Exploring the theory of shifted derivators

John Zhang
University of California, Los Angeles

at University of Washington

March 17-19, 2018
What are derivators?

A derivator is a strict 2-functor \(\mathbb{D} : \text{Cat}^{op} \to \text{CAT} \) satisfying some axioms (Der1)-(Der4)

Der1: \(\mathbb{D} : \text{Cat}^{op} \to \text{CAT} \) takes coproducts to products, i.e.

\[
\mathbb{D}(\bigsqcup_{i \in I} J_i) \cong \prod_{i \in I} \mathbb{D}(J_i).
\]

Der2: For any \(A \in \text{Cat} \), a morphism \(f : X \to Y \) is an isomorphism in \(\mathbb{D}(A) \) if and only if the morphisms

\[
a^*f : a^*X \to a^*Y
\]

are isomorphisms in \(\mathbb{D}(e) \) for all \(a \in A \).

Der3: For each functor \(u : A \to B \), \(u^* : \mathbb{D}(B) \to \mathbb{D}(A) \) has a left adjoint \(u_! \) and a right adjoint \(u_* \).

Der4: Pointwise computation of homotopy Kan extensions \(u_! \), \(u_* \)
Some examples of derivators

1. If \mathcal{C} is a complete and cocomplete category,

$$I \mapsto \mathcal{C}^I$$

is a derivator.

2. If \mathcal{M} is a model category and we let \mathcal{W} denote the weak equivalences in \mathcal{M}, then

$$I \mapsto \mathcal{M}^I[(\mathcal{W}^I)^{-1}]$$

is a derivator.

3. If \mathcal{A} is a Grothendieck abelian category,

$$\mathbb{D}_{\mathcal{A}} : I \mapsto \mathcal{D}(\mathcal{A}^I)$$

is a derivator, where \mathcal{D} denotes the derived category. Specifically we may consider the cases R-Mod or $\text{Qcoh}(X)$ for a commutative ring R or a reasonable scheme X.
Shifted derivators

Theorem (Groth)

For any small category J, $\mathbb{D}^J(I) := \mathbb{D}(J \times I)$ defines another derivator.

This is our main tool in creating new derivators out of pre-existing derivators.
Affine lines

Theorem (Balmer-Z)

Let \mathbb{N} denote the category with one object and endomorphism monoid $(\mathbb{N}, +)$ and \mathbb{D} be any derivator. Then we call the shifted derivator $\mathbb{D}^\mathbb{N}$ the affine line associated to \mathbb{D}. If \mathbb{D} is the derivator associated to a scheme, then $\mathbb{D}^\mathbb{N}$ is the derivator associated to \mathbb{A}^1 of that scheme.

If we replace \mathbb{N} by \mathbb{N}^n we similarly have that $\mathbb{D}^{\mathbb{N}^n}$ is akin to \mathbb{A}^n of a derivator.
Theorem (Z)

Let \(\mathbb{Z} \) denote the category with one object and endomorphism monoid \((\mathbb{Z}, +)\) and \(D \) be any derivator. Then we call the shifted derivator \(D^\mathbb{Z} \) the “\(\mathbb{G}_m \)” associated to \(D \). If \(D \) is the derivator associated to a scheme, then \(D^\mathbb{Z} \) is the derivator associated to \(\mathbb{G}_m \) of that scheme.

Further, in the case of a scheme the left Kan extension morphism

\[
(i_N)! : D^N \to D^\mathbb{Z}
\]

is the inverse image functor along the inclusion \(\mathbb{G}_m \hookrightarrow \mathbb{A}^1 \).
Projective space

Theorem (Z)

Let Q_n be the category with objects indexed by \mathbb{N}, arrows $\{x_0, \cdots, x_n\}$ between k and $k + 1$ such that $x_ix_j = x_jx_i$ and \mathbb{D} be a triangulated derivator. There is a Verdier localization, $\mathbb{D}^{Q_n}/\mathcal{C}$ of the derivator \mathbb{D}^{Q_n} that gives us a construction of projective space over a derivator, i.e. if \mathbb{D} is the derivator associated to a scheme X, then $\mathbb{D}^{Q_n}/\mathcal{C}$ is the derivator associated to \mathbb{P}_X^n.

We also note that there are canonical morphisms from this derivator to the \mathbb{A}^n described above that model restriction onto one of the copies of \mathbb{A}^n that cover \mathbb{P}^n.
Future inquiries

1. What does shifting by other categories “mean” (independent of derivator)?
2. How can we incorporate the “geometry” of the derivator (e.g. tensor-triangular spectrum)?
3. What are some interesting definitions/theorems that can be studied purely via the formalism of derivators?
Thank you very much!