Exercises

1. $y^{\prime}=\frac{2 x}{y+x^{2} y}$
2. $\left\{\begin{array}{l}\frac{d y}{d x}=\frac{1}{1-x^{2}} \\ y(0)=2\end{array}\right.$
3. $t y^{\prime}+2 y=\sin t, t>0$
4. A home buyer can afford to spend no more than $\$ 1500 /$ month on mortgage payments. Suppose the annual interest rate is 6%, and that interest is compounded continuously. Determine the maximum ammount that this buyer can afford to buy on a 20-year mortgage. (Answer: \$209.642)
5. Show that $\phi(t)=\frac{1}{t}$ is a solution of $y^{\prime}+y^{2}=0$ for $t>0$, but that $y=c \phi(t)$ is not a solution of this equation unless $c=0$ or 1 .
6. Suppose $y=y_{1}(t)$ is a solution of

$$
\begin{equation*}
y^{\prime}+p(t) y=0 \tag{1}
\end{equation*}
$$

$y=y_{2}(t)$ is a solution of

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{2}
\end{equation*}
$$

Show that $y=y_{1}(t)+y_{2}(t)$ is also a solution of (2).
7. A pond forms as water collects in a conical depression of radius a and depth h. Suppose that water flows in at a constant rate k and is lost through evaporation at a rate proportional to the surface area.
(a) Show that the volume $V(t)$ of water in the pond at time t satisfies the DE

$$
\begin{equation*}
\frac{d V}{d t}=k-\alpha \pi\left(\frac{3 \alpha}{\pi h}\right)^{\frac{2}{3}} V^{\frac{2}{3}} \tag{3}
\end{equation*}
$$

where α is the coefficient of evaporation.
(Hint: The volume for a cone can be computed by $V=\frac{1}{3} \pi r^{2} \ell$, where r is the radius and ℓ is the depth.)
(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically stable? (Answer: $\frac{h}{a} \sqrt{\frac{k}{\alpha \pi}}$)
(c) Find a condition on the coefficients that must be satisfied if the pond is not to overflow. (Answer: $\frac{k}{\alpha} \leq \pi a^{2}$)
8. Given that $y_{1}(t)=\frac{1}{t}$ is a solution to the $\mathrm{DE} t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0, t>0$. Use the method of reduction of order to find another solution, so that they form a fundamental set of solutions.
9. Find the general solutions to the following DEs
(a) $y^{\prime \prime}-2 y^{\prime}+y=e^{3 t}$ (Answer: $y(t)=C_{1} e^{t}+C_{2} t e^{t}+\frac{1}{4} e^{3 t}$)
(b) $y^{\prime \prime}-2 y^{\prime}+y=25 \cos (3 t)$ (Answer: $\left.y(t)=C_{1} e^{t}+C_{2} t e^{t}-8 \cos (3 t)-6 \sin (3 t)\right)$
(c) $y^{\prime \prime}+4 y=\cos t$ (Answer: $\left.y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+\frac{1}{3} \cos t\right)$
(d) $y^{\prime \prime}+4 y=\frac{1}{10} \cos (2 t)$ (Answer: $\left.y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+\frac{1}{40} t \sin (2 t)\right)$
10. A $1-\mathrm{kg}$ object is placed on a spring with spring constant $k=4 \mathrm{~N} / \mathrm{m}$. The object is pulled down 0.2 meters from the static position, and then set in motion with a downward velocity of $1 \mathrm{~m} / \mathrm{s}$. Find the period, amplitude and phase angle of its motion.
11. Solve the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}+2 y=g(t) \\
y(0)=0
\end{array} \quad \text { where } g(t)= \begin{cases}1, & 0 \leq t \leq 1 \\
0, & t>1\end{cases}\right.
$$

Hint: The solution $y(t)$ should be continuous at $t=1$.
12. Find the inverse Laplace transform of $\frac{1}{(s-1)\left(s^{2}-4 s+5\right)}$.

