On the Adjoint Representation of Hopf Algebras

On the adjoint representation of Hopf algebras	
	On the adjoint representation of Hopf algebras
Conjugacy classes	Adam Jacoby

Temple University

University of Washington

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 りくぐ

	Outline
On the adjoint representation of Hopf algebras Adam Jacoby	
Motivation Hopf annihilator	1 Background and motivation
Conjugacy classes	2 The Hopf annihilator of the adjoint representation
	3 Conjugacy classes

University of Washington ◆□▶ ◆ 圕 ▶ ◆ ≣ ▶ ◆ ≣ → ⊃ < ⊘

	Outline
On the adjoint representation of Hopf algebras Adam Jacoby	
Motivation Hopf annihilator	1 Background and motivation
Conjugacy classes	2 The Hopf annihilator of the adjoint representation
	3 Conjugacy classes

	Outline
On the adjoint representation of Hopf algebras Adam Jacoby	
Motivation Hopf annihilator	Background and motivation
Conjugacy classes	2 The Hopf annihilator of the adjoint representation
	3 Conjugacy classes

University of Washington ◆□▶ ◆ 圕 ▶ ◆ ≣ ▶ ◆ ≣ → ⊃ < ⊘

Notation

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes Throughout the talk we will use the following notation.

- \mathbb{K} will be a field with char $\mathbb{K} = p \ge 0$
- (.)* := $\text{Hom}_{\mathbb{K}}(\,.\,,\mathbb{K})$ will denote the $\mathbb{K}\text{-linear dual}$
- *G* will denote a finite group
- H will denote an arbitrary Hopf \mathbb{K} -algebra
- $(.)^+ := \ker \epsilon$ will denote the augmentation ideal

The adjoint representation of a group

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

A group G acts on its self by conjugation.

$$^{g}h = ghg^{-1}$$
 $(g,h \in G)$

Extending \mathbb{K} -linearly gives an action of $\mathbb{K}G$ on itself.

Definition.

The group algebra equipped with this action will be called the *adjoint representation*, denoted ${}^{ad}\mathbb{K}G$.

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilato

Conjugacy classes

Theorem.

University of Washington

・ロト ・個ト ・ヨト ・ヨト ・ヨー

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilato

Conjugacy classes

Theorem.

Definition.

A module *V* has the *Chevalley property* if $T(V) := \bigoplus_{n \in \mathbb{N}} V^{\otimes n}$ is completely reducible.

Adam Jacoby

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilato

Conjugacy classes

Theorem.

Definition.

A module *V* has the *Chevalley property* if $T(V) := \bigoplus_{n \in \mathbb{N}} V^{\otimes n}$ is completely reducible.

Adam Jacoby

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilato

Conjugacy classes

Definition.

Theorem.

A module *V* has the *Chevalley property* if $T(V) := \bigoplus_{n \in \mathbb{N}} V^{\otimes n}$ is completely reducible.

Adam Jacoby

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilato

Conjugacy classes

Sketch of proof

1 The largest Hopf ideal of $\mathbb{K}G$ that annihilates ${}^{\mathrm{ad}}\mathbb{K}G$ is:

 $\mathbb{K}G(\mathbb{K}\mathscr{Z}(G))^+$

Adam Jacoby

University of Washington

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 - のへで

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Sketch of proof

1 The largest Hopf ideal of $\mathbb{K}G$ that annihilates ${}^{\mathrm{ad}}\mathbb{K}G$ is: $\mathbb{K}G(\mathbb{K}\mathscr{Z}(G))^+$

^{ad}KG completely reducible implies p does not divide the order of any conjugacy class

University of Washington

イロン 不得 とくほう イロン しゅう

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Sketch of proof

- 1 The largest Hopf ideal of $\mathbb{K}G$ that annihilates ${}^{\mathrm{ad}}\mathbb{K}G$ is: $\mathbb{K}G(\mathbb{K}\mathscr{Z}(G))^+$
- ^{ad}KG completely reducible implies p does not divide the order of any conjugacy class
- (2) implies p does not divide $|G/\mathscr{Z}(G)|$

