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PROPAGATION OF REGULARITY IN L7-SPACES FOR KOLMOGOROV
TYPE HYPOELLIPTIC OPERATORS

Zhen-Qing Chen and Xicheng Zhang

AsstrACT. Consider the following Kolmogorov type hypoelliptic operator
£ = Z?:ZX/ ’ ij—l + Axn’

where n > 2 and x = (x1,---,%x,) € (RD" = R"™. Let {7,;t > 0} be the semi-
group associated with .Z. For any p € (1,00), we show that there is a constant
C = C(p,n,d) > 0 such that for any f(z, x) € LP(R x R™) = LP(R!+"d),

1 e
A f Tf(t+ s, x)dt
0

<C‘H.f”p’ j: 1,"‘,”,
p

where |- ||, is the usual L”-norm in L” (R4 ds x dx). To show this type of estimates,
we first study the propagation of regularity in L?>-space from variable x,, to x; for the
solution of the transport equation d,u + Z?:z Xj Vi u=f.

1. INTRODUCTION

Let n > 2 and d € N. In this paper we consider the following Kolmogorov type
hypoelliptic operator:

d n
2= Z a0y, 0, + Zz X+ Vi (1.1)
=

i=1
where x = (x1, %2, , x,) € R™ with x; = (x;;,--+,xjq) € R? foreach j = 1,---,n,
Vi = 0y, ,0x,), and a, = (@) : R — MY is a measurable map. Here M

sym sym
stands for the set of all symmetric d X d-matrices. Suppose that
K_ll[dxd < a; < KI[dxd (12)
for some k > 1. Let V := (Vy,---, V), Vi = (8,,0s,)ij-1.-.a and
Ouxa  Lixa  Oaxa
Ouxd Ouxa laxa Oaxa
: Ouxa  Lixa
Ousxa =+ Oaxa Oaxa ) 4.

We can rewrite .Z; as the following compact form:
& =t(a,- Vi) +Ax -V,

where “tr” denotes the trace of matrix.
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Consider the following linear stochastic differential equations (SDEs):
dX,, = AX,,dt + o/dW,, X;; = x, t > s, (1.4)

where (W)),cr is a standard nd-dimensional Brownian motion and

Ow-naxn-nd>  Ow=1yaxa
ot = ’ . (1.5)
' ( Ousn-vya> — (V2aaxd |,y

It is easy to see that the solution X, is explicitly given by

!
Xor = X (x) = e + f e"Agedw,,

N

where e is the exponential matrix with the expression

21 M-l

Lixa tlixa % ce = i{;d
[l

Ouxa Lixa tHaxa - (n_éi;!d

Ouxa  laxa  tlaxa
Osxa -+ Ouxa laxa ) 404

Notice that if a, = a does not depend on ¢ (i.e., time homogeneous), then

@

!
X,(x) = Z_o(x) with Z(x) := e x + f eotdw,.
0

In this case, Z;(x) is an (nd)-dimensional Gaussian random variable with density
e~ (©-112 -4 0)"=710,12(y—ex)
(Qmyrdrd det(X))!/2

where @, : R™ — R" is the dilation operator defined by

®r(x) = (rzn_lxl’ r2n—3x2, Tt r-xn)’ (17)

b

pl(x’ )’) =

and X = fol e a?(o?)*e™ dr is the covariance matrix (see [7] or (2.2) below). For
f € C(R™), define

Ts.if (%) 1= Ef (X.0(x)). (1.8)
It is well-known that . is the infinitesimal generator of 7, i.e.,
as(i-s,tf + ogs(i-s,tf = 0 (19)

The goal of this paper is to show the following L”-maximal regularity estimate.

Theorem 1.1. Let p € (1,00) and j = 1,--- ,n. Under (L2), there is a constant
C = C(n,k, p,d) > 0 such that for any f € LP(R"*"™) and 1 > 0,

L e
’ A;Z("ﬁ) f e_/lt7-s,t+sf(t + 5, x)ds
0

1 )
where A;;z("_” := —(=A,,) ™D is the fractional Laplacian acting on the variable x;.
2

< Clifll,, (1.10)
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One of the motivation of studying the estimate (I.10) comes from the study of the
following n + 1-order stochastic differential equation:

dX" = b,(X, XV, -, XM)dt + ol X, XL, X)W, (1.11)
where X" denotes the n-order derivative of X, with respect to the time variable and

b:R, xRV 5 R gnd o : R, x R4 5 R4 @ R? are two measurable functions.
Notice that if we let

