Id×d and b(t, x) is time-dependent, Hölder continuous in x. Therein,

the authors not only extend the main results of [21] and [22] for the subcritical and

critical case (α ∈ [1, 2)) to more general Lévy processes and time-dependent drifts

b ∈ L∞([0, T ];Cβ) with β ∈ (1 − α
2 , 1), but also establish strong existence and

pathwise uniqueness for the supercritical case (α ∈ (0, 1)) with b ∈ L∞([0, T ];Cβ)

for any β ∈ (1− α
2 , 1). It partially answers an open question posted in [22] on the

pathwise well-posedness of SDE (1.1) in the supercritical case. However, when Z

is a cylindrical α−stable process, the result of [11] requires α > 2/3. As mentioned

in [11], it is a quite interesting question whether the constraint α > 2/3 can be

dropped. Theorem 1.1 of this paper not only gives an affirmative answer to the

above question but moreover it is done for the multiplicative noise setting and for

a large class of Lévy processes. We remark that except in the one-dimensional

case, almost all the known results in literature on strong well-posedness of SDE

(1.1) driven by pure jump Lévy process Z requires σ(t, x) = Id×d. On the other

hand, for d > 1 and Z being a rotationally symmetric α-stable process in Rd with

α ∈ (1, 2), it is shown in [20] when d = 1 and in [19] for d > 2 that SDE (1.1)

with σ(t, x) = Id×d has a weak unique solution for any b(t, x) = b(x) ∈ Lp(Rd)
with p > d/(α − 1). The above result is extended in [8] to any b(t, x) = b(x) in a

Kato class that includes any function that can be written as the sum of a bounded

function and an Lp-integrable function with p > d/(α − 1). In a recent paper

[18], SDE (1.1) is shown to have a unique weak solution for σ(t, x) = σ(x)Id×d
and Z being a rotationally invariant symmetric α, where σ(x) is a scale Hölder

continuous function on Rd that bounded between two positive constants, and β-

Hölder continuous drift b(t, x) = b(x) with β ∈ ((1 − α)+, 1). In another recent

work [31], the above weak well-posenedss result has been obtained for a subclass of

α-stable processes Z with α ∈ (0, 1), σ(t, x) = Id×d and β-Hölder continuous drift

b(t, x) = b(x) with β > 1 − α (see also [6] for the case of α > 1/2). Our weak

well-posedness result in Theorem 1.1 holds for any α-stable process Z and for any

β-Hölder continuous drift b(t, x) = b(x) with β > 1 − α, and thus extending the

results of [18, 31].

We now describe the approach of this paper. For the strong well-posedness of

SDE (1.1), we shall use a Zvonkin type of change variables to remove the drift term

and convert the SDE (1.1) to a new SDE whose strong existence and pathwise

uniqueness can be readily established. This requires a deep understanding for the

following nonlocal PDE (Kolmogorov’s equation):

∂tu = Ltu+ b · ∇u− λu+ f with u(0, x) = 0, (1.9)

and establish some a priori regularity estimates for its solution. Here Ltu is defined

in (1.8). When σ(t, x) = Id×d and b(t, x) = b(x) is time-independent, a priori

regularity estimates have been obtained in [21, 22] for a class of α-stable type

Lévy processes Z with α > 1 under certain derivative condition on the transition

semigroup of the Lévy process Z. The supercritical case α ∈ (0, 1) is much harder.

When Lt is the usual fractional Laplacian ∆α/2 := −(−∆)α/2 with α ∈ (0, 1), that

is, when ν(dz) = c(d, α)|z|−d−αdz for some constant c(d, α) > 0 and σ = Id×d
in the above definition, and b ∈ L∞([0, T ];Cβ) with β ∈ (1 − α, 1), Silvestre [23]
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obtained the following a priori interior estimate for any solution u of (1.9):

‖u‖L∞([0,1];Cα+β(B1)) 6 C
(
‖u‖L∞([0,2]×B2) + ‖f‖L∞([0,2];Cβ(B2))

)
. (1.10)

Such an interior estimate suggests that one could solve the supercritical SDE (1.1)

uniquely when Z is a rotationally symmetric α-stable process with α ∈ (0, 1) and

b ∈ L∞([0, T ];Cβ) with β ∈ (1 − α/2, 1) (see [22]). However the approach of [23]

strongly depends on realizing the fractional Laplacian in Rd as the boundary trace

of an elliptic operator in upper half space of Rd+1. Extending Silvestre’s argument

to general α-stable-type operators would be very hard, if not impossible at all. In

[11, Theorem 2.3], a new approach of establishing estimates analogous to (1.10)

is developed under the assumption that σ(t, x) = Id×d for a large class of Lévy

processes Z. Probabilistic consideration played a key role in that approach. As

mentioned above, when Z is a cylindrical α-stable process, the approach of [11]

requires α > 2/3. So new ideas are needed for the study of SDE (1.1) with general

Lévy process Z and variable diffusion matrix σ(t, x).

Our approach in the study of (1.9) is based on the Littlewood-Paley decompo-

sition and some Bernstein’s type inequalities. This approach seems to be new and

allows us to handle a large class of Lévy’s type operator in a unified way, including

Lévy’s type operators with singular Lévy measures, see Theorem 3.3 below. When

σ(t, x) = σ(t) is spatially independent and real part of the symbol ψt(ξ) of Lt (that

is, ψt(ξ) =
∫
Rd
(
eiξ·σ(t)z − 1− 1{|z|61}iσ(t)z · ξ

)
ν(dz)) is bounded from above by

−c0|ξ|α, we show the following a priori estimate for solutions of (1.9): for every

p > d/(α + β − 1), there is a constant C > 0 depending only on T, d, p, α, β and

‖b‖L∞([0,T ];Bβp,∞) so that

‖u‖L∞([0,T ];Bα+β
p,∞ ) 6 C‖f‖L∞([0,T ];Bβp,∞), (1.11)

where Bβp,∞ is the usual Besov space (see Definition 2.1 below). The above a

priori estimate is the key in our solution to the pathwise well-posedness prob-

lem of SDE (1.1) when σ(t, x) = σ(t) is spatially independent. The general case

with variable coefficient σ(t, x) is much more delicate. First of all, in general

x 7→
∫
{|z|>1} f(x + σ(t, x)z)ν(dz) may not be smooth even if f(x) and σ(t, x) are

smooth. Thus to treat the general case, we have to first remove the large jumps

from the Lévy process Z. Next we need to impose a small condition on the oscilla-

tion of σ by using a perturbation argument and establish an estimate analogous to

(1.11) but for solutions u of (1.9) where the operator Lt of (1.8) being redefined

with 1{|z|61}ν(dz) in place of ν(dz); see Theorem 3.6. This new estimate is also

the key for our weak well-posedness result for SDE (1.1). Then remove the small

oscillation on σ and add back large jumps from the driving Lévy process Z through

a localization and patching together procedure.

The rest of this paper is organized as follows: In Section 2, we recall some well-

known facts from Littlewood-Paley theory, in particular, the Bony’s decomposition

and Bernstein’s inequalities, and establish a useful commutator estimate. In Section

3, we study the nonlocal advection equation (1.9) with irregular drift b, and obtain

some a priori estimates in Besov spaces. In Section 4, we establish strong well-

posedness result by utilizing these estimates, Zvonkin’s transform and a suitable

patching together technique. In Section 5, we first obtain the well-posedness for the

martingale problem corresponding to SDE (1.1) driven by truncated Lévy process
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Z̃ obtained by removing large jumps from Z. We then, through a conditioning

and piecing together procedure, establish the well-posedness for the martingale

problem corresponding to SDE (1.1) driven by Z. The latter result will yield the

weak existence and uniqueness for solutions of (1.1).

We close this section by mentioning some notations used throughout this paper:

We use := as a way of definition. For a, b ∈ R, a∨b := max{a, b}, a∧b := min{a, b},
and a+ := a ∨ 0. On Rd, ∇ := ( ∂

∂x1
, . . . , ∂

∂xd
) and ∆ :=

∑d
k=1

∂2

∂x2
k

. The letter c or

C with or without subscripts stands for an unimportant constant, whose value may

change in difference places. We use A � B to denote that A and B are comparable

up to a constant, and use A . B to denote A 6 CB for some constant C > 0. For

two functions f and g on Rd, we use f ∗ g to denote its convolution

f ∗ g(x) :=

∫
Rd
f(x− y)g(y)dy, x ∈ Rd,

whenever it is defined, and supp[f ] the support of the function f on Rd. For

p ∈ [1,∞], we use Lp to denote the Lp space on Rd with respect to the Lebesgue

measure dx, and ‖f‖p :=
(∫

Rd |f(x)|pdx
)1/p

for p ∈ [1,∞) and ‖f‖∞ the essential

supremum of |f |.

2. Preliminary

In this section, we recall some basic facts from Littlewood-Paley theory, espe-

cially Bernstein’s inequalities (see [1]). We then establish a commutator estimate,

which plays an important role in our approach.

Let S (Rd) be the Schwartz space of all rapidly decreasing functions, and S ′(Rd)
the dual space of S (Rd) called Schwartz generalized function (or tempered distri-

bution) space. For f ∈ L1(Rd), its Fourier transform Ff = f̂ and inverse transform

F−1f = f̌ are defined as

f̂(ξ) := (2π)−d/2
∫
Rd

e−iξ·xf(x)dx, f̌(ξ) := (2π)−d/2
∫
Rd

eiξ·xf(x)dx.

Using Schwartz’s duality, the definition of Fourier transform and inverse Fourier

transform can be extended to tempered distributions as follows. For any f ∈
S ′(Rd), Ff = f̂ and F−1f = f̌ are the unique elements in S ′(Rd) so that

Ff(ψ) = f(Fψ) and F−1f(ψ) = f(F−1ψ) for every ψ ∈ S (Rd).

See, e.g., [1, §1.2.2].

For R,R1, R2 > 0 with R1 < R2, denote

BR := {x ∈ Rd : |x| 6 R} and DR1,R2 := {x ∈ Rd : R1 6 |x| 6 R2}.

The following simple fact will be used frequently. For any two f ∈ Lp(Rd) and

g ∈ Lq(Rd) with 1
p + 1

q = 1 whose supports are in BR0
and DR1,R2

, respectively,

supp[f ∗ g] ⊂ D(R1−R0)+,R2+R0
. (2.1)

Let χ : Rd → [0, 1] be a smooth radial function so that

χ(ξ) =

{
1 when |ξ| 6 1,

0 when |ξ| > 3/2.

Define

ϕ(ξ) := χ(ξ)− χ(2ξ).
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It is easy to see that ϕ > 0, supp[ϕ] ⊂ B3/2 \B1/2 and for each ξ ∈ Rd,

χ(2ξ) +

k∑
j=0

ϕ(2−jξ) = χ(2−kξ)→ 1 as k →∞. (2.2)

Moreover,

supp
[
ϕ(2−j ·)

]
∩ supp

[
ϕ(2−k·)

]
= ∅ if |j − k| > 2. (2.3)

From now on, we shall fix such χ and ϕ, and introduce the following definitions.

Definition 2.1. The dyadic block operator Πj is defined by

Πjf :=

{
F−1(χ(2·)Ff), j = −1,

F−1(ϕ(2−j ·)Ff), j > 0.