University of Washington

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Sketch of proof

- 1 The largest Hopf ideal of $\mathbb{K}G$ that annihilates ${}^{\mathrm{ad}}\mathbb{K}G$ is: $\mathbb{K}G(\mathbb{K}\mathscr{Z}(G))^+$
- ^{ad}KG completely reducible implies p does not divide the order of any conjugacy class
- (2) implies p does not divide $|G/\mathscr{Z}(G)|$
- (3) implies ${}^{\mathrm{ad}}\mathbb{K}G$ has the Chevalley property

University of Washington

イロン 不得 とくほ とくほ とうほ

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Sketch of proof

- 1 The largest Hopf ideal of $\mathbb{K}G$ that annihilates ${}^{\mathrm{ad}}\mathbb{K}G$ is: $\mathbb{K}G(\mathbb{K}\mathscr{Z}(G))^+$
- ^{ad}KG completely reducible implies p does not divide the order of any conjugacy class
- (2) implies p does not divide $|G/\mathscr{Z}(G)|$
- (3) implies ${}^{\mathrm{ad}}\mathbb{K}G$ has the Chevalley property

University of Washington

イロン 不得 とくほ とくほ とうほ

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes A Hopf algebra H acts on its self via the adjoint action.

$${}^{h}k = h_{(1)}kS(h_{(2)}) \qquad (h,k \in H)$$

Definition

The Hopf algebra equipped with this action will be called the *adjoint representation*, denoted ${}^{ad}H$.

University of Washington

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes A Hopf algebra H acts on its self via the adjoint action.

$${}^{h}k = h_{(1)}kS(h_{(2)}) \qquad (h,k \in H)$$

Definition

The Hopf algebra equipped with this action will be called the *adjoint representation*, denoted ${}^{ad}H$.

• For *I* ≤ *H* an ideal, *ℋI* will denote the largest Hopf ideal contained in *I*.

ŀ

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes A Hopf algebra *H* acts on its self via the adjoint action.

$$Pk = h_{(1)}k\mathcal{S}(h_{(2)}) \qquad (h,k \in H)$$

Definition

The Hopf algebra equipped with this action will be called the *adjoint representation*, denoted ${}^{ad}H$.

- For *I* ≤ *H* an ideal, *ℋI* will denote the largest Hopf ideal contained in *I*.
- For A ⊆ H a subalgebra, ℋA will denote the largest Hopf subalgebra contained in A.

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes A Hopf algebra H acts on its self via the adjoint action.

$${}^{h}k = h_{(1)}kS(h_{(2)}) \qquad (h,k \in H)$$

Definition

The Hopf algebra equipped with this action will be called the *adjoint representation*, denoted ${}^{ad}H$.

- For *I* ≤ *H* an ideal, *ℋI* will denote the largest Hopf ideal contained in *I*.
- For A ⊆ H a subalgebra, ℋA will denote the largest Hopf subalgebra contained in A.
- Let ζ(H) denoted the largest Hopf subalgebra contained in the center of H.

The Hopf annihilator of the adjoint representation

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Theorem 1. (J.)

Let H be a Hopf algebra that satisfies one of the following conditions:

- 1 *H* is finite-dimensional or
- 2 the coradical of *H* is cocommutative (e.g., *H* is cocommutative or pointed).

Then the Hopf annihilator of the adjoint representation is given by $\mathscr{H}(\operatorname{ann}^{\operatorname{ad}} H) = H\zeta(H)^+$.

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes • Let $\overline{H} = H/\mathscr{H}(\operatorname{ann}^{\operatorname{ad}} H)$

University of Washington

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 りくぐ

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

- Let $\overline{H} = H/\mathscr{H}(\operatorname{ann}^{\operatorname{ad}} H)$
- *H* becomes a left *H*-comodule via
 (⁻ ⊗ Id) ∘ Δ : *H* → *H* ⊗ *H* i.e. *h* → *h*₍₁₎ ⊗ *h*₍₂₎

University of Washington

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 - のへで

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

- Let $\overline{H} = H/\mathscr{H}(\operatorname{ann}^{\operatorname{ad}} H)$
- *H* becomes a left *H*-comodule via
 (⁻ ⊗ Id) ∘ Δ : *H* → *H* ⊗ *H* i.e. *h* → *h*₍₁₎ ⊗ *h*₍₂₎

• Let
$${}^{co\overline{H}}H := \{h \in H | \overline{h}_{(1)} \otimes h_{(2)} = \overline{1} \otimes h\}$$