X[ = (Xt’ X;l)’ e ,XE”))’
then X, solves the following one order stochastic differential equation
dX; = (X", X", b(X))di + (0, 0,0, (X)dW),  Xo =X,

where X = (X;)i=0,.. » = ((X;j)j=1,- a)i=0,... ». In particular, the infinitesimal generator of
Markov process X,(x) is given by

d n
LX) = Y (O IVX0, 00, ) + D X5+ Yy FX) + bi(X) - Ty, f(X),

ijk=1 j=1

which takes the same form as (ILI)). Thus, the estimate (I.I0) could be used to study
the well-posedness of SDE (IL11)) with rough coefficients b and o-. Indeed, whenn = 1
and o is bounded and uniformly nondegenerate, the second named author [[10] studied
the strong well-posedness of SDE (LI) with (I — Ay,)'*b, Vo € L} (R, x R*) for
some p > 4d + 2. See also [3]] for similar results when o = 1.

Let us now recall some related results in literature about the estimate (I.10). In [3]],
the authors adopted Coifman-Weiss’ theorem to show the estimate (I.10) for j = n.
When n = 2, in [4], we used Fefferman-Stein’s theorem to show the estimate (1.10)
for j = 1,2 even for nonlocal operators. It should be noticed that the methods used
in [3]] and [4] are quite different. In [3]], the key point is to show some weak 1-1 type
estimate. While in [4], the main point is to show that the operator in (L10) is bounded
from L™ to some BMO spaces. In particular, to show the propagation of the regularity
from the nondegenerate component to the degenerate component, in [4]], we have used
Bouchet’s result [2]. More precisely, Bouchet studied the following transport equation:

O+ xy - Vyu=f,

and showed that for any a > 0,

2 3 1 a_
1AL ulla < CINAZull T LA,

where C = C(a,d) > 0. A simplified proof of this type estimate was provided in [1]].
Thus, the first goal of this paper is to extend the above estimate to the following more
general transport equation:

n
ou + Z xj+ Ve u=f.
J=2

3



That is, we want to show that forany j = 1,--- ,n— 1 and @ > 0, there is a constant
C = C(a,d, j,n) > 0 such that

a a 1 @

1A ull, < CIAZ, ully= 11

Xj+1

It seems that this type estimate is not trivial compared with [1], see Section 3.

Although the above result is proven for Laplacian operator, we can extend it to more
general nonlocal operator as in [4] without any difficulty. Indeed, let us consider the
following nonlocal operator:

Zi = [ 10 o)+ fx= ) = 2fIay)

where o € M? is a d X d matrix and v is a symmetric Lévy measure. Let n > 2 and

L) = L fD+ ) x5 Vi, (),

j=2
where %" . means that the operator acts on the variable x,. Suppose that
-1
lolleo + llo™ [loo < 00

and for some a € (0, 2),

(@)

v(la) <V, <y,

where v(la) and v(z(’) are two symmetric and nondegenerate a-stable Lévy measures (see
[4]). Under the above assumptions, as in [4], we can show that forany j=1,--- ,n,

where 7 is defined as in (L8) by using the non-stationary Lévy process L, with
Lévy measure v, to replace the Brownian motion. We note that at the almost same
time, Huang, Menozzi and Priola [6] have obtained (I.I2)) for time-independent o
and v by using Coifman-Weiss’ theorem. As mentioned above, our proof is based on
Fefferman-Stein’s theorem.

This paper is organized as follows: In Section 2, we prepare some estimates about
the distribution density of X;,(x), and give the necessary Fefferman-Stein’s theorem. In
Section 3, we show the propagation of the regularity for transport equation. In Section
4, we prove our main result.

Throughout this paper, we use the following convention: The letters C and ¢ with or
without subscripts will denote a positive constant, whose value may change in different
places. Moreover, we use A < B to denote A < CB for some constant C > 0.

< ClIflps (1.12)

p

ATHT [T s
0

2. PRELIMINARIES

2.1. Estimate of density of X, ,(x). In this subsection we show some necessary esti-

mate about the density of X ,(x).
4



Lemma 2.1. Under (L.2), X, ,(0) admits a smooth density p O ) so that for each g =
B, ,PBn) € N, where Ny = {0} UN, there are constants C,c > 0 only depending on
n, B, d and k such that for all s < t and x,y € R™,

|V€11 e Vg:p(s(,)t)(yﬂ < C(t S) (n* d+3 (2(n— l)+1),31)/2 c|®, (t-5)- 1/2)| (21)
where @, is the dilation operator defined by (L ]).

