The Prime Spectrum and Representation Theory of the \(2 \times 2 \) Reflection Equation Algebra

Ebrahim Ebrahim

UC Santa Barbara
Advisor: Ken Goodearl

March 17, 2018
Fix: k a field, $q \in k$ not a root of unity.
The Algebra $\mathcal{A}_q(M_2)$

Fix: k a field, $q \in k$ not a root of unity.
Define the k-algebra $\mathcal{A}_q(M_2)$ by:

Generators: u_{11}, u_{12}, u_{21}, u_{22}

Relations:
- $u_{11} u_{22} = u_{22} u_{11}$
- $u_{11} u_{12} = u_{12} (u_{11} + (q - 2 - 1) u_{22})$
- $u_{21} u_{11} = (u_{11} + (q - 2 - 1) u_{22}) u_{21}$
- $u_{22} u_{12} = q^2 u_{12} u_{22}$
- $u_{22} u_{21} = q^2 u_{22} u_{21}$
The Algebra $\mathcal{A}_q(M_2)$

Fix: k a field, $q \in k$ not a root of unity.
Define the k-algebra $\mathcal{A}_q(M_2)$ by:

Generators: $u_{11}, u_{12}, u_{21}, u_{22}$

Relations:

\[
\begin{align*}
 u_{11}u_{22} &= u_{22}u_{11} \\
 u_{11}u_{12} &= u_{12}(u_{11} + (q^{-2} - 1)u_{22}) \\
 u_{21}u_{11} &= (u_{11} + (q^{-2} - 1)u_{22})u_{21} \\
 u_{22}u_{12} &= q^2u_{12}u_{22} \\
 u_{21}u_{22} &= q^2u_{22}u_{21} \\
 u_{21}u_{12} - u_{12}u_{21} &= (q^{-2} - 1)u_{22}(u_{22} - u_{11}).
\end{align*}
\]
Fix: k a field, $q \in k$ not a root of unity.
Define the k-algebra $A_q(M_2)$ by:

Generators: $u_{11} \quad u_{12} \\
 u_{21} \quad u_{22}$

Relations:

\[
\begin{align*}
 u_{11}u_{22} &= u_{22}u_{11} \\
 u_{11}u_{12} &= u_{12}(u_{11} + (q^{-2} - 1)u_{22}) \\
 u_{21}u_{11} &= (u_{11} + (q^{-2} - 1)u_{22})u_{21} \\
 u_{22}u_{12} &= q^2u_{12}u_{22} \\
 u_{21}u_{22} &= q^2u_{22}u_{21} \\
 u_{21}u_{12} - u_{12}u_{21} &= (q^{-2} - 1)u_{22}(u_{22} - u_{11}).
\end{align*}
\]
Where $\mathcal{A}_q(M_2)$ Comes From

$M_n(k) \hookrightarrow \text{GL}_n(k)$
Where $A_q(M_2)$ Comes From

$M_n(k) \hookrightarrow \mathbb{C} \rightarrow O_q(M_n)$

$M \overset{g \in GL_n(k)}{\longrightarrow} g^{-1} Mg$
Where $\mathcal{A}_q(M_2)$ Comes From

$M_n(k) \triangleleft \text{GL}_n(k)$

$\mathcal{O}(M_n) \rightarrow \mathcal{O}(M_n) \otimes \mathcal{O}(\text{GL}_n)$ (comodule-alg)

$M \xrightarrow{g \in \text{GL}_n(k)} g^{-1}Mg$
Where $\mathcal{A}_q(M_2)$ Comes From

$M_n(k) \hookrightarrow \text{GL}_n(k)$

$\mathcal{O}(M_n) \rightarrow \mathcal{O}(M_n) \otimes \mathcal{O}(\text{GL}_n)$ (comodule-alg)

$t_j^i \mapsto t_i^k \otimes S(t_k^i)t_j^l$

$M \xrightarrow{g \in \text{GL}_n(k)} g^{-1}Mg$

$Ebrahim (UCSB)$

2×2 Reflection Equation Algebra

March 17, 2018
Where $A_q(M_2)$ Comes From

$M_n(k) \triangleleft \text{GL}_n(k)$

$O(M_n) \rightarrow O(M_n) \otimes O(\text{GL}_n)$ \hspace{1cm} (comodule-alg)