For s ∈ R and p, q ∈ [1,∞], the Besov space Bsp,q is defined as the set of all

f ∈ S ′(Rd) with

‖f‖Bsp,q := 1{q<∞}

∑
j>−1

2jsq‖Πjf‖qp

1/q

+ 1{q=∞}

(
sup
j>−1

2js‖Πjf‖p
)
<∞.

Some literature, e.g., [1, 7], uses notation ∆j for the dyadic block operator Πj

defined above. We choose to use notation Πj in this paper out of two considerations:

(i) the dyadic block operator is a projection operator in the L2-space, and (ii) we

want to avoid possible confusion with the Laplacian operator ∆ on Rd.
For s > 0 and p ∈ [1,∞), let Hs

p := (I−∆)−s/2(Lp) be the usual Bessel potential

space with norm

‖f‖Hsp := ‖(I −∆)s/2f‖p.
Note that

‖f‖Hsp � ‖f‖p + ‖(−∆)s/2f‖p for f ∈ Hs
p .

It should be observed that if s > 0 is not an integer, then the Besov space Bs∞,∞
is just the usual Hölder space Cs. Moreover, Besov spaces have the following

embedding relations: For any s, s′, s′′ ∈ R and p, p′, q, q′ ∈ [1,∞] with

p 6 p′, q 6 q′, s < s′′ and s− d/p = s′ − d/p′,

it holds that (cf. [4])

Bs
′′

p,1 ⊂ Hs′′

p ⊂ Bs
′′

p,∞ ⊂ Bsp,q ⊂ Bs
′

p′,q′ . (2.4)

Let h = F−1χ be the inverse Fourier transform of χ. Define

h−1(x) := F−1χ(2·)(x) = 2−dh(2−1x) ∈ S (Rd),

and for j > 0,

hj(x) := F−1ϕ(2−j ·)(x) = 2jdh(2jx)− 2(j−1)dh(2j−1x) ∈ S (Rd). (2.5)

It follows from the definition that

Πjf(x) = (hj ∗ f)(x) =

∫
Rd
hj(x− y)f(y)dy, j > −1. (2.6)

The cut-off low frequency operator Sk is defined by

Skf :=

k−1∑
j=−1

Πjf = 2(k−1)d

∫
Rd
h(2k−1(x− y))f(y)dy.
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It is easy to see that

‖Skf‖p 6 ‖h‖1‖f‖p and ‖Skf‖Bsp,q 6 ‖h‖1‖f‖Bsp,q . (2.7)

Moreover, one has by (2.2) that

Ŝkf = χ(21−k·)f̂ , f = lim
k→∞

Skf =

∞∑
j=−1

Πjf. (2.8)

For f, g ∈ S ′(Rd), define

Tfg =

∞∑
k=0

(Skf)(Πk+1g), R(f, g) :=

∞∑
k=−1

∑
|i|61

(Πkf)(Πk−ig)

with the convention that Π−2 := 0. Clearly,

fg = Tfg + Tgf +R(f, g) for f, g ∈ S ′(Rd).

This identity is called Bony’s (paraproduct) decomposition of fg.

We first recall the following Bernstein’s type inequality.

Lemma 2.2. (Bernstein’s type inequality) Let 1 6 p 6 q 6∞. For any k = 0, 1, · · ·
and β ∈ (−1, 2), there is a constant C such that for all f ∈ S ′(Rd) and j > −1,

‖∇kΠjf‖q 6 C2(k+d( 1
p−

1
q ))j‖Πjf‖p, (2.9)

and for any j > 0,

‖(−∆)β/2Πjf‖q 6 C2(β+d( 1
p−

1
q ))j‖Πjf‖p, (2.10)

and for any 2 6 p < ∞, j > 0 and α ∈ (0, 2), there is a constant c > 0 such that

for all f ∈ S ′(Rd), ∫
Rd

∣∣∣(−∆)α/4|Πjf |p/2
∣∣∣2dx > c2αj‖Πjf‖pp. (2.11)

Proof. Estimates (2.9) and (2.11) can be found in [1, Lemma 2.1] and [7, Theorem

1.1]), respectively. For (2.10), its proof is essentially the same as that of [1, Lemma

2.1]. Indeed, by dilation, it suffices to prove (2.10) for j = 0. Let ϕ̃ ∈ S (Rd\{0})
with value 1 on {1/2 6 |x| 6 3/2}, and h̃ := F−1ϕ̃. Define Π̃0f := F−1(ϕ̃Ff) =

h̃ ∗ f . Since Π̃0Π0 = Π0 as ϕ̃ϕ = ϕ, we have by Young’s inequality,

‖(−∆)β/2Π0f‖q 6 ‖(−∆)β/2Π̃0Π0f‖q 6 ‖(−∆)β/2h̃‖r‖Π0f‖p,

where 1
r = 1 − 1

p + 1
q . Since |ξ|βϕ̃(ξ) ∈ S (Rd), we have (−∆)β/2h̃ ∈ S (Rd) and

so ‖(−∆)β/2h̃‖r < ∞. This establishes (2.10) for j = 0, and consequently for all

j > 1 by dilation. �

The following commutator estimate plays an important role in this paper.

Lemma 2.3. Let p, p1, p2, q1, q2 ∈ [1,∞] with 1
p = 1

p1
+ 1

p2
and 1

q1
+ 1

q2
= 1. For

any β1 ∈ (0, 1) and β2 ∈ [−β1, 0], there is a constant C > 0 depending only on

d, p, p1, p2, β1, β2 such that

‖[Πj , f ]g‖p 6 C2−j(β1+β2)


‖f‖

B
β1
p1,∞
‖g‖p2 , if β2 = 0,

‖f‖
B
β1
p1,∞
‖g‖

B
β2
p2,∞

, if β1 + β2 > 0,

‖f‖
B
β1
p1,q1

‖g‖
B
β2
p2,q2

, if β1 + β2 = 0,

where [Πj , f ]g := Πj(fg)− fΠjg.
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Proof. We first consider the case β2 = 0. In this case, by (2.6),

[Πj , f ]g(x) =

∫
Rd
hj(y)(f(x− y)− f(x))g(x− y)dy.

For any p ∈ [1,∞] and s ∈ (0, 1), by Theorem 2.36 of [1],

‖f(· − y)− f(·)‖p 6 C|y|s‖f‖Bsp,∞ . (2.12)

Using Hölder’s inequality and (2.5), we have

‖[Πj , f ]g‖p 6
∫
Rd
hj(y)‖f(· − y)− f(·)‖p1‖g‖p2dy

. ‖f‖
B
β1
p1,∞
‖g‖p2

∫
Rd
|hj(y)| |y|β1dy

= ‖f‖
B
β1
p1,∞
‖g‖p22−(j−1)β1

∫
Rd
|2dh(2y)− h(y)| |y|β1dy

. 2−jβ1‖f‖
B
β1
p1,∞
‖g‖p2 .

(2.13)

Next we consider the case β2 ∈ [−β1, 0). By using Bony’s decomposition, we can

write

[Πj , f ]g = [Πj , Tf ]g + Πj(Tgf)− TΠjgf + ΠjR(f, g)−R(f,Πjg).

It follows from (2.8) and (2.3) that

F(Πj(Sk−1fΠkg)) = ϕ(2−j ·)
(

(χ(22−k·)f̂) ∗ (ϕ(2−k·)ĝ)
)

= 0 for |k − j| > 2,

and

ΠjΠk = 0 for |k − j| > 2.

Therefore, by (2.7) and (2.13) we have

‖[Πj , Tf ]g‖p =

∥∥∥∥∥ ∑
|k−j|62

(
Πj(Sk−1fΠkg)− Sk−1fΠjΠkg

)∥∥∥∥∥
p

6
∑
|k−j|62

∥∥[Πj , Sk−1f ]Πkg
∥∥
p

. 2−jβ1

∑
|k−j|62

‖Sk−1f‖Bβ1p1,∞‖Πkg‖p2

. 2−jβ1‖f‖
B
β1
p1,∞

∑
|k−j|62

2−kβ2‖g‖
B
β2
p2,∞

. 2−j(β1+β2)‖f‖
B
β1
p1,∞
‖g‖

B
β2
p2,∞

.

Similarly, we have by Hölder’s inequality and β2 < 0,

‖Πj(Tgf)‖p =

∥∥∥∥∥ ∑
|k−j|62

Πj(Sk−1gΠkf)

∥∥∥∥∥
p

6
∑
|k−j|62

‖Πj(Sk−1gΠkf)‖p

.
∑
|k−j|62

‖Sk−1gΠkf‖p 6
∑
|k−j|62

∑
m6k−2

‖ΠmgΠkf‖p

. ‖g‖
B
β2
p2,∞
‖f‖

B
β1
p1,∞

∑
|k−j|62

∑
m6k−2

2−mβ22−kβ1

. ‖g‖
B
β2
p2,∞
‖f‖

B
β1
p1,∞

2−j(β2+β1),
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and

‖TΠjgf‖p 6
∑
k>j−2

‖Sk−1ΠjgΠkf‖p 6
∑
k>j−2

‖Πkf‖p1‖Sk−1Πjg‖p2

6
∑
k>j−2

2−kβ1‖f‖
B
β1
p1,∞
‖Πjg‖p2 6 C2−j(β1+β2)‖f‖

B
β1
p1,∞
‖g‖

B
β2
p2,∞

.

Finally, we have

‖ΠjR(f, g)‖p =

∥∥∥∥∥ ∑
|i|61,k>j−4

Πj(ΠkfΠk−ig)

∥∥∥∥∥
p

.
∑

|i|61,k>j−4

‖Πkf‖p1‖Πk−ig‖p2

.
∑

|i|61,k>j−4

2−k(β1+β2)
(

2kβ1‖Πkf‖p1
)(

2kβ2‖Πk−ig‖p2
)

. 2−j(β1+β2)

{
‖f‖

B
β1
p1,∞
‖g‖

B
β2
p2,∞

, β1 + β2 > 0,

‖f‖
B
β1
p1,q1

‖g‖
B
β2
p2,q2

, β1 + β2 = 0,

where 1
q1

+ 1
q2

= 1, and

‖R(f,Πjg)‖p =

∥∥∥∥∥ ∑
|i|61,|k−j|61

Πk−ifΠkΠjg

∥∥∥∥∥
p

. ‖f‖
B
β1
p1,∞
‖g‖

B
β2
p2,∞

2−j(β1+β2).

Combining the above calculations and noticing ‖f‖Bsp,∞ 6 ‖f‖Bsp,q , we complete

the proof. �

3. Nonlocal parabolic equations

In this section we study the solvability and regularity of nonlocal parabolic equa-

tion (1.9) with Hölder drift b. Let σ be a constant d × d-matrix and ν a measure

on Rd such that ∫
Rd\{0}

(|z|2 ∧ 1)ν(dz) <∞.

We define a Lévy-type operator Lνσ by

Lνσf(x) :=

∫
Rd

(
f(x+ σz)− f(x)− 1{|z|61}σz · ∇f(x)

)
ν(dz), f ∈ S (Rd).

By Fourier’s transform, we have

L̂νσf(ξ) = ψνσ(ξ)f̂(ξ),

where the symbol ψνσ(ξ) is given by

ψνσ(ξ) =

∫
Rd

(
eiξ·σz − 1− 1{|z|61}iσz · ξ

)
ν(dz).

Now let σ(t, x) : R+ × Rd → Rd ⊗ Rd be a Borel measurable function. Define a

time-dependent Lévy-type operator

Ltf(x) := Lνσ(t,x)f(x).

