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Notation

Throughout the talk we will use the following notation.

• K will be a field with charK = p ≥ 0

• ( . )∗ := HomK( . ,K) will denote the K-linear dual

• G will denote a finite group

• H will denote an arbitrary Hopf K-algebra

• ( . )+ := ker ε will denote the augmentation ideal

Adam Jacoby 4/17/16 University of Washington
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The adjoint representation of a group

A group G acts on its self by conjugation.

gh = ghg−1 (g,h ∈ G)

Extending K-linearly gives an action of KG on itself.

Definition.

The group algebra equipped with this action will be called
the adjoint representation, denoted adKG.

Adam Jacoby 4/17/16 University of Washington
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The group picture

Theorem.

adKG is
completely reducible

��

ks +3 G has a central
Sylow p-subgroup

��
ad(KG/ radKG) is

completely reducible
G has a normal

Sylow p-subgroup
+3ks

Definition.

A module V has the Chevalley property if
T (V ) :=

⊕
n∈N V⊗n is completely reducible.

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

The group picture

Theorem.

adKG is
completely reducible

��

ks +3 G has a central
Sylow p-subgroup

��
ad(KG/ radKG) is

completely reducible
G has a normal

Sylow p-subgroup
+3ks

Definition.

A module V has the Chevalley property if
T (V ) :=

⊕
n∈N V⊗n is completely reducible.

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

The group picture

Theorem.

adKG is
completely reducible

��

ks +3
adKG has the

Chevalley property

��
ad(KG/ radKG) is

completely reducible

Completely reducible
modules have the
Chevalley property
+3ks

Definition.

A module V has the Chevalley property if
T (V ) :=

⊕
n∈N V⊗n is completely reducible.

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

The group picture

Theorem.

adKG is
completely reducible

��

ks +3
adKG has the

Chevalley property

��
ad(KG/ radKG) is

completely reducible

Completely reducible
modules have the
Chevalley property
+3

Classification Theorem

Michler 86

ks

Definition.

A module V has the Chevalley property if
T (V ) :=

⊕
n∈N V⊗n is completely reducible.

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

Components of the proof of the top implication

Sketch of proof

1 The largest Hopf ideal of KG that annihilates adKG is:

KG(KZ (G))+

2 adKG completely reducible implies p does not divide the
order of any conjugacy class

3 (2) implies p does not divide |G/Z (G)|
4 (3) implies adKG has the Chevalley property

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

Components of the proof of the top implication

Sketch of proof

1 The largest Hopf ideal of KG that annihilates adKG is:

KG(KZ (G))+

2 adKG completely reducible implies p does not divide the
order of any conjugacy class

3 (2) implies p does not divide |G/Z (G)|
4 (3) implies adKG has the Chevalley property

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

Components of the proof of the top implication

Sketch of proof

1 The largest Hopf ideal of KG that annihilates adKG is:

KG(KZ (G))+

2 adKG completely reducible implies p does not divide the
order of any conjugacy class

3 (2) implies p does not divide |G/Z (G)|

4 (3) implies adKG has the Chevalley property

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

Components of the proof of the top implication

Sketch of proof

1 The largest Hopf ideal of KG that annihilates adKG is:

KG(KZ (G))+

2 adKG completely reducible implies p does not divide the
order of any conjugacy class

3 (2) implies p does not divide |G/Z (G)|
4 (3) implies adKG has the Chevalley property

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

Components of the proof of the top implication

Sketch of proof

1 The largest Hopf ideal of KG that annihilates adKG is:

KG(KZ (G))+

2 adKG completely reducible implies p does not divide the
order of any conjugacy class

3 (2) implies p does not divide |G/Z (G)|
4 (3) implies adKG has the Chevalley property

Adam Jacoby 4/17/16 University of Washington



On the adjoint
representation

of
Hopf algebras

Adam Jacoby

Motivation

Hopf
annihilator

Conjugacy
classes

Definitions and notation

A Hopf algebra H acts on its self via the adjoint action.

hk = h(1)kS(h(2)) (h, k ∈ H)

Definition

The Hopf algebra equipped with this action will be called the
adjoint representation, denoted adH.

• For I ≤ H an ideal, H I will denote the largest Hopf
ideal contained in I.

• For A ⊆ H a subalgebra, H A will denote the largest
Hopf subalgebra contained in A.

• Let ζ(H) denoted the largest Hopf subalgebra
contained in the center of H.

Adam Jacoby 4/17/16 University of Washington
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The Hopf annihilator of the adjoint
representation

Theorem 1. (J.)