$O_q(M_n) \rightarrow O_q(M_n) \otimes O_q(\text{GL}_n)$

$t_j^i \mapsto t_l^k \otimes S(t_k^i) t_j^l$
Where $\mathcal{A}_q(M_2)$ Comes From

$M_n(k) \circlearrowleft \text{GL}_n(k)$

$O(M_n) \rightarrow O(M_n) \otimes O(\text{GL}_n)$ (comodule-alg)

$O_q(M_n) \rightarrow O_q(M_n) \otimes O_q(\text{GL}_n)$ (only comodule)

$M \xrightarrow{g \in \text{GL}_n(k)} g^{-1} Mg$

$t_j^i \leftrightarrow t_i^k \otimes S(t_k^i)t_j^l$

$t_j^i \leftrightarrow t_i^k \otimes S(t_k^i)t_j^l$
Where $A_q(M_2)$ Comes From

$M_n(k) \hookrightarrow GL_n(k)$

$O(M_n) \rightarrow O(M_n) \otimes O(GL_n)$ (comodule-alg)

$O_q(M_n) \rightarrow O_q(M_n) \otimes O_q(GL_n)$ (only comodule)

$M \xrightarrow{g \in GL_n(k)} g^{-1} Mg$

$t^i_j \mapsto t^k_i \otimes S(t^i_k) t^l_j$

$u^i_j \mapsto u^k_i \otimes S(t^i_k) t^l_j$

$A_q(M_n)$ is a noncommutative deformation of $O(M_n)$ such that

$A_q(M_n) \rightarrow A_q(M_n) \otimes O_q(GL_n)$

is a comodule-algebra.
Where $\mathcal{A}_q(M_2)$ Comes From

$M_n(k) \hookrightarrow \text{GL}_n(k)$

$\mathcal{O}(M_n) \rightarrow \mathcal{O}(M_n) \otimes \mathcal{O}(\text{GL}_n)$ (comodule-alg)
$t^i_j \mapsto t^k_i \otimes S(t^i_k)t^l_j$

$\mathcal{O}_q(M_n) \rightarrow \mathcal{O}_q(M_n) \otimes \mathcal{O}_q(\text{GL}_n)$ (only comodule)
$t^i_j \mapsto t^k_i \otimes S(t^i_k)t^l_j$

$\mathcal{A}_q(M_n)$ is a noncommutative deformation of $\mathcal{O}(M_n)$ such that

$\mathcal{A}_q(M_n) \rightarrow \mathcal{A}_q(M_n) \otimes \mathcal{O}_q(\text{GL}_n)$

$u^i_j \mapsto u^k_i \otimes S(t^i_k)t^l_j$

is a comodule-algebra.

General construction uses an R-matrix, with relations given by reflection equation:

$R^l_i R^p_m u^k_i u^n_p = R^k_i R^n_m u^l_i u^p_r$
What Is Known About $A_q(M_2)$

- Reflection equation first introduced by Cherednik
- REAs later emerged from Majid’s transmutation theory
What Is Known About $A_q(M_2)$

- Reflection equation first introduced by Cherednik
- REAs later emerged from Majid’s transmutation theory
- Domokos and Lenagan show that
 - $A_q(M_n)$ is a noetherian domain

What Is Known About $A_q(M_2)$

- Reflection equation first introduced by Cherednik
- REAs later emerged from Majid’s transmutation theory
- Domokos and Lenagan show that
 - $A_q(M_n)$ is a noetherian domain
 - It has a k-basis consisting of monomials in the generators u_{ij}.

I. V. Cherednik.
Factorizing Particles on a Half-Line, and Root Systems.

S. Majid.
Quantum and Braided Linear Algebra.

M. Domokos and T. H. Lenagan.
Quantized Trace Rings.
What Is Known About $A_q(M_2)$

- Reflection equation first introduced by Cherednik
- REAs later emerged from Majid’s transmutation theory
- Domokos and Lenagan show that
 - $A_q(M_n)$ is a noetherian domain
 - It has a k-basis consisting of monomials in the generators u_{ij}.

I. V. Cherednik.
Factorizing Particles on a Half-Line, and Root Systems.

S. Majid.
Quantum and Braided Linear Algebra.

M. Domokos and T. H. Lenagan.
Quantized Trace Rings.
$A_q(M_2)$ is a GWA

Rename u_{21} to x and rename u_{12} to y.
$A_q(M_2)$ is a GWA

Rename u_{21} to x and rename u_{12} to y.