In this section, for λ > 0, we study the solvability of the following equation with

Besov drift b(t, x) : R+ × Rd → Rd,

∂tu = (Lt − λ)u+ b · ∇u+ f with u(0) = 0. (3.1)
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For a space-time function f : R+ × Rd → R and T > 0, define

‖f‖L∞T (Bsp,q)
:= sup

t∈[0,T ]

‖f(t, ·)‖Bsp,q .

3.1. Constant diffusion matrix case. In this subsection we consider equation

(3.1) with time dependent constant coefficient σ(t, x) = σ(t). First of all, we

establish the following Bernstein’s type inequality for nonlocal operator Lνσ, which

plays a crucial role in the sequel.

Lemma 3.1. Suppose Re(ψνσ(ξ)) 6 −c0|ξ|α for some c0 > 0. Then for any p > 2,

there is a constant cp = c(c0, p) > 0 such that for j = 0, 1, · · · ,∫
Rd
|Πjf |p−2(Πjf)LνσΠjfdx 6 −cp2αj‖Πjf‖pp, (3.2)

and for j = −1, ∫
Rd
|Π−1f |p−2(Π−1f)LνσΠ−1fdx 6 0.

Proof. For p > 2, by the elementary inequality |r|p/2 − 1 > p
2 (r − 1) for r ∈ R, we

have

|a|p/2 − |b|p/2 > p
2 (a− b)b|b|p/2−2, a, b ∈ R.

Letting g be a smooth function, by definition we have

Lνσ|g|p/2(x) =

∫
Rd

(
|g(x+ σz)|p/2 − |g(x)|p/2 − 1|z|61σz · ∇x|g(x)|p/2

)
ν(dz)

>
p

2
|g(x)|p/2−2g(x)

∫
Rd

(
g(x+ σz)− g(x)− 1|z|61σz · ∇g(x)

)
ν(dz)

=
p

2
|g(x)|p/2−2g(x)Lνσg(x).

Multiplying both sides by |g|p/2 and then integrating in x over Rd, by Plancherel’s

formula, we obtain∫
Rd
|g|p−2gLνσgdx 6

2

p

∫
Rd
|g|p/2Lνσ|g|p/2dx =

2

p

∫
Rd
||̂g|p/2(ξ)|2ψνσ(ξ)dξ

=
2

p

∫
Rd
||̂g|p/2(ξ)|2Re(ψνσ(ξ))dξ 6 −2c0

p

∫
Rd
||̂g|p/2(ξ)|2|ξ|αdξ

6 −2c0
p

∫
Rd
|(−∆)α/4|g|p/2|2dx,

which in turn gives the desired estimate by taking g = Πjf and (2.11). �

We introduce the following assumptions about drift b(t, x):

(Hβ,p
b ) b = b1 + b2 satisfies that for some β ∈ [0, 1] and p > 1,

‖b1‖L∞T (Bβp,∞) + ‖b2‖L∞T (Bβ∞,∞) 6 κ <∞. (3.3)

Remark 3.2. The reason to consider b of the form b1 + b2 satisfying condition

(3.3) is the need in our study of strong well-posedness of solutions to SDE (1.1).

In Theorem 4.1, we will apply Theorem 3.6 below with b1 = b(t, x) and b2 =

−1α∈(0,1)σ(t, x)
∫
|z|61

zν(dz) to show that the SDE driven by the truncated Lévy

process Z̃ obtained from Z by removing jumps of size larger than 1 has a unique

strong solution. Moreover, Bβq,∞ ⊂ Bβp,∞ ∩Bβ∞,∞ for any q > p.
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We introduce the following parameter set for later use:

Θ := (c0, T, d, p, α, β, κ).

Now we can state the following main a priori estimate of this subsection.

Theorem 3.3. Let β ∈ (0, 1) and α ∈ (0, 2) with α + β > 1. Let T > 0 and

p ∈ ( d
α+β−1 ∨ 2,∞). Suppose that (Hβ,p

b ) holds and for some c0 > 0,

Re(ψνσ(t)(ξ)) 6 −c0|ξ|
α, ξ ∈ Rd, t ∈ [0, T ].

For any η ∈ [0, β] and q ∈ [2, p], there is a constant C = C(η, q,Θ) > 0 inde-

pendent of λ so that for any classical solution u to the nonlocal PDE (3.1) with

f ∈ L∞T (Bηq,∞) and λ > 0,

‖u‖L∞T (Bα+η
q,∞ ) 6 C‖f‖L∞T (Bηq,∞). (3.4)

Moreover, for any γ ∈ [0, α+ η),

‖u‖L∞T (Bγq,∞) 6 cλ‖f‖L∞T (Bηq,∞), (3.5)

where cλ = c(λ, γ, η, q,Θ)→ 0 as λ→∞.

Proof. Applying the operator Πj on both sides of (3.1), we have

∂tΠju = (Lt − λ)Πju+ Πj(b · ∇u) + Πjf.

For q > 2, by the chain rule or multiplying both sides by |Πju|q−2Πju and then

integrating in x, we obtain

∂t‖Πju‖qq
q

=

∫
Rd

(
|Πju|q−2(Πju)

(
LtΠju+ Πj(b · ∇u) + Πjf − λΠju

))
dx

=

∫
Rd
|Πju|q−2(Πju)LtΠjudx+

∫
Rd
|Πju|q−2(Πju) [Πj , b · ∇]udx

+

∫
Rd
|Πju|q−2(Πju) (b · ∇)Πjudx

+

∫
Rd
|Πju|q−2(Πju)Πjfdx− λ‖Πju‖qq

=: I
(1)
j + I

(2)
j + I

(3)
j + I

(4)
j + I

(5)
j .

For I
(1)
j , recalling Lt = Lνσ(t) and by Lemma 3.1, there is a c > 0 such that

I
(1)
−1 6 0, I

(1)
j 6 −c2αj‖Πju‖qq, j = 0, 1, 2, · · · .

For I
(2)
j , using Lemma 2.3 with

f = bi, g = ∂iu for i = 1, · · · , d,

and

β1 = β, β2 = η − β, q1 =∞ and q2 = 1,

by Hölder’s inequality and recalling b = b1 + b2, we have for all j = −1, 0, 1, · · · ,

I
(2)
j 6 ‖[Πj , b · ∇]u‖q‖Πju‖q−1

q

. 2−ηj
(
‖b1‖Bβp,∞‖u‖B1−β+η

r,1
+ ‖b2‖Bβ∞,∞‖u‖B1−β+η

q,1

)
‖Πju‖q−1

q ,

where

1/r = 1/q − 1/p.
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For I
(3)
j , note that

I
(3)
j =

∫
Rd

((b− Sjb) · ∇)Πju |Πju|q−2Πjudx

+

∫
Rd

(Sjb · ∇)Πju |Πju|q−2Πjudx =: I
(31)
j + I

(32)
j .

By Hölder’s inequality and Bernstein’s inequality (2.9), we have

I
(31)
j 6

∑
k>j

‖(Πkb · ∇)Πju‖q‖Πju‖q−1
q

6
∑
k>j

(
‖Πkb1‖p‖∇Πju‖r + ‖Πkb2‖∞‖∇Πju‖q

)
‖Πju‖q−1

q

. 2(1+d/p)j‖Πju‖qq
∑
k>j

(
‖Πkb1‖p + ‖Πkb2‖∞

)
. 2(1+d/p−β)j‖Πju‖qq

(
‖b1‖Bβp,∞ + ‖b2‖Bβ∞,∞

)
.

For I
(32)
j , we have by the divergence theorem and (2.9) again,

I
(32)
j =

1

q

∫
Rd

(Sjb · ∇)|Πju|qdx = −1

q

∫
Rd
Sjdivb |Πju|qdx

6
1

q
‖Sjdivb‖∞‖Πju‖qq 6

1

q

∑
k6j

‖Πkdivb‖∞‖Πju‖qq

.
∑
k6j

2k(1+d/p)
(
‖Πkb1‖p + ‖Πkb2‖∞

)
‖Πju‖qq

. 2(1+d/p−β)j
(
‖b1‖Bβp,∞ + ‖b2‖Bβ∞,∞

)
‖Πju‖qq.

Combining the above estimates, we obtain

∂t‖Πju‖qq/q 6 −c2αj1j>0‖Πju‖qq − λ‖Πju‖qq

+ C2−ηj
(
‖u‖B1−β+η

r,1
+ ‖u‖B1−β+η

q,1

)
‖Πju‖q−1

q

+ C2(1−β+d/p)j‖Πju‖qq + C‖Πju‖q−1
q ‖Πjf‖q

6 −
(
c2αj1j>0 + λ− C2(1−β+d/p)j

)
‖Πju‖qq

+ C
(

2−ηj
(
‖u‖B1−β+η

r,1
+ ‖u‖B1−β+η

q,1

)
+ ‖Πjf‖q

)
‖Πju‖q−1

q .

Since 1 − β + d/p < α, by dividing both sides by ‖Πju‖q−1
q and using Young’s

inequality, we get for some c0, λ0 > 0 and all j > −1,

∂t‖Πju‖q 6 −(c02αj+λ−λ0)‖Πju‖q+C2−ηj
(
‖u‖B1−β+η

r,1
+‖u‖B1−β+η

q,1

)
+C‖Πjf‖q,

which implies by Gronwall’s inequality that for all j > −1,

‖Πju(t)‖q .
∫ t

0

e−(c02αj+λ−λ0)(t−s)
(

2−ηj
(
‖u‖B1−β+η

r,1
+ ‖u‖B1−β+η

q,1

)
+ ‖Πjf‖q

)
ds

6 2−ηj
∫ t

0

e−(c02αj+λ−λ0)(t−s)
(
‖u‖B1−β+η

r,1
+ ‖u‖B1−β+η

q,1
+ ‖f‖Bηq,∞

)
ds (3.6)

6 2−ηj2λ0t

∫ t

0

e−c02αjsds
(
‖u‖L∞t (B1−β+η

r,1 ) + ‖u‖L∞t (B1−β+η
q,1 ) + ‖f‖L∞t (Bηq,∞)

)
.
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Hence,

‖u(t)‖Bα+η
q,∞

= sup
j>−1

(
2(α+η)j‖Πju(t)‖q

)
. ‖u‖L∞t (B1−β+η

r,1 ) + ‖u‖L∞t (B1−β+η
q,1 ) + ‖f‖L∞t (Bηq,∞),

(3.7)

where we have used that 2αj
∫ t

0
e−c02αjsds = (1− e−c02αj )/c0 6 1/c0.

Let θ ∈ (0, α + β − d/p − 1). By embedding relation (2.4) and interpolation

theorem, we have for all ε ∈ (0, 1),

‖u‖B1−β+η
r,1

6 C‖u‖Bα+η−θ
q,∞

6 C‖u‖1−
θ
α

Bα+η
q,∞
‖u(s)‖

θ
α

Bηq,∞
6 ε‖u‖Bα+η

q,∞
+ Cε‖u‖Bηq,∞ ,

and similarly,

‖u‖B1−β+η
q,1

6 ε‖u‖Bα+η
q,∞

+ Cε‖u‖Bηq,∞ .