Let H be a Hopf algebra that satisfies one of the following
conditions:

1 H is finite-dimensional or
2 the coradical of H is cocommutative (e.g., H is

cocommutative or pointed).
Then the Hopf annihilator of the adjoint representation is
given by H (ann adH) = Hζ(H)+.
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The proof: Coinvariants I

• Let H = H/H (ann adH)

• H becomes a left H-comodule via
( ¯⊗ Id) ◦∆ : H → H ⊗ H i.e. h 7→ h(1) ⊗ h(2)

• Let coHH := {h ∈ H|h(1) ⊗ h(2) = 1⊗ h}

• ζ(H)+ ⊆H (ann adH) since
zh = z(1)hS(z(2)) = z(1)S(z(2))h = ε(z)h = 0

• Now ζ(H) ⊆ coHH since

z(1) ⊗ z(2) = (z(1) − ε(z(1))1 + ε(z(1))1)⊗ z(2)
= ε(z(1))1⊗ z(2) = 1⊗ z

Adam Jacoby 4/17/16 University of Washington
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The proof: Coinvariants II

• coHH ⊆ Z (H) since

ch = c(1)hε(c(2)) = c(1)hS(c(2))c(3)

= c(1)hc(2) = c(1)hc(2) = 1hc = hc

• coHH is a right subcomodule of H, thus:

∆(coHH) ⊆ coHH ⊗ H ⊆ Z (H)⊗ H

Theorem. (Chirvasitu, Kasprzak. preprint)

ζ(H) = {h ∈ H|∆(h) ∈ Z (H)⊗ H}

• Giving coHH ⊆ ζ(H) and so coHH = ζ(H)

Adam Jacoby 4/17/16 University of Washington
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The proof: faithful (co)flatness

Recall the assumption of Theorem 1 that:
1 H is finite-dimensional or
2 the coradical of H is cocommutative.

Either imply H is a faithfully coflat H-comodule. Thus:

• H is a faithfully flat ζ(H)-module
• H is a faithfully coflat H/Hζ(H)+-comodule

Adam Jacoby 4/17/16 University of Washington
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The proof: an equivalence

Theorem. (Takeuchi 79)

We have the following inverse maps:{
A
∣∣∣∣ a left H-comodule algebra

H faithfully flat over A

} coH/IH
�

HA+

{
I
∣∣∣∣ I left H-module coideal

H faithfully coflat over H/I

}

The result follows from the diagram below:

Hζ(H)+

ζ(H) =

H (ann adH)

Adam Jacoby 4/17/16 University of Washington
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Consequences

For the remainder assume H is finite-dimensional.

Theorem. (Rieffel 67)

For V an H-module:
ann T (V ) = H (ann V )

Thus V has the Chevalley property iff H/(H ann V ) is
semisimple.

Corollary 1. (J.)

adH has the Chevalley property iff H/Hζ(H)+ is semisimple.

Corollary 2. (J.)

adH has the Chevalley property impies H is unimodular.

Adam Jacoby 4/17/16 University of Washington
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Review: Drinfeld double

Now adH can be viewed as a right H-comodule with
structure map ∆. With this adH becomes a Yetter-Drinfeld
module, thus it is natural to consider the Drinfeld double.

Definition.

The Drinfeld double of H is the Hopf algebra D(H). The
coalgebra structure of D(H) is given by:

D(H)
coalg∼= H∗cop ⊗ H

The element f ⊗ h is denoted f ./ h. The multiplication is
given by:

(f ./ h)(g ./ k) = f (h(1) ⇀ g ↼ S−1(h(3))) ./ h(2)k

Adam Jacoby 4/17/16 University of Washington
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Conjugacy class definition

The Drinfeld double acts on H via the action below:

(f ./ h).k = (hk) ↼ S−1(f ) (f ∈ H∗h, k ∈ H)

Definition. (Cohen, Westreich 2010)

If H is a completely reducible D(H)-module then we say a
conjugacy class is a simple D(H)-submodule of H.

Example: group algebras

The action of D(KG) on KG is completely reducible.
The conjugacy classes, as defined above, are the modules
arising from D(KG) acting as above on the K-span of the
classical conjugacy classes.

Adam Jacoby 4/17/16 University of Washington
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Results on conjugacy classes

Proposition 1. (J.)

For H a finite-dimensional Hopf algebra:
1 If H is a completely reducible D(H)-module then H is

cosemisimple.
2 If H is cosemisimple and adH is a completely reducible

then H is a completely reducible D(H)-module.

Theorem 3. (J.)

Let H be a cosemisimple, involutory Hopf algebra with
K = K then adH completely reducible implies charK does
not divide the dimension of any of the conjugacy classes.
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