Proof. Since (cW.,2) D W for ¢ # 0, by the change of variables, we have

t 1
X,(0) = f P, D (1 )P f DAy,
s 0
Hence, by definitions (1.3)), (I.6) and (1.7),

@) 1-1A @
O 512 X54(0) = f 4= ?+(t s)rdW
0

rA ~a .
e ordW, = Z,
0
where & := o —s)(1-r)" Since Z is a nd-dimensional Gaussian random variable with

mean value zero and covariance matrix

1
z:f g3y e dr,
0

we have
—(©,_-12Y)"Z7N®,,_,-12))
©) e (t—s) (t-s)
, = . 2.2
On the other hand, by (L.3)), (L) and (T.3), we have for all y € R*,
1|.n -
r” J
P> f|*’Aa|dr 2K-1f dr
_1 2 .
> 2k |y |¢1u1|l:fl ij dr.
Since the unit sphere in R" is compact, and for each R”d Sw#0,
o(w) := f dr >0,
Z -
we obtain that for some ¢y = cy(n, k,d) > 0 and all y € R,
YEy > 2P inf 6(w) = y Iy > colyl” (2.3)
The desired estimate now follows by the chain rule, (2.2) and @2.3). |

For « € (0,2], the fractional Laplacian A2 in R? is defined by Fourier’s transfor-
mation as

ATEf(E) = 161 £ (&), f e SRY,
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where S(RY) is the space of Schwartz rapidly decreasing functions. For a € (0, 2), up
to a multiplying constant, an alternative definition of A%? is given by the following
integral form (cf. [8]):

(2)
ape = [ S 24
where 67 f(x) := f(x +2) + f(x — z) — 2f(x). Observe that for a € (0, 1),
52 f(x)
A f(x) =2 f Z|Z|d+a dz with 60 £(x) := f(x +2) — f(x). (2.5)
R4

Corollary 2.2. Forany j=1,---,n, @ € (0,2] and B = (By,--- ,Bn) € N, there is a
constant C > 0 such that for all f € C;"(R”d) and s < t,

2 n -, Q=D+ 1DBi+2n-)H+Da)/2
IASPVE - VAT f ke < Clt = s ERCDHATCEDDOR) £ (2.6)
||V§: .. Vﬁ:Tv,tAij/zf“oo <Clt- Sl—(Z;;l(Z(H—i)+1),3i+(2(n—j)+1)a')/2”f”oo, (2.7)

where AZJ/ % means that the fractional Laplacian acts on the variable x;.

Proof. Below we only show (2.6) and 2.7) for a € (0, 2). Let p,,(x, y) be the distribu-
tion density of X, ,(x) = e"94x + X, ,(0). We have

Psa(x,y) = p)(y — ). (2.8)
For simplicity of notation, we write
hy(x) := VB - VB p o (x,y), v o= X2 — i) + 1)B;/2
and
SPhy(x) = hy(x +Z)) + hy(x = ) = 2hy(x), Z; = (0,--+ ,z;,---,0).
By @2.1)), (2.8) and the chain rule, we have

—n2 _ _ _alt=9)A = )2
6P hy(0] < C(t = 5)™ 427 (Aol

2.9
+ e_C|@(t7S)7l/2(y_e(r—s)A(x_Zj))|2 + e_cle(ksrl/20,_e(r—x)Ax)|2) ( )
and also by the mean value formula,
_n2 —~— g _ _at—=5)A 22
|5g)hy(x)| <C(t—s)™ d/2=y=Qn=+1) g =clO_y-1/2(y=e" D) |Zj|2 (2.10)

for some ¥ € R™ depending on z;. By formula (2.4), we have

(2)
[ B
|2;1>(1—5)@=+ D)2 |zjI<(t—5)@0=D+D/2 |Zj|d+a’ J

cLi(x,y) + L(x,y).
For I,(x, y), by (2.9) we have

A hy(x)

dz; .
1 (x, y)ldy < (1= 8)7 f |d’+a S (11— 5)77 7RO,

e |zj|>(t—s5)0=D+D/2 |Z j
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where we have used that

—n2 _ 2 _alvl2
(t—s5)™" a’/2dee O, _y-120 dy = fde clyl dy.
R™ I

For I,(x, y), by (2.10) we have
P
1L (x, yldy < (8 — 5)77 "0 f i

i ji<t—syeo-ior |21

Rnd
< (1 — )70yl

Combining the above calculations, we obtain

9 AT 0 =

Thus we proved (2.6). Similarly, we can show (2.6)).