Substituting these into (3.7) and letting ε be small enough, we get

‖u‖L∞t (Bα+η
q,∞ ) . ‖u‖L∞t (Bηq,∞) + ‖f‖L∞t (Bηq,∞), (3.8)

and also,

‖u‖L∞t (B1−β+η
r,1 ) + ‖u‖L∞t (B1−β+η

q,1 ) . ‖u‖L∞t (Bηq,∞) + ‖f‖L∞t (Bηq,∞). (3.9)

Now, multiplying both sides of (3.6) by 2ηj and then taking supremum over j, we

obtain

‖u(t)‖Bηq,∞ .
∫ t

0

e−(λ−λ0)(t−s)
(
‖u‖B1−β+η

r,1
+ ‖u‖B1−β+η

q,1
+ ‖f‖Bηq,∞

)
ds

.
∫ t

0

‖u‖L∞s (Bηq,∞)ds+
(

1 ∧ |λ− λ0|−1
)
‖f‖L∞t (Bηq,∞).

Thus by Gronwall’s inequality we get

‖u‖L∞T (Bηq,∞) 6 C
(

1 ∧ |λ− λ0|−1
)
‖f‖L∞T (Bηq,∞), (3.10)

where C = C(η, q,Θ), which together with (3.8) yields (3.4). Combining (3.4) with

(3.10) and using the interpolation theorem again, we obtain (3.5). �

Remark 3.4. If we take η = 0 and q > d/α in (3.5), then by embedding (2.4),

‖u‖L∞T (L∞) 6 cλ‖f‖L∞T (B0
q,∞) 6 cλ‖f‖L∞T (Lq).

Such type maximal estimate is useful for deriving Krylov’s estimate, which is crucial

in the study of SDEs with rough drifts (cf. [30]).

By the above a priori estimate, we have the following existence and uniqueness

of classical solutions to PDE (3.1).

Theorem 3.5. Let β ∈ (0, 1) and α ∈ (0, 2) with α + β > 1. Let T > 0 and

p ∈ ( d
α+β−1 ∨

d
β ∨ 2,∞). Suppose that (Hβ,p

b ) holds and for some c0 > 0,

Re(ψνσ(t)(ξ)) 6 −c0|ξ|
α, ξ ∈ Rd, t ∈ [0, T ].

For any f ∈ L∞T (Bβp,∞) and λ > 0, there exists a unique classical solution u ∈
L∞T (Bα+β

p,∞ ) to the nonlocal parabolic equation (3.1) in the sense that for all (t, x) ∈
[0, T ]× Rd,

u(t, x) =

∫ t

0

(Ls − λ)u(s, x)ds+

∫ t

0

(b · ∇u)(s, x)ds+

∫ t

0

f(s, x)ds. (3.11)
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Moreover, there is a constant C = C(Θ) > 0 independent of λ > 0,

‖u‖L∞T (Bα+β
p,∞ ) 6 C‖f‖L∞T (Bβp,∞), (3.12)

and for any γ ∈ (0, α+ β),

‖u‖L∞T (Bγp,∞) 6 cλ‖f‖L∞T (Bβp,∞), (3.13)

where cλ = c(λ, γ,Θ)→ 0 as λ→∞.

Proof. Let ρ be a non-negative smooth function with compact support in Rd and∫
Rd ρ(x)dx = 1. Define ρε(x) := ε−dρ(ε−1x), bε := ρε ∗ b, fε := ρε ∗ f . Let uε

be the smooth solution of PDE (3.1) corresponding to bε and fε. That is, for all

(t, x) ∈ [0, T ]× Rd,

uε(t, x) =

∫ t

0

(Ls − λ)uε(s, x)ds+

∫ t

0

(bε · ∇uε)(s, x)ds+

∫ t

0

fε(s, x)ds. (3.14)

By the a priori estimate (3.12) and (2.4), for any δ ∈ (0, β − d/p), we have

sup
0<ε61

‖uε‖L∞T (Bα+δ
∞,∞) . sup

0<ε61
‖uε‖L∞T (Bα+β

p,∞ ) 6 C‖f‖L∞T (Bβp,∞). (3.15)

Since α+ β > 1 and p > d
α+β−1 , we can choose δ < β − d

p so that α+ δ > 1. Note

that for every (s, x) ∈ [0, T ]× Rd,

|Lsuε(s, x)| 6
∫

0<|z|61

|uε(s, x+ σ(s)z)− uε(x)− σ(s)z · ∇uε(s, x)| ν(dz)

+

∫
|z|>1

|uε(s, x+ σ(s)z)− uε(x)| ν(dz)

6 c1‖uε‖L∞T (Bα+δ
∞,∞) 6 c2‖f‖L∞T (Bβp,∞),

where the positive constants c1 and c2 are independent of ε > 0. Thus, by (3.14)-

(3.15), we have for all 0 6 t 6 t′ 6 T ,

lim
|t−t′|→0

sup
0<ε61

‖uε(t)− uε(t′)‖∞ = 0.

Now, by Ascolli-Arzela’s theorem, there is a decreasing sequence εk → 0 and a

continuous function u so that for any R > 0,

lim
k→∞

‖uεk − u‖L∞([0,T ];C1(BR)) → 0,

and for any δ ∈ (0, β − d/p),

‖u‖L∞T (Bα+δ
∞,∞)

(2.4)

. ‖u‖L∞T (Bα+β
p,∞ ) . ‖f‖L∞T (Bβp,∞).

By taking ε→ 0 along the sequence εk in (3.14), one concludes that u is a classical

solution of PDE (3.1) and (3.11) holds. �

3.2. Variable diffusion matrix case. In this subsection we consider the variable

diffusion coefficient case, and introduce the following assumptions on σ(t, x):

(Hθ
ε) There are θ, ε ∈ (0, 1) and Λ > 1 such that

‖σ(t, x)− σ(t, y)‖ 6 Λ|x− y|θ and σ(t, x) = σ(t, 0) for |x| > ε, (3.16)

Λ−1|ξ|2 6 |σ(t, 0)ξ|2 6 Λ|ξ|2 for every ξ ∈ Rd. (3.17)
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Notice that (3.16) means that σ only varies near 0 and this implies that

‖σ(t, x+ y)− σ(t, x)‖ 6 C(|y| ∧ ε)θ. (3.18)

About the Lévy measure ν, we assume

(Hα
ν ) There are ν1, ν2 ∈ L(α)

non so that

ν1(A) 6 ν(A) 6 ν2(A) for every A ∈ B(B1).

In particular, for any γ > α > γ′ and δ > 0,∫
|z|6δ

|z|γν(dz) 6 Cδγ−α,
∫
δ<|z|61

|z|γ
′
ν(dz) 6 Cδγ

′−α. (3.19)

Since the Lévy measure ν is not necessarily absolutely continuous with respect to

the Lebesgue measure, it seems hard to show that for any f ∈ Bα+γ
p,∞ ,

x 7→
∫
|z|>1

f(x+ σ(t, x)z)ν(dz) ∈ Bγp,∞,

which is very essential if one wants to use the perturbation argument. Thus we

have to first remove the large jump part and consider the following operator

L̃tf(x) := L̃νσ(t,x)f(x)

:=

∫
|z|61

(
f(x+ σ(t, x)z)− f(x)− 1α∈[1,2)σ(t, x)z · ∇f(x)

)
ν(dz).

(3.20)

The following theorem is the main result of this subsection. Although this analytic

result needs a special assumption on the oscillation of σ(t, ·), it is enough for us to

get our Theorem 1.1 .

Theorem 3.6. Let β ∈ (0, 1) and α ∈ (0, 2) with α + β > 1. Let T > 0 and

p ∈ ( d
α+β−1 ∨

d
α∧β ∨ 2,∞), θ ∈ (β, 1]. Suppose that (Hα

ν ) and (Hβ,p
b ) hold. Then

there are ε0 ∈ (0, 1) and λ0 > 0 such that for all ε ∈ (0, ε0) and λ ∈ (λ0,∞), under

(Hθ
ε), for any f ∈ L∞T (Bβp,∞), there is a unique classical solution u ∈ L∞T (Bα+β

p,∞ )

to the following PDE

∂tu = (L̃t − λ)u+ b · ∇u+ f, u(0) = 0, (3.21)

that is, for all (t, x) ∈ [0, T ]× Rd,

u(t, x) =

∫ t

0

(L̃s − λ)u(s, x)ds+

∫ t

0

(b · ∇u)(s, x)ds+

∫ t

0

f(s, x)ds.

Moreover, there is a C = C(ε0, λ0,Λ, ν1, ν2, T, d, p, α, β, θ, κ) > 0 such that

‖u‖L∞T (Bα+β
p,∞ ) 6 C‖f‖L∞T (Bβp,∞), (3.22)

and for any γ ∈ (0, α+ β),

‖u‖L∞T (Bγp,∞) 6 cλ‖f‖L∞T (Bβp,∞), (3.23)

where cλ = c(λ, γ, ε0,Λ, ν1, ν2, T, d, p, α, β, θ, κ)→ 0 as λ→∞.

In order to get the above result, we need the following commutator estimate.

Lemma 3.7. Under (Hθ
ε) and (Hα

ν ), for any p > 1, we have

∥∥[∆s/2, L̃t]u
∥∥
p
6 C

{
εθδ−s+d/p‖u‖Bδ∞,∞ , α ∈ (0, 1), δ ∈ (α, 1], s ∈ (0, θδ);

εθ−s+d/p‖∇u‖Bδ−1
∞,∞

, α ∈ [1, 2), δ ∈ (α, 2), s ∈ (0, θ),
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where [∆s/2, L̃t]u := ∆s/2L̃tu − L̃t∆
s/2u, and the constant C > 0 is independent

of ε.

Proof. We only prove it for α ∈ [1, 2) since the case α ∈ (0, 1) is similar. For

simplicity of notation, we drop the variable t in σ(t, x) and write

Γσu(x, y, z) := u(x+ y + σ(x+ y)z)− u(x+ y + σ(x)z)

− (σ(x+ y)− σ(x))z · ∇u(x+ y),

and

‖[∆s/2, L̃t]u‖pp =

(∫
|x|62ε

+

∫
|x|>2ε

)∣∣[∆s/2, L̃t]u(x)
∣∣pdx =: J1 + J2.

Let δ ∈ (α, 2). By (3.18) and (2.12), we have

|Γσu(x, y, z)| . (|y| ∧ ε)θ|z|
∫ 1

0

|∇u(x+ y + (1− r)σ(x+ y)z + rσ(x)z)

−∇u(x+ y)|dr

. (|y| ∧ ε)θ|z|δ‖∇u‖Bδ−1
∞,∞

,

and by definition,

[∆s/2, L̃t]u(x) =

∫
|z|61

ν(dz)

∫
Rd

Γσu(x, y, z)

|y|d+s
dy.

Thus, for J1, by (3.19) we have

J1 . ‖∇u‖pBδ−1
∞,∞

∫
|x|62ε

∣∣∣∣∣
∫
|z|61

ν(dz)

∫
Rd

|z|δ(|y| ∧ ε)θ

|y|d+s
dy

∣∣∣∣∣
p

dx

. εd‖∇u‖p
Bδ−1
∞,∞

∣∣∣∣∣
∫
|y|6ε

|y|θdy
|y|d+s

+

∫
|y|>ε

εθdy

|y|d+s

∣∣∣∣∣
p

. ‖∇u‖p
Bδ−1
∞,∞

ε(θ−s)p+d.