1

University of Washington

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 - のへで

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

- Let $\overline{H} = H/\mathscr{H}(\operatorname{ann}^{\operatorname{ad}} H)$
- H becomes a left H̄-comodule via
 (⁻ ⊗ Id) ∘ Δ : H → H̄ ⊗ H i.e. h ↦ h̄₍₁₎ ⊗ h₍₂₎

• Let
$${}^{co\overline{H}}H := \{h \in H | \overline{h}_{(1)} \otimes h_{(2)} = \overline{1} \otimes h\}$$

•
$$\zeta(H)^+ \subseteq \mathscr{H}(\operatorname{ann}^{\operatorname{ad}} H)$$
 since
 ${}^z h = z_{(1)}hS(z_{(2)}) = z_{(1)}S(z_{(2)})h = \epsilon(z)h = 0$

1

(

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

- Let $\overline{H} = H/\mathscr{H}(\operatorname{ann}^{\operatorname{ad}} H)$
- *H* becomes a left *H*-comodule via
 (⁻ ⊗ Id) ∘ Δ : *H* → *H* ⊗ *H* i.e. *h* → *h*₍₁₎ ⊗ *h*₍₂₎

• Let
$${}^{co\overline{H}}H := \{h \in H | \overline{h}_{(1)} \otimes h_{(2)} = \overline{1} \otimes h\}$$

•
$$\zeta(H)^+ \subseteq \mathscr{H}(\operatorname{ann} \operatorname{ad} H)$$
 since
 ${}^z h = z_{(1)}hS(z_{(2)}) = z_{(1)}S(z_{(2)})h = \epsilon(z)h = 0$

• Now
$$\zeta(H) \subseteq {}^{coH}H$$
 since

$$\overline{z}_{(1)} \otimes z_{(2)} = (\overline{z_{(1)} - \epsilon(z_{(1)})\mathbf{1}} + \epsilon(z_{(1)})\overline{\mathbf{1}}) \otimes z_{(2)}$$
$$= \epsilon(z_{(1)})\overline{\mathbf{1}} \otimes z_{(2)} = \overline{\mathbf{1}} \otimes z$$

Adam Jacoby

1

(

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

• ${}^{co\overline{H}}H \subseteq \mathscr{Z}(H)$ since

$$ch = c_{(1)}h\epsilon(c_{(2)}) = c_{(1)}hS(c_{(2)})c_{(3)}$$
$$= {}^{c_{(1)}}hc_{(2)} = {}^{\overline{c}_{(1)}}hc_{(2)} = {}^{\overline{1}}hc = hc$$

Adam Jacoby

University of Washington

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 りくぐ

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

• $co\overline{H}H \subseteq \mathscr{Z}(H)$ since

$$ch = c_{(1)}h\epsilon(c_{(2)}) = c_{(1)}hS(c_{(2)})c_{(3)}$$
$$= {}^{c_{(1)}}hc_{(2)} = {}^{\overline{c}_{(1)}}hc_{(2)} = {}^{\overline{1}}hc = hc$$

• ^{coH}H is a right subcomodule of H, thus:

 $\Delta({}^{co\overline{H}}H) \subseteq {}^{co\overline{H}}H \otimes H \subseteq \mathscr{Z}(H) \otimes H$

University of Washington

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes • $co\overline{H}H \subseteq \mathscr{Z}(H)$ since

$$ch = c_{(1)}h\epsilon(c_{(2)}) = c_{(1)}hS(c_{(2)})c_{(3)}$$
$$= {}^{c_{(1)}}hc_{(2)} = {}^{\overline{c}_{(1)}}hc_{(2)} = {}^{\overline{1}}hc = hc$$

• $co\overline{H}H$ is a right subcomodule of H, thus:

$$\Delta({}^{co\overline{H}}H)\subseteq{}^{co\overline{H}}H\otimes H\subseteq\mathscr{Z}(H)\otimes H$$

