Fibrations and Comodule Categories

Liang Ze Wong

March 7, 2018
If $p : E \to B$ is a covering map:

\[\pi_1(B, b) \text{ acts on } E \]

\[\pi_1(B) \text{ acts on fibers } \]

\[\to \text{Set} \]
If $p: E \to B$ is a covering map:
- paths in B lift to paths in E
If $p: E \to B$ is a covering map:
- paths in B lift to paths in E
- induces map between fibers

$\pi_1(B, b)$ acts on E_b

$E_c \xrightarrow{\gamma^*} E_b$
If $p: E \to B$ is a covering map:
- paths in B lift to paths in E
- induces map between fibers

$$E_c \xrightarrow{\gamma^*} E_b$$

- $\pi_1(B, b)$ acts on E_b
If \(p: E \rightarrow B \) is a covering map:
- paths in \(B \) lift to paths in \(E \)
- induces map between fibers

\[
E_c \xrightarrow{\gamma^*} E_b
\]
- \(\pi_1(B, b) \) acts on \(E_b \)
- \(\pi_1(B) \) acts on fibers

\[
\pi_1(B)^{op} \rightarrow \text{Set}
\]
Covering maps and groupoid actions

\[\begin{array}{c}
E \\
\downarrow^p \\
B
\end{array} \quad \Leftrightarrow \quad \pi_1(B)^{op} \to \text{Set} \]

Covering maps over \(B \) \hspace{1cm} \text{Groupoid actions of} \ \pi_1(B)
Étale spaces and (pre)sheaves

\[E \xrightarrow{p} X \]

\[\text{Open}(X)^{op} \to \text{Set} \]

Étale spaces over X \quad \leftrightarrow \quad \text{Sheaves on } X
In both these situations, there is a duality between spaces varying nicely over X and sets indexed ‘by X’.
Theorem (Grothendieck, 1964)

Let B be a category. There is a 2-equivalence

$$\text{Fib}(B) \cong 2\text{-Fun}(B^{op}, \text{Cat})$$

Fibrations over B \leftrightarrow Categories indexed by B
Suppose the unit $1 \in \mathcal{V}$ is terminal and pullbacks preserve coproducts. Let B be a category. Then

$$\mathcal{V}\text{-Fib}(B_{\mathcal{V}}) \cong 2\text{-Fun}(B^{\text{op}}, \mathcal{V}\text{-Cat}).$$

\mathcal{V}-fibrations over $B_{\mathcal{V}}$ \leftrightarrow \mathcal{V}-categories indexed by B
Theorem (Beardsley-W.)

Suppose the unit $1 \in \mathcal{V}$ is terminal and pullbacks preserve coproducts. Let B be a category. Then

$$\mathcal{V}\text{-Fib}(B_\mathcal{V}) \cong 2\text{-Fun}(B^{op}, \mathcal{V}\text{-Cat}).$$

What if 1 is not terminal? e.g. k in \textbf{Vect}_k
We may not have maps $V \rightarrow 1$, but every V has a coaction by 1:

$$V \xrightarrow{\sim} V \otimes 1.$$
We may not have maps $V \to 1$, but every V has a coaction by 1:

$$V \xrightarrow{\sim} V \otimes 1.$$

More generally, instead of maps $V \to C$, where C is a comonoid, we can ask for coactions

$$V \to V \otimes C.$$
We may not have maps $V \to \mathbf{1}$, but every V has a coaction by $\mathbf{1}$:

$$V \cong \to V \otimes \mathbf{1}.$$

More generally, instead of maps $V \to C$, where C is a comonoid, we can ask for coactions

$$V \to V \otimes C.$$

When $\otimes = \times$, coactions correspond to maps $V \to C$, so coactions are ‘generalized maps’.
We may not have maps $V \to 1$, but every V has a coaction by 1:

$$V \cong V \otimes 1.$$

More generally, instead of maps $V \to C$, where C is a comonoid, we can ask for coactions

$$V \to V \otimes C.$$

When $\otimes = \times$, coactions correspond to maps $V \to C$, so coactions are ‘generalized maps’. ← Can’t always be composed!
The comodule bifibration

- Arbitrary coactions can’t be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions
The comodule bifibration

- Arbitrary coactions can’t be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions

What framework handles all these?
The comodule bifibration

- Arbitrary coactions can't be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions

What framework handles all these? The comodule bifibration!

\[(M, C) \xrightarrow{\cdot} (N, D)\]

\[\text{Comod}(\mathcal{V})\]

\[\Downarrow\]

\[C \xrightarrow{\cdot} D\]

\[\text{Comon}(\mathcal{V})\]
The comodule bifibration

- Arbitrary coactions can’t be composed
- Coactions arising from comonoid maps can be composed
- Comodule maps can be composed, but are not coactions

What framework handles all these? The comodule bifibration!

\[(M, C) \rightarrow (N, D)\]

\[
\begin{array}{c}
\text{Comod}(\mathcal{V}) \\
\downarrow \\
\text{Comon}(\mathcal{V})
\end{array}
\]

Cotensoring acts like pullback against a coaction, so this behaves like a category with pullbacks.
Fibrations ‘across’ a 2-functor

Going up a dimension, we get:

\[P : \text{Comod}(\mathcal{V}\text{-Cat}) \to \text{Comon}(\mathcal{V}\text{-Cat}) \]

We can define fibrations ‘across’ \(P \).
Going up a dimension, we get:

\[P : \text{Comod}(\mathcal{V}\text{-Cat}) \rightarrow \text{Comon}(\mathcal{V}\text{-Cat}) \]

We can define fibrations ‘across’ \(P \).

Proposition (W.)

For suitable \(\mathcal{V} \), there are 2-functors

\[P\text{-Fib}(B_{\mathcal{V}}) \leftrightarrow 2\text{-Fun}(B^{op}, \mathcal{V}\text{-Cat}). \]
Going up a dimension, we get:

$$P : \text{Comod}(\mathcal{V}\text{-Cat}) \to \text{Comon}(\mathcal{V}\text{-Cat})$$

We can define fibrations ‘across’ P.

Proposition (W.)

For suitable \mathcal{V}, there are 2-functors

$$P\text{-Fib}(B_{\mathcal{V}}) \leftrightarrow 2\text{-Fun}(B^{\text{op}}, \mathcal{V}\text{-Cat}).$$

Can we get an equivalence?