For J2, since Γσu(x, y, z) = 0 for |x|, |x+ y| > ε by (3.16), we have

J2 =

∫
|x|>2ε

∣∣∣∣∣
∫
|z|61

ν(dz)

∫
|x+y|6ε

Γσu(x, y, z)

|y|d+s
dy

∣∣∣∣∣
p

dx

. ‖∇u‖p
Bδ−1
∞,∞

∫
|x|>2ε

∣∣∣∣∣
∫
|z|61

ν(dz)

∫
|x+y|6ε

|z|δ(|y| ∧ ε)θ

|y|d+s
dy

∣∣∣∣∣
p

dx

. ‖∇u‖p
Bδ−1
∞,∞

εθp
∫
|x|>2ε

∣∣∣∣∣
∫
|x+y|6ε

1

|y|d+s
dy

∣∣∣∣∣
p

dx

. ‖∇u‖p
Bδ−1
∞,∞

εθp+dp
∫
|x|>2ε

1

(|x| − ε)p(d+s)
dx . ‖∇u‖p

Bδ−1
∞,∞

ε(θ−s)p+d.

Combining the above calculations, we obtain the desired estimate. �

Lemma 3.8. Suppose that (Hθ
ε) and (Hα

ν ) holds with θ, ε ∈ (0, 1) and α ∈ (0, 2).

For any p ∈ ( d
α∧1 ,∞), we have

∥∥(L̃νσ(t,·) − L̃
ν
σ(t,0))f

∥∥
Bβp,∞

6 cε

{
‖f‖Bα+β

p,∞
, α ∈ (0, 1), β ∈ (0, (pα−d)θ

p(1−θ) ∧ θ);

‖f‖Bα+β
p,∞

, α ∈ [1, 2), β ∈ (0, θ),

where cε is a positive constant so that limε→0 cε = 0.
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Proof. We only give the proof of the estimate for α ∈ (0, 1). The case α ∈ [1, 2) is

similar. For simplicity of notation, we drop the time variable t and write

Tσf(x) := L̃νσ(x)f(x)− L̃νσ(0)f(x) =

∫
|z|61

(
f(x+ σ(x)z)− f(x+ σ(0)z)

)
ν(dz).

For γ ∈ (d/p, 1], δ > 0 and y0 ∈ Rd, by [10, Lemma 2.2], we have∥∥∥∥∥ sup
|y−y0|6δ

|f(·+ y)− f(·+ y0)|

∥∥∥∥∥
p

. δγ‖f‖Hγp ,

which implies under condition (Hθ
ε) that

‖f(·+ σ(·)z)− f(·+ σ(0)z)‖p

6

∥∥∥∥∥ sup
|y−σ(0)z|6Λεθ|z|

|f(·+ y)− f(·+ σ(0)z)

∥∥∥∥∥
p

. εγθ|z|γ‖f‖Hγp .

Since p > d
α , we can take γ and γ′ so that d

p < γ′ < α < γ 6 1. By the above

estimates,

‖Tσf‖p .
∫
|z|61

(εγθ|z|γ‖f‖Hγp ) ∧ (εγ
′θ|z|γ

′
‖f‖

Hγ
′
p

)ν(dz). (3.24)

For each i > −1, by (2.8),

‖ΠiTσf‖p 6
∑
j>i

‖ΠiTσΠjf‖p +
∑
j6i

‖ΠiTσΠjf‖p =: J1 + J2. (3.25)

By (3.24) and the Bernstein’s inequality (2.10),

‖TσΠjf‖p .
∫
|z|61

(εγθ|z|γ‖Πjf‖Hγp ) ∧ (εγ
′θ|z|γ

′
‖Πjf‖Hγ′p )ν(dz)

.
∫
|z|61

(εγθ|z|γ2γj) ∧ (εγ
′θ|z|γ

′
2γ
′j)ν(dz)‖Πjf‖p. (3.26)

Note that by (3.19),∫
|z|61

(εγθ|z|γ2γj) ∧ (εγ
′θ|z|γ

′
2γ
′j)ν(dz)

6 εγθ2γj
∫
|z|62−j

|z|γν(dz) + εγ
′θ2γ

′j

∫
2−j<|z|61

|z|γ
′
ν(dz)

. εγθ2αj + εγ
′θ2αj . εγ

′θ2αj .

Substituting this into (3.26), we obtain

‖TσΠjf‖p . εγ
′θ2αj‖Πjf‖p. (3.27)

Thus,

J1 . ε
γ′θ
∑
j>i

2αj‖Πjf‖p . εγ
′θ
∑
j>i

2−βj‖f‖Bα+β
p,∞

=
εγ
′θ2−βi

1− 2−β
‖f‖Bα+β

p,∞
.

For J2, for any β ∈ (0, (pα−d)θ
p(1−θ) ∧ θ), one can choose δ ∈ (α, (pα−d)

p(1−θ) ∧ 1] such that

β < δθ. Since δ < (pα−d)
p(1−θ) , we get δ + d

p − α < δθ. By this, we can fix s ∈ (β, δθ)



SDES DRIVEN BY MULTIPLICATIVE STABLE-LIKE LÉVY PROCESSES 19

such that s > δ + d
p − α. Using Bernstein’s inequality and Lemma 3.7 and noting

that ∆s/2Πj = Πj∆
s/2, we have

J2 =
∑
j6i

‖Πi∆
−s/2∆s/2TσΠjf‖p . 2−si

∑
j6i

‖∆s/2TσΠjf‖p

6 2−si
∑
j6i

(
‖[∆s/2, Tσ] Πjf‖p + ‖Tσ∆s/2Πjf‖p

)
= 2−si

∑
j6i

(
‖[∆s/2, L̃t] Πjf‖p + ‖Tσ∆s/2Πjf‖p

)
(3.27)

. 2−si
∑
j6i

(
εθδ−s+d/p‖Πjf‖Cδ + εγ

′θ2αj‖∆s/2Πjf‖p
)

. 2−si
∑
j6i

(
εθδ−s+d/p2(δ+d/p)j‖Πjf‖p + εγ

′θ2(s+α)j‖Πjf‖p
)

6 cε2
−si
∑
j6i

(
2(δ+d/p)j + 2(α+s)j

)
‖Πjf‖p

6 cε

2−si
∑
j6i

2(δ+ d
p−α−β)j + 2−si

∑
j6i

2(s−β)j

 ‖f‖Bα+β
p,∞

6 cε2
−βi‖f‖Bα+β

p,∞
,

where limε→0 cε = 0. Thus we have by (3.25) that

‖Tσf‖Bβp,∞ = sup
i>−1

(
2iβ‖ΠiTσf‖p

)
.

(
εγ
′θ

1− 2−β
+ cε

)
‖f‖Bα+β

p,∞
.

This gives the desired estimate. �

We are in a position to give

Proof of Theorem 3.6. Since we are considering the truncated operator L̃t, without

loss of generality we may assume ν|Bc1 = ν1. Thus, by the assumptions,

−Re(ψσ(t,0)(ξ)) =

∫
Rd

(1− cos(σ(t, 0)z · ξ))ν(dz)

>
∫
Rd

(1− cos(σ(t, 0)z · ξ))ν1(dz) > c0|ξ|α,

where c0 = c0(Λ, ν1, d, α) > 0. Now we use Picard’s iteration to show the existence.

Let u1 ≡ 0. For n ∈ N, by induction and Theorem 3.5, the following PDE admits

a unique classical solution un+1 ∈ L∞T (Bα+β
p,∞ ):

∂tun+1 + λun+1 − Lνσ(t,0)un+1 − b̃ · ∇un+1

= f + (L̃νσ(t,·) − L̃
ν
σ(t,0))un −

∫
|z|>1

(
un(·+ σ(t, 0)z)− un(·)

)
ν(dz),

(3.28)

where

b̃ := b− 1α∈(0,1)

∫
|z|61

σ(t, 0)zν(dz).
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Moreover, by the assumption θ > β > 1 + d
p −α, (pα−d)θ

p(1−θ) > θ. So, by (3.12), (3.13)

and Lemma 3.8,

c−1
λ ‖un+1‖L∞T (Bβp,∞) + ‖un+1‖L∞T (Bα+β

p,∞ )

6 C1‖f‖L∞T (Bβp,∞) +
∥∥(L̃νσ(t,·) − L̃

ν
σ(t,0))un

∥∥
L∞T (Bβp,∞)

+ C2‖un‖L∞T (Bβp,∞)

6 C1‖f‖L∞T (Bβp,∞) + cε‖un‖L∞T (Bα+β
p,∞ ) + C2‖un‖L∞T (Bβp,∞),

where C1, C2 > 1 is independent of ε, λ and n. Here

lim
ε↓0

cε = 0, lim
λ↑∞

cλ = 0.

In particular, for any m ∈ N,

c−1
λ sup

n6m
‖un‖L∞T (Bβp,∞) + sup

n6m
‖un‖L∞T (Bα+β

p,∞ )

6 C1‖f‖L∞T (Bβp,∞) + cε sup
n6m
‖un‖L∞T (Bα+β

p,∞ ) + C2 sup
n6m
‖un‖L∞T (Bβp,∞).

Choosing ε0 small and λ0 large enough so that cε0 = 1
2 and cλ0

= 1
2C2

, we get for

all ε ∈ (0, ε0) and λ ∈ (λ0,∞),

1
2c
−1
λ sup

n6m
‖un‖L∞T (Bβp,∞) + 1

2 sup
n6m
‖un‖L∞T (Bα+β

p,∞ ) 6 C1‖f‖L∞T (Bβp,∞).

Letting m→∞, we obtain the following uniform estimate:

c−1
λ sup

n∈N
‖un‖L∞T (Bβp,∞) + sup

n∈N
‖un‖L∞T (Bα+β

p,∞ ) 6 2C1‖f‖L∞T (Bβp,∞). (3.29)

Similarly, for any n, k ∈ N, we have

c−1
λ ‖un+1 − uk+1‖L∞T (Bβp,∞) + ‖un+1 − uk+1‖L∞T (Bα+β

p,∞ )

6 cε‖un − uk‖L∞T (Bα+β
p,∞ ) + C2‖un − uk‖L∞T (Bβp,∞).

As above, for all ε ∈ (0, ε0) and λ ∈ (λ0,∞), we deduce that

lim sup
n,k→∞

(
‖un − uk‖L∞T (Bα+β

p,∞ ) + ‖un − uk‖L∞T (Bβp,∞)

)
= 0. (3.30)

Finally, by (3.29) and taking limits in (3.28), we obtain the existence of a classical

solution. By (3.29) and interpolation theorem, we also have (3.22) and (3.23).

As for the uniqueness, it follows by the same calculation as that for (3.30). This

completes the proof of the theorem. �

4. Strong well-posedness of SDE (1.1)

In this section, we give a proof for the main result of this paper, Theorem 1.1.

Define

Z̄t :=
∑

0<s6t

(Zs − Zs−)1{|Zs−Zs−|>1} and Z̃t := Zt − Z̄t. (4.1)

It is well known (see, e.g., [5]) that both Z̃ and Z̄ are pure jump Lévy processes

with Lévy measures 1{|z|61}ν(dz) and 1{|z|>1}ν(dz), respectively, and they are in-

dependent to each other. We call Z̃ a truncated stable-like process as it only has

jumps of size no larger than 1. The Lévy process Z̄ has finite Lévy measure and

hence is a compound Poisson process. SDE (1.1) can be written as

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs−)dZ̃s +

∫ t

0

σ(s,Xs−)dZ̄s. (4.2)
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To solve SDE (1.1), by standard interlacing technique, it suffices to solve the fol-

lowing SDE

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs−)dZ̃s. (4.3)

Its generator is given by

Ãt = L̃t + b̃t · ∇,
where L̃t is defined by (3.20) and

b̃(t, x) := b(t, x)− σ(t, x)` (4.4)

with ` := 1α∈(0,1)

∫
|z|61

zν(dz).

