Final Exam–Math 124 C/D, Spring 2007
Page 2

You may use a simple scientific calculator and one page of two-sided handwritten notes (standard 8.5 x 11 sheet). Graphing calculators are not allowed on exams.

IV Story problems: (a) Related rates problems. (b) Optimization problems.
(c) Estimation/approximation. (d) Parametric equations.

Example 1: The volume of a cube is increasing at a rate of 10 cm3/min. How fast is the surface area increasing when the length of an edge is 30 cm?

Example 2: A right circular cylinder is inscribed in a sphere of radius r. Find the largest possible surface area of such a cylinder.

Example 3: A particle is moving in the plane according to the parametric equations

$$x = \cos t + 2t, y = \sin t$$

where t is time and $t \geq 0$.

(a) Find the horizontal velocity $\frac{dx}{dt}$ and vertical velocity $\frac{dy}{dt}$.

(b) Using the chain rule, find $\frac{dy}{dx}$ at all times t.

(c) Find an equation of the tangent line to the path at the point $(x(\pi), y(\pi))$.

Example 4: The angle of elevation of the Sun is decreasing at a rate of 0.25 rad/h. How fast is the shadow cast by a 400-ft-tall building increasing when the angle of elevation of the Sun is $\pi/6$?

Example 5: A cone-shaped paper drinking cup is to be made to hold 27 cm3 of water. Find the height and the radius of the cup that will use the smallest amount of paper.

Example 6: Suppose $y = f(x)$ is a function that satisfies the equation

$$x^4 + 3xy + y^4 = 5$$

and passes through the point $(1, 1)$. Use linear approximation to estimate the y value of a nearby point on the curve with $x = 1.02$.

Example 7: You are on a ship heading North at 12 miles per hour toward an island when you spot a sailboat heading East away from the same island. When your ship is 9 miles from the island, the angle measured clockwise from due North to the boat is seen to be $\pi/6$ radians and the angle is increasing at $\pi/3$ radian/hour. How fast is the sailboat moving?

Example 8: Find the dimensions of the rectangle of largest area that has its base on the x-axis and its other two vertices above x-axis and lying on the parabola $y = 8 - x^2$.

V Others: (a) Continuity. (b) Differentiability, meanings of $f'(x)$ and $f''(x)$.
(c) Abstract theory, rules, etc. (d) Pre-Calculus stuff. (see old final exams)