Zj

f AR WSOD] € O = TR
R

O

2.2. Fefferman-Stein’s theorem. First of all, we introduce a family of “balls” in

R!*_For any r > 0 and point (¢, xo) € R'*™  we define
Q1. x0) 1= {(8,2) : £t = o, x = e "Mxg) < ),
where
1 1 1 1
£t x) = max (|12, 1|77, [0l 75, - ], [l

The set of all such balls is denoted by Q. We have

Lemma 2.3. (i) £(r%t, ©®,x) = rl(t, x) for any r > 0, where ®, is the dilation operator

defined by (17]).

(ii) 10,(ty, x0)| = a)grnzd*z, where | - | denotes the Euclidean volume and wy is the

volume of the unit ball in R?.
(iii) For all (t,x), (s,y), (r,z) € R"*" we have

(s —t,y—e¥ %) < 30(t — 5, x — e™4y) <
< 12(€(t —rnx—e"A) + b(r—s,7- e(r_“')Ay)).
(iv) Suppose that Q,(to, xo) N Q.(t;, x;) # 0, then
O, (to, x0) € Qr0.-(ty, X()-

(v) For (t,x),(s,y) € R define

p((t’ X), (S9 )’)) = f(t - 85X e(t_S)Ay) + f(s - t,y - e(S—l)Ax),

and for (ty, xo) € R and r > 0,
Qr(to’ xO) = {(t’ X) . P((t, X), (IO, xO)) < I"}.

Then Q,(to, x0) C O,(to, X0) C Qu,(to, Xo)-
7
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Proof. (i) and (ii) are direct by definition.

(iii) We only prove the second inequality in (2.11)). The first one is similar. Observing
that for all (¢, x), (s, y) € R'*™,

{(t+ s, x+y) <t x)+ {(s,y), (2.13)
we have
£t —s5,x— ™) <t —r,x — ) + £(r — 5,z — 794y,
For simplicity, we write
a:=0t—r,x—e""2), b:=tr—s,z-e").
By the definition of ¢, we have
It—r| < a2’ Iz — e(r—S)Ay)jl < b1+2("_j), j=1,---,n

Hence, foreachi=1,--- ,n,

n
|(e(t—r)AZ _ e(t_S)Ay)il — Z(e([_r)A)ij(Z _ e(V—S)Ay)j
j=1

@8 < It — V| 1+2( » LIy .

< n—j) < b1+2(n )
Z z)! = (j-1)! (2.14)

< (a vV b)l+2(n—i) : — < 3(a vV b)l+2(n_i),

JZ‘ (J—90!
and
0t —s,x—e"y)<a+3(aVb)<4(a+b).

(iv) and (v) are easy consequences of (iii). |

Now, for any f € L} (R!*"?) we define the Hardy-Littlewood maximal function by

loc

Mf(t, x) = supf |f (¢, x)ldx'dr’,
r>0 JQ,(t,x)
and the sharp function by
MAf(t, x) = supf If (&, X)) = foapldx'dr,
0r(t.x)

r>0

where fora Q € Q,
1
fo = ff(t',x’)dx’dt’ = — ff(t’,x’)dx’dt’.
0 01 Jo

One says that a function f € BMOR'*)if MFf € L®(R'*"). Clearly, f € BMOR'*"%)
if and only if there exists a constant C > 0 such that for any Q € Q, and for some
Cp € R,
JC (7, x") = coldx'dr’ < C
0
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The following version of Fefferman-Stein’s theorem can be proven as in [4, Theorem
2.12] by Lemma[2.3]l We omit the details.

Theorem 2.4. For g € (1,0), let & be a bounded linear operator from LI(R!*"9)
to LIR""Y and also from L®R'*™) to BMOR!'*"¢). Then for any p € [q, ) and
f c L[)(Rl-l—nd)’

12 fll, < Clifllp

where the constant C depends only on p, g and the norms of || P || s 1s and || 2|1~ smo-

3. PROPAGATION OF REGULARITY IN LZ—SPACE FOR TRANSPORT EQUATIONS

Fixn > 2 and A > 0. Let A be as in (I.3). In this section we consider the following
linear transport equation in R"¢:

osu+Ax-Vu—Au+ f =0. (3.1
Taking Fourier’s transformation in the spatial variable x, we obtain
A —AE-Va— A+ f =0, (3.2)

where A* is the transpose of A, and £ is the dual variable. Multiplying both sides by
the complex conjugate of i1, we get

Ao — A€ - VI — Alaf* + 2Re(f, &) =
Let ¢(¢) be a smooth function and define
g5 1= 20Re(f, it) + A°¢ - Volaf. (3.3)
We have
a5(1al’p) — A*¢ - V(lal*p) — A(al¢) + g4 = 0, (3.4)
and if # has compact support, then