In the following we shall fix a stochastic basis (Ω,F ,P; (Ft)t>0) so that all the

processes are defined on it.

Theorem 4.1. Let b(t, x, ω) and σ(t, x, ω) be two B(R+)×B(Rd)×F0-measurable

functions. Let β ∈ (1− α
2 , 1) and p ∈ ( d

α/2+β−1 ∨
d

α∧β ∨ 2,∞). Suppose that

sup
ω∈Ω
‖b·(·, ω)‖L∞T (Bβp,∞) <∞, T > 0,

and σ·(·, ω) satisfies (H1
ε) with common bound Λ for almost every ω, where ε is

a small constant as in Theorem 3.6. For any F0-measurable random variable X0,

there is a unique Ft-adapted strong solution Xt so that

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs−)dZ̃s.

Proof. Let N(dt, dz) be the Poisson random measure associated with Z, that is,

N((0, t]× E) =
∑
s6t

1E(Zs − Zs−), E ∈ B(Rd \ {0}),

whose intensity measure is given by dtν(dz). Let Ñ(dt, dz) = N(dt, dz)− dtν(dz)

be the compensated Poisson random martingale measure. By Lévy-Itô’s decompo-

sition, we know

Z̃t =

∫ t

0

∫
{z∈Rd:0<|z|61}

zÑ(ds, dz) and Z̄t =

∫ t

0

∫
{z∈Rd:|z|>1}

zN(ds, dz).

Let T > 0. Consider the following backward nonlocal parabolic system with

random coefficients:

∂tut + (L̃t − λ)ut + b̃ · ∇ut + b = 0, uT = 0, (4.5)

where L̃t is defined by (3.20) and b̃t is defined by (4.4). By the assumptions and

Theorem 3.6, for some λ0 > 0, and for each ω and λ > λ0, there is a unique solution

u·(·, ω) ∈ L∞T (Bα+β
p,∞ ) to the above equation with

sup
ω∈Ω
‖u·(·, ω)‖L∞T (Bα+β

p,∞ ) 6 C,

and for any γ ∈ (0, α+ β),

sup
ω∈Ω
‖u·(·, ω)‖L∞T (Bγp,∞) 6 cλ, (4.6)

where cλ → 0 as λ → ∞. Thanks to α/2 + β > 1 and p > d
α/2+β−1 , by Sobolev’s

embedding (2.4), one can choose λ > λ0 large enough so that

sup
ω∈Ω
‖∇u·(·, ω)‖∞ 6 1/2. (4.7)
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Since u is F0-measurable, by Itô’s formula (see, e.g., [14]), we have

ut(Xt) = u0(X0) +

∫ t

0

[∂sus + L̃sus + b̃s · ∇us](Xs)ds

+

∫ t

0

∫
0<|z|61

[us(Xs− + σ(s,Xs−)z)− us(Xs−)]Ñ(ds,dz).

Let Φt(x, ω) = x + ut(x, ω). Then by (4.7), x 7→ Φt(x, ω) is a C1-diffeomorphism

and, by (4.5),

Yt := Φt(Xt) = Φ0(X0) +

∫ t

0

(
λus(Xs)− σ(s,Xs)`

)
ds

+

∫ t

0

∫
0<|z|61

[Φs(Xs− + σ(s,Xs−)z)− Φs(Xs−)]Ñ(ds,dz)

= Φ0(X0) +

∫ t

0

a(s, Ys)ds+

∫ t

0

∫
0<|z|61

g(s, Ys−, z)Ñ(ds,dz),

(4.8)

where

a(t, y) := λut(Φ
−1
t (y))−σ(t,Φ−1

t (y))`, g(t, y, z) := Φt
(
Φ−1
t (y) + σ(t,Φ−1

t (y))z
)
−y.

Fix η ∈ (α/2, α+ β − 1− d/p). Noting that

|[f(x+ z)− f(x)]− [f(y + z)− f(y)]| 6 ‖∇f‖Bη∞,∞ |x− y| |z|
η,

we have by (4.6)-(4.7) that for all x, y ∈ Rd and |z| 6 1,

|g(t, x, z)− g(t, y, z)| 6
∣∣(Φt (Φ−1

t (x) + σ(t,Φ−1
t (x))z

)
− Φt(Φ

−1(x))
)

−
(
Φt
(
Φ−1
t (y) + σ(t,Φ−1

t (x))z
)
− Φt

(
Φ−1
t (y)

) )∣∣
+
∣∣Φt (Φ−1

t (y) + σ(t,Φ−1
t (x))z

)
− Φt

(
Φ−1
t (y) + σ(t,Φ−1

t (y))z
) ∣∣

6 ‖∇Φt‖Bη∞,∞ |Φ
−1
t (x)− Φ−1

t (y)| |σ(t,Φ−1
t (x))z|η

+ ‖∇Φt‖∞
∣∣ (σ(t,Φ−1

t (x))− σ(t,Φ−1
t (y)

)
z
∣∣

. |x− y| |z|η + |x− y| |z|

. |x− y| |z|η.

Moreover, we also have

|a(t, x)− a(t, y)| . |x− y|.
Since the coefficients of SDE (4.8) are Lipschitz continuous, by the classical result,

SDE (4.8) admits a unique solution (cf. [14]). In particular, one can check that

Xt = Φ−1
t (Yt) satisfies the original equation (4.3). The proof is complete. �

We also need the following technical lemma in order to patch up the solution.

Lemma 4.2. Let Xt be a Rd-valued right continuous process. Let τ be an Ft-

stopping time. Suppose that for each t > 0, Xt+τ is Ft+τ -measurable. Then for

each t > 0, 1{τ6t}Xt is Ft-measurable.

Proof. Since Xt is right continuous, we have

1{τ6t}Xt = lim
n→∞

1{τ6t}Xt+τ−[2nτ ]2−n = lim
n→∞

[2nt]∑
j=0

1{τ6t}Xt+τ−j2−n1{j62nτ<j+1}.
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On the other hand, since by assumption Xt+τ−j2−n = Xτ+(t−j2−n) is Fτ+(t−j2−n)-

measurable and τ + t − j2−n is a stopping time when t > j2−n, we have for each

n > 1 and 1 6 j 6 [2nt],

1{τ6t}Xt+τ−j2−n1{j62nτ<j+1} = Xt+τ−j2−n1{2−nj6τ<(j+1)2−n}1{τ6t}

= Xτ+t−j2−n1{τ+t−j2−n<t+2−n}1{j2−n6τ6t}.

Noticing Xτ+t−j2−n1{τ+t−j2−n<t+2−n} ∈ Ft+2−n and 1{j2−n6τ6t} ∈ Ft, we get

1{τ6t}Xt ∈ ∩n>1Ft+2−n = Ft.

The proof is complete. �

Now we can give

Proof of Theorem 1.1 . By the discussion at the beginning of this section, we only

need to prove the global well-posedness of (4.3). By Remark 1.3, we can further

assume that b has support contained in ball BR. Let p > 1. By definition (2.6), we

have

‖Πjbt‖pp =

∫
Rd

∣∣∣∣∫
BR

hj(x− y)b(t, y)dy

∣∣∣∣p dx

6 ‖Πjbt‖p∞|B2R|+ ‖b‖p∞
∫
Bc2R

(∫
BR

|hj(x− y)|dy
)p

dx.

Noting that hj(x) = 2jdh0(2jx) by (2.5), we have∫
Bc2R

(∫
BR

|hj(x− y)|dy
)p

dx 6 ‖h0‖p−1
1

∫
Bc2R

∫
BR

|hj(x− y)|dydx

6 C(h0)

∫
Bc2R

∫
BR

2jd(2j |x− y|)−2ddydx 6 C(h0, d, R)2−jd,

where the second inequality is due to the polynomial decay property of Schwartz

function h0. Hence,

‖bt‖Bβp,∞ = sup
j>−1

2jβ‖Πjbt‖p 6 C sup
j>−1

2jβ(‖Πjbt‖∞ + 2−jd‖bt‖∞) 6 C‖bt‖Cβ .

Below we use induction to construct a sequence of finite stopping times (τn)n∈N
with limn→∞ τn =∞ a.s. and such that SDE (4.3) is strong well-posed up to each

τn. Let τ0 ≡ 0. For n ∈ N, suppose that we have constructed stopping time τn and

the existence and uniqueness of strong solutions up to time τn. That is, there is a

unique strong solution Xt satisfying

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs−)dZ̃s, for t ∈ [0, τn).

Now define

Xτn := Xτn− + σ(τn, Xτn−)(Z̃τn − Z̃τn−), F ′t := Ft+τn , t > 0.

Clearly, Xτn ∈ F ′0. We introduce F ′0-measurable random Rd-valued function b′

and (d× d)-matrix valued function σ′ as follows:

b′(t, x, ω) = b(t+ τn, x+Xτn(ω))
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and

σ′(t, x, ω) :=


σ(t+ τn(ω), x+Xτn(ω)), |x| 6 ε/2,
2(ε−|x|)

ε σ
(
t+ τn(ω), εx2|x| +Xτn(ω)

)
+ 2(|x|−ε/2)

ε σ
(
t+ τn(ω), Xτn(ω)

)
,

ε/2 < |x| 6 ε,

σ(t+ τn(ω), Xτn(ω)), |x| > ε.

It is easy to see that σ′ satisfies (H1
ε). Thus, by Theorem 4.1, the following SDE

admits a unique strong solution

X ′t =

∫ t

0

b′(s,X ′s)ds+

∫ t

0

σ′(s,X ′s−)dZ̃τn+s, t > 0. (4.9)

Define F ′t -stopping time

τ ′ := inf{t > 0 : |X ′t| > ε/2}, (4.10)

and for t > 0,

X̃t := Xt1t<τn + (X ′t−τn +Xτn)1t>τn . (4.11)

Since t 7→ X̃t is right continuous and X̃t+τn = X ′t +Xτn ∈ Ft+τn , by Lemma 4.2,

1{τn6t}X̃t is Ft-measurable.

Thus, for each t > 0, by the change of variable,∫ t+τn

τn

σ(s, X̃s−)dZ̃s =

∫ t

0

σ(s+ τn, X̃(s+τn)−)dZ̃τn+s. (4.12)

Now, by definition and (4.12), we have for t ∈ [0, τ ′),

X̃t+τn = Xτn +

∫ t

0

b(s+ τn, X̃s+τn)ds+

∫ t

0

σ(s+ τn, X̃(s+τn)−)dZ̃τn+s

= Xτn +

∫ t+τn

τn

b(s, X̃s)ds+

∫ t+τn

τn

σ(s, X̃s−)dZ̃s

= x+

∫ t+τn

0

b(s, X̃s)ds+

∫ t+τn

0

σ(s, X̃s−)dZ̃s. (4.13)

Define τn+1 := τ ′ + τn. Observe that for each s > 0,

{τn+1 < s} = ∪t∈Q,t<s({τ ′ < t} ∩ {τn < s− t}) ∈ Fs.