Theorem. (Chirvasitu, Kasprzak. preprint)

$$\zeta(H) = \{h \in H | \Delta(h) \in \mathscr{Z}(H) \otimes H\}$$

Adam Jacoby

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

•
$$co\overline{H}H \subseteq \mathscr{Z}(H)$$
 since

$$ch = c_{(1)}h\epsilon(c_{(2)}) = c_{(1)}hS(c_{(2)})c_{(3)}$$
$$= {}^{c_{(1)}}hc_{(2)} = {}^{\overline{c}_{(1)}}hc_{(2)} = {}^{\overline{1}}hc = hc$$

• ^{coH}H is a right subcomodule of H, thus:

$$\Delta({}^{co\overline{H}}H)\subseteq{}^{co\overline{H}}H\otimes H\subseteq\mathscr{Z}(H)\otimes H$$

Theorem. (Chirvasitu, Kasprzak. preprint)

$$\zeta(H) = \{h \in H | \Delta(h) \in \mathscr{Z}(H) \otimes H\}$$

• Giving ${}^{co\overline{H}}H \subseteq \zeta(H)$ and so ${}^{co\overline{H}}H = \zeta(H)$

Adam Jacoby

4/17/16

University of Washington < □ ▶ < 클 ▶ < ≣ ▶ < ≣ ▶ ⊇ ∽ < ⊘

The proof: faithful (co)flatness

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes Recall the assumption of Theorem 1 that:

- **1** *H* is finite-dimensional or
- 2 the coradical of *H* is cocommutative.

University of Washington

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The proof: faithful (co)flatness

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes Recall the assumption of Theorem 1 that:

- 1 *H* is finite-dimensional or
- 2 the coradical of *H* is cocommutative.

Either imply *H* is a faithfully coflat \overline{H} -comodule. Thus:

The proof: faithful (co)flatness

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes Recall the assumption of Theorem 1 that:

- 1 *H* is finite-dimensional or
- 2 the coradical of *H* is cocommutative.

Either imply *H* is a faithfully coflat \overline{H} -comodule. Thus:

- *H* is a faithfully flat $\zeta(H)$ -module
- *H* is a faithfully coflat $H/H\zeta(H)^+$ -comodule

The proof: an equivalence

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Theorem. (Takeuchi 79)

We have the following inverse maps:

 A
 a left H-comodule algebra

 H faithfully flat over A

$$\stackrel{coH/I}{\stackrel{\leftarrow}{\mapsto}}_{HA^+} \bigg\{$$

I left H-module coideal H faithfully coflat over H/I

The proof: an equivalence

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Theorem. (Takeuchi 79)

We have the following inverse maps:

 A
 a left H-comodule algebra

 H faithfully flat over A

$$\stackrel{coH/I}{\underset{HA^{+}}{\leftarrow}} \left\{ \begin{array}{c} \mathsf{I} \end{array} \right.$$

I left H-module coideal H faithfully coflat over H/I

The result follows from the diagram below:

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes For the remainder assume *H* is finite-dimensional.

Adam Jacoby

University of Washington

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 りくぐ

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes For the remainder assume *H* is finite-dimensional.

Theorem. (Rieffel 67)

For V an H-module:

ann
$$T(V) = \mathscr{H}(ann V)$$

Thus V has the Chevalley property iff $H/(\mathcal{H} \operatorname{ann} V)$ is semisimple.

University of Washington

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes For the remainder assume H is finite-dimensional.

Theorem. (Rieffel 67)

For V an H-module:

ann
$$T(V) = \mathscr{H}(ann V)$$

Thus V has the Chevalley property iff $H/(\mathcal{H} \operatorname{ann} V)$ is semisimple.

Corollary 1. (J.)

^{ad}*H* has the Chevalley property iff $H/H\zeta(H)^+$ is semisimple.

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes For the remainder assume H is finite-dimensional.

Theorem. (Rieffel 67)

For V an H-module:

ann
$$T(V) = \mathscr{H}(ann V)$$

Thus V has the Chevalley property iff $H/(\mathcal{H} \operatorname{ann} V)$ is semisimple.

Corollary 1. (J.)

 ^{ad}H has the Chevalley property iff $H/H\zeta(H)^+$ is semisimple.

Corollary 2. (J.)

 ^{ad}H has the Chevalley property imples H is unimodular.

Adam Jacoby

Review: Drinfeld double

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Now ^{ad}H can be viewed as a right *H*-comodule with structure map Δ . With this ^{ad}H becomes a Yetter-Drinfeld module, thus it is natural to consider the Drinfeld double.