Notice how x and y move past u_{11} and u_{22}:

\[
x u_{22} = (q^2 u_{22}) x \quad u_{22} y = y (q^2 u_{22})
\]

\[
x u_{11} = (u_{11} + (q^{-2} - 1) u_{22}) u_{11} \quad u_{11} y = y (u_{11} + (q^{-2} - 1) u_{22})
\]
$A_q(M_2)$ is a GWA

Rename u_{21} to x and rename u_{12} to y.

Notice how x and y move past u_{11} and u_{22}:

$xu_{22} = (q^2 u_{22}) x \quad \quad \quad \quad u_{22}y = y(q^2 u_{22})$

$xu_{11} = (u_{11} + (q^{-2} - 1) u_{22}) u_{11} \quad \quad u_{11}y = y(u_{11} + (q^{-2} - 1) u_{22})$

Observation

$A_q(M_2)$ has the structure of a generalized Weyl algebra over the commutative subalgebra $k[u_{11}, u_{22}, yx]$.
For this slide, assume k is algebraically closed.

Theorem

The simple finite dimensional left $A_q(M_2)$-modules are as follows:

1. Ones annihilated by u^{22}, modules over $A_q(M_2)/\langle u^{22} \rangle \sim k[u_{11}, x, y]$.

2. Fix any $u_0 \in k \times$ and $n > 0$. There is a unique n-dimensional highest weight $A_q(M_2)$-module for which u^{22} acts on the highest weight space as u_0.

Theorem

Finite dimensional weight $A_q(M_2)$-modules on which u^{22} acts invertibly are semisimple.
For this slide, assume k is algebraically closed.

Theorem

The simple finite dimensional left $\mathcal{A}_q(M_2)$-modules are as follows:

1. Ones annihilated by u_{22}, modules over $\mathcal{A}_q(M_2)/\langle u_{22} \rangle \cong k[u_{11}, x, y]$.

Fix any $u_0 \in k \times$ and $n > 0$. There is a unique n-dimensional highest weight $\mathcal{A}_q(M_2)$-module for which u_{22} acts on the highest weight space as u_0.

Theorem

Finite dimensional weight $\mathcal{A}_q(M_2)$-modules on which u_{22} acts invertibly are semisimple.
For this slide, assume k is algebraically closed.

Theorem

The simple finite dimensional left $A_q(M_2)$-modules are as follows:

1. Ones annihilated by u_{22}, modules over $A_q(M_2)/\langle u_{22} \rangle \cong k[u_{11}, x, y]$.
2. Fix any $u_0 \in k^\times$ and $n > 0$. There is a unique n-dimensional highest weight $A_q(M_2)$-module for which u_{22} acts on the highest weight space as u_0.
For this slide, assume k is algebraically closed.

Theorem

The simple finite dimensional left $\mathcal{A}_q(M_2)$-modules are as follows:

1. Ones annihilated by u_{22}, modules over $\mathcal{A}_q(M_2)/\langle u_{22} \rangle \cong k[u_{11}, x, y]$.

2. Fix any $u_0 \in k^\times$ and $n > 0$. There is a unique n-dimensional highest weight $\mathcal{A}_q(M_2)$-module for which u_{22} acts on the highest weight space as u_0.

Theorem

Finite dimensional weight $\mathcal{A}_q(M_2)$-modules on which u_{22} acts invertibly are semisimple.
Prime Spectrum of $A_q(M_2)$

After determining the noncommutative prime spectrum of $A_q(M_2)$, we found that
Prime Spectrum of $A_q(M_2)$

After determining the noncommutative prime spectrum of $A_q(M_2)$, we found that

Theorem

$A_q(M_2)$ is a noetherian UFD.
Prime Spectrum of $A_q(M_2)$

After determining the noncommutative prime spectrum of $A_q(M_2)$, we found that

Theorem

$A_q(M_2)$ is a noetherian UFD.

Theorem

$A_q(M_2)$ is not catenary.
Prime Spectrum of $A_q(M_2)$

After determining the noncommutative prime spectrum of $A_q(M_2)$, we found that

Theorem

$A_q(M_2)$ is a noetherian UFD.

Theorem

$A_q(M_2)$ is not catenary.
Theorem

$A_q(M_2)$ satisfies the Dixmier-Moeglin equivalence (and so we can write down its primitive spectrum).