This means that τn+1 is an Ft-stopping time. By (4.13) and induction hypothesis,

we obtain that X̃t uniquely solves

X̃t = x+

∫ t

0

b(s, X̃s)ds+

∫ t

0

σ(s, X̃s−)dZ̃s, t ∈ [0, τn+1). (4.14)

Finally, we show that ζ := limn→∞ τn is infinite P-a.s.. Define

Yt := x+

∫ t

0

Hsds+

∫ t

0

KsdZ̃s,

where

Hs :=

{
b(s,Xs) for s < ζ,

0 for s > ζ
and Ks =

{
σ(s,Xs−) for s < ζ,

0d×d for s > ζ



SDES DRIVEN BY MULTIPLICATIVE STABLE-LIKE LÉVY PROCESSES 25

Here 0d×d denotes the zero matrix. Clearly, Yt = Xt for t < ζ. Note that t 7→∫ t
0
KsdZ̃s is a square-integrable martingale. Hence P-a.s. Yt has finite left-limits in

t ∈ (0,∞). Since

|Yτn − Yτn−1 | = |Xτn −Xτn−1 | > ε/2 for every n > 1,

it follows that ζ = limn→∞ τn =∞ P-a.s.. This completes the proof of the theorem.

�

5. Weak well-posedness of SDE (1.1)

Let D be the space of all Rd-valued càdlàg functions on R+, which is endowed

with the Skorokhod topology so that D becomes a Polish space. Denote by P(D)

the space of all probability measures on D. Let ωt be the canonical process on D.

For t > s > 0, let Bst denote the natural filtration generated by {ωr; r ∈ [s, t]} and

define

Bs
t := ∩r>s ∩P∈P(D) (B̄sr)P , Bt := B0

t , Bs := Bs
∞,

where (B̄sr)P stands for the completion of Bsr with respect to P .

We first introduce the notion of martingale solutions to SDE (1.1). Recall that

the generator of SDE (1.1) is given by At := Lt + b · ∇.

Definition 5.1 (Martingale solutions). For (s, y) ∈ R+×Rd, a probability measure

P ∈ P(D) is called a martingale solution of At starting from y at time s if

(i) P(ωs = y) = 1.

(ii) For any f ∈ C2
b (Rd), Mf

t is a Bt-martingale under P, where

Mf
t := f(ωt)− f(ωs)−

∫ t

s

Arf(ωr)dr, t > s. (5.1)

The set of all the above martingale solutions is denoted by Ms
y(At).

5.1. Martingale problems for SDEs driven by truncated stable processes.

In this subsection we show the well-posedness of the martingale problem associated

with the truncated operator Ãt,

Ãt = L̃t + b̃ · ∇,

where L̃t is defined by (3.20) and b̃t is defined by (4.4). We also write Ã σ,b
t for Ãt

when we want to emphasize its dependence on σ(t, x) and b(t, x).

The following general localization result can be proven along the same lines as

in [25, Theorem 6.6.1].

Lemma 5.2. Let σ : R+ × Rd → Rd ⊗ Rd and b : R+ × Rd → Rd be bounded

measurable functions. Suppose that for each (s, y) ∈ R+ × Rd, there is an open set

U of (s, y) and bounded measurable σ′ and b′ such that

(i) σ = σ′ and b = b′ on U ;

(ii) there is a unique element in Ms′

y′(Ã
σ′,b′

t ) for each (s′, y′) ∈ R+ × Rd.

Then there is a unique element in Ms
y(Ãt) for each (s, y) ∈ R+ × Rd.

We can use the above localization lemma to establish the following.

Theorem 5.3. Suppose that b(t, x) and σ(t, x) satisfy (1.6)-(1.7) with α ∈ (0, 2),

and β, θ ∈ ((1−α)+, 1). Then for each (s, y) ∈ R+×Rd, there is a unique element

in Ms
y(Ãt).
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Proof. Without loss of generality we assume β < θ. We fix ε ∈ (0, 1) being small

as in Theorem 3.6. For fixed (s, y) ∈ R+ × Rd, we define

bs,y(t, x) := b(t+ s, x+ y),

and

σs,y(t, x) :=


σ(t+ s, x+ y), |x| 6 ε/2,
2(ε−|x|)

ε σ
(
t+ s, εx2|x| + y

)
+ 2(|x|−ε/2)

ε σ(t+ s, y), ε/2 < |x| 6 ε,
σ(t+ s, y), |x| > ε.

By Lemma 5.2, it suffices to prove that there is a unique element in Ms′

y′(Ã
s,y
t )

for each (s′, y′) ∈ R+ ×Rd, where Ã s,y
t is the operator associated with (bs,y, σs,y).

Without loss of generality, we assume s′ = 0. Since the coefficients are bounded and

continuous in x, the existence of martingale solutions is well-known (for example, see

[15, p.536, Theorem 2.31]). Let us show the uniqueness. Let P1,P2 ∈ M0
y′(Ã

s,y
t )

be two martingale solutions associated with Ã s,y
t with starting point y′ at time

0. Let T > 0 and f ∈ C∞0 (Rd+1). By the assumptions and Theorem 3.6, for

p > d
α+β−1 ∨

d
α∧β ∨ 2 and λ large enough, there is a unique classical solution

u ∈ L∞T (Bα+β
p,∞ ) solving the following backward nonlocal parabolic equation:

∂tut +
(
Ã s,y
t − λ

)
ut + f = 0 with uT = 0.

Let uλt (x) := eλ(T−t)ut(x). Then

∂tu
λ
t + Ã s,y

t uλt + eλ(T−t)f = 0 with uλT = 0. (5.2)

By the definition of martingale solutions, we have

uλt (Xt)− uλ0 (y′)−
∫ t

0

(∂ru
λ
r + Ã s,y

r uλr )(Xr)dr

are Bt-martingales under Pi, i = 1, 2. In particular, by (5.2), we obtain

EP1

∫ T

0

eλ(T−r)f(r,Xr)dr = uλ0 (y′) = EP2

∫ T

0

eλ(T−r)f(r,Xr)dr.

From this, we derive that P1 and P2 have the same one-dimensional marginal distri-

butions. By a standard induction method, we deduce that P1 = P2 (see [25, p.147,

Theorem 6.2.3]). The proof is complete. �

Theorem 5.4. Suppose that b(t, x) and σ(t, x) satisfy (1.6)-(1.7) with α ∈ (0, 2),

and β, θ ∈ ((1− α)+, 1). Then for each x ∈ Rd, there is a unique weak solution to

(4.3). More precisely, there are a stochastic basis (Ω,F ,P; {Ft}t>0) and (X, Z̃)

two càdlàg Ft-adapted processes defined on it such that

(i) Z̃ is a pure jump {Ft}t>0-Lévy process with Lévy measure 1{|z|61}ν(dz) in

the sense that Z̃t is Ft-measurable for each t > 0 and for each t, s > 0,

Z̃t+s − Z̃t is independent of Ft;

(ii) (X, Z̃) satisfies a.s. that

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs−)dZ̃s for all t > 0.
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Proof. Since the coefficients are bounded and continuous in x, the existence of

a weak solution to SDE (4.3) is standard by a weak convergence method. The

uniqueness follows by Theorem 5.3 since P◦X−1 ∈M0
x(At) for each weak solution

X of (4.3). �

5.2. Weak well-posedness for SDEs (1.1). In this section, we will establish the

following existence and uniqueness of weak solution for SDE (1.1). The following

is the detailed version of the weak well-posedness part of Theorem 1.1.

Theorem 5.5. Under conditions (1.5), (1.6) and (1.7), for each x ∈ Rd, there is

a unique weak solution to SDE (1.1). More precisely, there are a stochastic basis

(Ω,F ,P; {Ft}t>0) and (X,Z) two càdlàg Ft-adapted processes defined on it such

that

(i) Z is a pure jump {Ft}t>0-Lévy process with Lévy measure ν in the sense

that Zt is Ft-measurable for each t > 0, and for each t, s > 0, Zt+s−Zt is

independent of Ft;

(ii) (X,Z) satisfies that for all t > 0,

Xt = x+

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs−)dZs, a.s.

Before we present the proof of this theorem, let us first explain the difficulty, our

main idea and the strategy to prove the theorem. The key is to show that if (X,Z)

is a weak solution to (1.1), the distribution of X is unique. Let Z̃ and Z̄ be defined

as in (4.1). The processes Z̃ and Z̄ are pure jump {Ft}t>0-Lévy processes with

Lévy measures 1{|z|61}ν(dz) and 1{|z|>1}ν(dz), respectively, and they are mutually

independent. Define

τ := inf{t > 0 : |Zt − Zt−| > 1} = inf{t > 0 : |σ−1(Xt−)(Xt −Xt−)| > 1},

which is an {Ft}t>0-stopping time. On the other hand,

τ = inf{t > 0 : Z̄t 6= 0}.

So τ is exponentially distributed with parameter λ0 := ν({|z| > 1}) and is inde-

pendent of the truncated Lévy process Z̃. Note that

Xt∧τ = X0 +

∫ t∧τ

0

b(Xs)ds+

∫ t∧τ

0

σ(s,Xs−)dZ̃s + 1{t>τ}στ (Xτ−)(Zτ − Zτ−).

If we define

Y τt := Xt1t<τ +Xτ−1t>τ ,

then

Y τt∧τ = X0 +

∫ t∧τ

0

b(Y τs )ds+

∫ t∧τ

0

σ(s, Y τs−)dZ̃s,

solves SDE (4.3) driven by truncated stable process Z̃ on [0, τ ]. However, we can

not get the uniqueness in law of Y τ from Theorem 5.4 as we can not identify

directly {Y τt ; t < τ} in distribution with the unique weak solution of (4.3) killed

at an independent exponentially distributed time with parameter λ0. In other

words, one does not know a priori whether the local uniqueness in distribution

holds for SDE (4.3). Instead, we will extend the process of Y τ beyond time τ

by running a weak solution of (4.3) with initial value Xτ− that is independent of

{(Xt, Zt); t < τ} conditioned on Xτ−. The extended solution is a weak solution of

(4.3) on [0,∞) and so its law is unique by Theorem 5.4. This would imply that the
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law of {Xt; t ∈ [0, τ)} is unique. Consequently, the law of {Xt; t ∈ [0, τ ]} is unique

as Xτ = Xτ−+σ(Xτ−)(Zτ −Zτ−) and Zτ −Zτ− is independent of Xτ−. Iterating

this would give the uniqueness of the distribution of {Xt; t ∈ [0,∞)}. In the

remaining of this subsection, we will make rigorous of this idea and in fact establish

the uniqueness of solutions to the martingale problem Ms
y(At). This localizing

procedure is very similar to that of [24, Sections 3]. For reader’s convenience, we

spell out the details below.

Denote by X the canonical process on D taking values in Rd; that is, Xt(ω) =

ω(t) for ω ∈ D. For each s > 0, define Xs− by

Xs−
t := Xt1{t<s} +Xs−1{t>s}, t > 0. (5.3)

For a {Bt}-stopping time τ , define

Bτ− := σ{A ∩ {t < τ} : A ∈ Bt, t > 0}.

Clearly, τ,Xτ−
t , Xτ− ∈ Bτ−. For t > 0, denote by θt the time shift operator on D;

that is, θtω(s) = θ(t+ s) for ω ∈ D.

The following two lemmas are analogy of [25, Lemma 6.1.1 and Theorem 6.1.2].

Lemma 5.6. Fix s > 0 and η ∈ D. For any probability measure Q on D with

Q(ω ∈ D : ω(s) = η(s−)) = 1, there is a unique probability measure δη ⊗s− Q on D
such that

(δη ⊗s− Q)({ω ∈ D : ω(t) = η(t) for all t ∈ [0, s)}) = 1

and

δη ⊗s− Q = Q on Bs.

For ω ∈ D and t > 0, we also denote ω(t) by ωt.