University of Washington

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Review: Drinfeld double

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Now ^{ad}H can be viewed as a right *H*-comodule with structure map Δ . With this ^{ad}H becomes a Yetter-Drinfeld module, thus it is natural to consider the Drinfeld double.

Definition.

The *Drinfeld double* of *H* is the Hopf algebra D(H). The coalgebra structure of D(H) is given by:

$$\mathsf{D}(\mathsf{H}) \stackrel{\mathit{coalg}}{\cong} \mathsf{H}^{*\mathit{cop}} \otimes \mathsf{H}$$

The element $f \otimes h$ is denoted $f \bowtie h$. The multiplication is given by:

$$(f \bowtie h)(g \bowtie k) = f(h_{(1)} \rightharpoonup g \leftarrow S^{-1}(h_{(3)})) \bowtie h_{(2)}k$$

Adam Jacoby

Conjugacy class definition

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

The Drinfeld double acts on *H* via the action below:

$$(f \bowtie h).k = ({}^{h}k) \leftarrow S^{-1}(f) \qquad (f \in H^*h, k \in H)$$

University of Washington

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 - のへで

Conjugacy class definition

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

The Drinfeld double acts on H via the action below:

$$(f \bowtie h).k = ({}^{h}k) \leftarrow S^{-1}(f) \qquad (f \in H^*h, k \in H)$$

Definition. (Cohen, Westreich 2010)

If *H* is a completely reducible D(H)-module then we say a *conjugacy class* is a simple D(H)-submodule of *H*.

University of Washington

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Conjugacy class definition

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

The Drinfeld double acts on H via the action below:

$$(f \bowtie h).k = ({}^{h}k) \leftarrow S^{-1}(f) \qquad (f \in H^*h, k \in H)$$

Definition. (Cohen, Westreich 2010)

If *H* is a completely reducible D(H)-module then we say a *conjugacy class* is a simple D(H)-submodule of *H*.

Example: group algebras

The action of $D(\mathbb{K}G)$ on $\mathbb{K}G$ is completely reducible. The conjugacy classes, as defined above, are the modules arising from $D(\mathbb{K}G)$ acting as above on the \mathbb{K} -span of the classical conjugacy classes.

Results on conjugacy classes

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

For *H* a finite-dimensional Hopf algebra:

Proposition 1. (J.)

- **1** If *H* is a completely reducible D(H)-module then *H* is cosemisimple.
- 2 If *H* is cosemisimple and ${}^{ad}H$ is a completely reducible then *H* is a completely reducible D(H)-module.

University of Washington

・ コット (雪) (小田) (コット 日)

Results on conjugacy classes

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

For *H* a finite-dimensional Hopf algebra:

- **1** If *H* is a completely reducible D(H)-module then *H* is cosemisimple.
- 2 If *H* is cosemisimple and ${}^{ad}H$ is a completely reducible then *H* is a completely reducible D(H)-module.

Theorem 3. (J.)

Proposition 1. (J.)

Let *H* be a cosemisimple, involutory Hopf algebra with $\mathbb{K} = \overline{\mathbb{K}}$ then ^{ad}*H* completely reducible implies char \mathbb{K} does not divide the dimension of any of the conjugacy classes.

Bibliography

On the adjoint representation of Hopf algebras

Adam Jacoby

Motivation

Hopf annihilator

Conjugacy classes

Alexandru Chirvasitu and Pawel Kasprzak, On the Hopf (co)center of a Hopf algebra, (2016).

Miriam Cohen and Sara Westreich, *Higman ideals and Verlinde-type formulas for Hopf algebras*, Ring and module theory, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2010, pp. 91–114. MR 2744044

	-	-
		_
		_

Gerhard O. Michler, *Brauer's conjectures and the classification of finite simple groups*, Representation theory, II (Ottawa, Ont., 1984), Lecture Notes in Math., vol. 1178, Springer, Berlin, 1986, pp. 129–142. MR 842482

- M. A. Rieffel, *Burnside's theorem for representations of Hopf algebras*, J. Algebra **6** (1967), 123–130. MR 0210794
- Mitsuhiro Takeuchi, *Relative Hopf modules—equivalences and freeness criteria*, J. Algebra **60** (1979), no. 2, 452–471. MR 549940