Lemma 5.7. Let τ be a finite {Bt}-stopping time on D. Suppose that Q : η 7→ Qη is

a map from D to P(D) such that for each A ∈ B∞, η 7→ Qη(A) is Bτ−-measurable

and

Qη ({ω ∈ D : ω(τ(η)) = η(τ(η)−)}) = 1 for every η ∈ D.
Let P ∈ P(D). Then

(i) There exists a unique P ⊗τ− Q ∈ P(D) such that P ⊗τ− Q = P on Bτ−
and {δη ⊗τ(η)− Qη(·)}η∈D is a regular conditional probability distribution of

P ⊗τ− Q given Bτ−.

(ii) If M : R+ × D→ R is progressive measurable and right continuous such that

Mτ−
t is a P -martingale and Mt−Mτ(η)−

t is a Qη-martingale for each η ∈ D,

then Mt is a P ⊗τ− Q-martingale.

Proof. (i) For 0 = t0 < t1 < · · · < tn <∞ and Γi ∈ B(Rd), let

Ak := ∩ki=1{ω : ωti ∈ Γi}, Ak = ∩ni=k{ω : ωti ∈ Γi}, k = 1, · · · , n.

Observe that

η 7→ (δη ⊗τ(η)− Qη)(An) =

n∑
k=1

1{tk−1<τ(η)6tk}1Ak−1
(η)Qη(Ak) ∈ Bτ−.

We conclude by a monotone class argument that for any A ∈ B∞, the mapping

η 7→ (δη ⊗τ(η)− Qη)(A) is Bτ−-measurable. Now we define

P(A) :=

∫
D

(δη ⊗τ(η)− Qη)(A)P (dη), A ∈ B∞.
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It is easy to see that P has the desired properties.

(ii) For simplicity we write E for EP. Let 0 6 s < t and A ∈ Bs. By definition,

we have

E[Mt1A] = E
[
E(Mt1A|Bτ−)

]
= E

[
EQ·(Mt1A)

]
.

Note that for each η ∈ D,

EQη (Mt1A) = EQη
[
(Mt −Mτ(η)−

t )1A
]

+ EQη
[
M

τ(η)−
t 1A

]
= EQη

[
(Ms −Mτ(η)−

s )1A

]
+ EQη

[
M

τ(η)−
t 1A

]
= EQη

[
Ms1A∩{τ(η)6s}

]
+ EQη

[
M

τ(η)−
t 1A∩{τ(η)>s}

]
.

It follows from this and the fact that Qη({ω : τ(ω) = τ(η)}) = 1 for each η ∈ D
and Mτ− is a P -martingale that

E[Mt1A] = E
[
EQη

[
(Ms1A∩{τ(η)6s}

]]
+ E

[
EQη (M

τ(η)−
t 1A∩{τ(η)>s})

]
= E

[
Ms1A∩{τ6s}

]
+ E

[
Mτ−
t 1A∩{τ>s}

]
= E

[
Ms1A∩{τ6s}

]
+ E

[
Mτ−
s 1A∩{τ>s}

]
= E [Ms1A] .

The proof is complete. �

The following Lévy system formula can be proved as in [3, 9].

Lemma 5.8. Let (s, y) ∈ R+ × Rd, P ∈ Ms
y(At) and F : Rd × Rd → R+ be a

measurable function with F (t, x, x) = 0. For any {Bt}-stopping times τ2 > τ1 > s

and any non-negative {Bt}-predictable process Ht,

E
[ ∑
τ1<t6τ2

Ht(ω)F (t, ωt−, ωt)
]

= E
[∫ τ2

τ1

∫
Rd
Ht(ω)F (t, ωt, ωt + σ(t, ωt)z)ν(dz)dt

]
.

We have the following key lemma.

Lemma 5.9. Let (s, y) ∈ R+ × Rd. Define

τ(ω) := inf
{
t > s : |σ−1(t, ωt−)(ωt − ωt−)| > 1

}
,

which is a {Bt}-stopping time, and for f ∈ C2
b (Rd),

M̃f
t := f(ωt)− f(ωs)−

∫ t

s

Ãrf(ωr)dr.

Suppose P ∈Ms
y(At). Then (M̃f )τ−t is a P-martingale with respect to the filtration

{Bt}. Moreover, if we let Qη := P̃τ(η),ητ(η)− for η ∈ D, where P̃s,y is the unique

element in Ms
y(Ãt), then P⊗τ− Q ∈Ms

y(Ãt).

Proof. (i) For f ∈ C2
b (Rd), by definition of (5.3),

(M̃f )τ−t = f(ωt∧τ )− [f(ωτ )− f(ωτ−)]1{τ6t} −
∫ t∧τ

s

Ãrf(ωr)dr.

Thus for any t > t′ > s,

(M̃f )τ−t − (M̃f )τ−t′ = f(ωt∧τ )− f(ωt′∧τ )− (f(ωτ )− f(ωτ−)) 1{t′<τ6t}

−
∫ t∧τ

t′∧τ
Ãrf(ωr)dr. (5.4)
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For E ∈ Bt′ , since P ∈Ms
y(At), we have with E := EP,

E
[
1E(f(ωt∧τ )− f(ωt′∧τ ))

]
= E

[
1E

∫ t∧τ

t′∧τ
Arf(ωr)dr

]
. (5.5)

On the other hand, if we let F (t, x, y) := (f(y)− f(x))1{|σ−1(t,x)(y−x)|>1}, then

(f(ωτ )− f(ωτ−))1{t′<τ6t} =
∑

t′∧τ<r6t∧τ

F (r, ωr−, ωr).

Since E ∩ {τ > t′} ∈ Bt′∧τ , we have by Lemma 5.8 that

E
[
1E(f(ωτ )− f(ωτ−))1{t′<τ6t}

]
= E

1E∩{τ>t′}
∑

t′∧τ<r6t∧τ

F (r, ωr−, ωr)


= E

[
1E∩{τ>t′}

∫ t∧τ

t′∧τ

∫
Rd
F (r, ωr, ωr + σr(ωr)z)ν(dz)dr

]
= E

[
1E

∫ t∧τ

t′∧τ

∫
Rd

(f(ωr + σr(ωr)z)− f(ωr))1{|z|>1}ν(dz)dr

]
. (5.6)

We thus obtain from (5.4)-(5.6) that for any t > t′ > s and for any E ∈ Bt′ ,

E
[
1E

(
(M̃f )τ−t − (M̃f )τ−t′

)]
= 0.

This establishes that (M̃f )τ−t is a P-martingale with respect to the filtration {Bt}.

(ii) Note that (s, y) 7→ P̃s,y(A) is B(R+)×B(Rd)-measurable and η 7→ (τ(η), ητ(η)−)

is Bτ−-measurable. One can also verify by definition that Mf − (Mf )τ(η)− is a

{Bt}-martingale under each Qη. Thus P⊗τ− Q ∈Ms
y(Ãt) by Lemma 5.7. �

Theorem 5.10. The uniqueness of Ms
y(Ãt) for each (s, y) ∈ R+ ×Rd implies the

uniqueness of Ms
y(At) for each (s, y) ∈ R+ × Rd.

Proof. Without loss of generality, we assume (s, y) = (0, 0) and P(1),P(2) ∈M0
0(At).

Let τ0 ≡ 0 and for each n ∈ N, define stopping time τn by

τn = inf
{
t > τn−1 : |σ−1(t, ωt−)(ωt − ωt−)| > 1

}
with inf ∅ :=∞.

For each (s0, y0) ∈ R+×Rd, let P̃s0,y0 ∈Ms0
y0(Ãt) be the unique martingale solution

of SDE (4.3). For η ∈ D, let Qη := P̃τ1(η),ωτ1(η)− . By Lemma 5.9,

P(i) ⊗τ1− Q ∈M0
0(Ãt), i = 1, 2.

It follows that P(i) ⊗τ1− Q = P̃0,0 by the uniqueness of M0
0(Ãt), where i = 1, 2. In

particular,

P(1) = P(2) = P̃0,0 on Bτ1−. (5.7)

Next we show that

P(1) = P(2) on Bτ1 . (5.8)

It suffices to show that for any n > 1, 0 = s0 < s1 < · · · < sn and Γj ∈ B(Rd) for

0 6 j 6 n,

P(1)
(
∩nj=0{ωsj∧τ1 ∈ Γj}

)
= P(2)

(
∩nj=0{ωsj∧τ1 ∈ Γj}

)
. (5.9)
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We have by (5.7)

P(i)
(
∩nj=0{ωsj∧τ1 ∈ Γj}

)
= P(i)

(
∩nj=0{ωsj∧τ1 ∈ Γj}; τ1 > sn

)
+ P(i)

(
∩nj=0{ωsj∧τ1 ∈ Γj}; τ1 6 sn

)
= P(i)

(
∩nj=0{ωτ1−sj∧τ1 ∈ Γj}

)
+

n∑
k=1

(
P(i)

(
∩nj=0{ωsj∧τ1 ∈ Γj}; sk−1 < τ1 6 sk

)
− P(i)

(
∩nj=0{ωτ1−sj∧τ1 ∈ Γj}; sk−1 < τ1 6 sk

))
=: P̃0,0

(
∩nj=0{ωτ1−sj∧τ1 ∈ Γj}

)
+

n∑
k=1

J (k). (5.10)

By the the Markov property of P(i) on Bτ1− and the Lévy system formula of Lemma

5.8, for each 1 6 k 6 n,

J (k) = EP(i)
[ ∑
sk−1<r6sk∧τ1

(
1∩ni=kΓi(ωr)− 1∩ni=kΓi(ωr−)

)
1{|σ−1

r (ωr−)(ωr−ωr−)|>1};

∩k−1
j=0 {ωsj ∈ Γj} ∩ {sk−1 < τ1 6 sk}

]
= EP(i)

[ ∫ sk∧τ1

sk−1

∫
{|z|>1}

(
1∩ni=kΓi(ωr + σr(z))− 1∩ni=kΓi(ωr)

)
ν(dz)dr;

∩k−1
j=0 {ωsj ∈ Γj} ∩ {τ1 > sk−1}

]
= EP̃0,0

[ ∫ sk∧τ1

sk−1

∫
{|z|>1}

(
1∩ni=kΓi(ωr + σr(z))− 1∩ni=kΓi(ωr)

)
ν(dz)dr;

∩k−1
j=0 {ωsj ∈ Γj} ∩ {τ1 > sk−1}

]
.

This together with (5.10) establishes (5.9) and thus (5.8).

Finally, let {P(i)
ω }ω∈D be the regular conditional probability distribution of P(i)

with respect to Bτ1 . By [25, Theorem 6.1.3], there is a common P(i)-null set

N ∈ Bτ1 so that for all ω ∈ D \ N ,

δω ⊗τ1(ω) P
(i)
· ∈M

ωτ1(ω)

τ1(ω) (At).

Repeating the above proof, we can derive that P(1) = P(2) on Bτ2 . By the induction

and the fact that limn→∞ τn =∞, we have P(1) = P(2) on B∞. �

We now give the proof for the weak well-posdeness part of Theorem 1.1, that is,

Theorem 5.5.

Proof of Theorem 5.5. Since the coefficients are bounded and continuous in x, the

existence of a weak solution to SDE (1.1) is standard by a weak convergence argu-

ment. The uniqueness follows by Theorem 5.10 since P ◦X−1 ∈ M0
x(At) for each

weak solution X of (1.1). �
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