()5 &) = - f B (alp) (e + 5,67 €))dr
0 3.5

— f e Vgy(t+ s, e ¢)dr,
0

where e = (e7)" is the transpose of exponential matrix in (L.6).
The following propagation of regularity in L*-space is the key step in the proof of
Theorem L1l

Theorem 3.1. Let f,u € L>(R'*"¢) so that 3.1)) holds in the weak sense. For any a > 0
and j=1,2,--- ,n—1, there is a constant C = C(a, j,d) > 0 such that

tA*

IIAQ(”” ll2 < CIIAX,Hull””IlfII‘”- (3.6)

In particular,

1+(n Jj—-Da

IIAW Il < CIIA T IIfII“(” o 3.7)




Proof. Let p : [0,00) — [0, 1] be a smooth function with p(s) = 1 for s < 1 and
p(s) =0 for s > 2. For R > 0, let yz(s, &) := p(s/R)p(|¢]/R) and

fig == xril, fr:= (A€ Vg — Oxp)il + xrf.
Since iip satisfies
Osiig — A€ - Vig — Alig + fr =0,

if we can show that for some C = C(«, j,d) > 0,

@ a 1 _a
1A uglla < CNAZ, uglly ™ I fzll}™

then letting R — oo, we get (3.6). Hence, without loss of generality, in the following,
we may and shall assume that & has compact support. We use the induction method.

Let us first look at the case of j = 1. We follow the simple argument of Alexander [1]].
For any € > 0, by Planchel’s identity, we have

M 2 * 20, 2
AT ull; = f €117 (s, €)Pdéds
—00 le
00 e . 5
:f |§1|“"1{s|§2|>|§1|1/(1+w>}|M(S,§)| déds
—00 Rnd

00 - A

" f . 1755 1o, sy |ACs, ) déds
—00 RV!

=: L1(e) + L(e).

For I,(¢), we have
ne<e [ e, epdeds = S aLul
—oo JR™

For (&), letting Q := {&]&] < [£]1%9} and by (3.5) with ¢ = 1, we have
L(g) =2 f f €177 1(&) f e YRe(f, a)(t + 5,e”™ ¢)drdéds
—00 Rnd 0
=2 f f f (€)1 75 1a(e™ &) Re(f, )1 + 5, &)drdéds
—co JRM JO

2 f f ( f |(e’A*§>1|%lg(e’A%)e—”’dr)Re(f, i)(s, £)dsdé.
—oco JRM 0

Observing that

* 2 -1
e"'¢ = (fl,tfl +&, 56 +tE + &3, ,hfl +oe 16 +§n),

since A > 0, we have

A ey A gy o= A -4
fl(et Ol loE™ Ee tdf:|§1|““f Vet vie, <ty s e ™ di
0 0 (3.8)

2a

LS f Ligsiien-ten o104 fe<rciis 16 141 Falavo 16 AE = 2161 /€.
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Hence, by Young’s inequality we have

4 = o« A
hie) < f fR I, E)dsdz

f f ) 117 (s, £)dsdt + — f fR ) |f12(s, £)dsdé

IIAii“‘” ull; + —||f||2

Combining the above calculations, we obtain

o 1 o 8
2 2 ( 2 2
IAT Tl < > IALull + SIATull} + S 115,

which in turn gives (3.0) for j = 1 by letting ¢ = (||f||2/||A§2u||2)ﬁ.

Suppose now that (3.6) has been proven for j = 1,--- ,k with k < n — 2. We want to
show that (3.6) holds for j = k + 1. For 6 > 0, we define

Ps(§) = H’jzl)((lg jl/(o""‘f'“|§k+1|<1+(k—j+2>a>/<1+a>)),

and write

AT ), = f fR el Bl HPdgds
_ f f Eenl B (1 = 3o(@)lits, £)Pdeds
—co JRnd

00 2 R
+ f 1 (|2 gs(E)l(s, £)Pdédss
—00 Rna
=: K;(0) + K>(9).
We first treat K;(6). By the induction hypothesis, one sees that for j =1,2,--- ,k,

l+a (k—j+Da

||A2(1+(k j+2)(1/)u||2 < C”AZ(I(ﬁ-a) 1+(k— /+2)(Y||f||l+(k _[+2)[I (3.9)

Xk+1

Observing that
k
1 - ¢5(§) < Z 1{|§j|>6k—j+l|§k|(l+(k—j+2)w)/(l+n)},
=1

by (3.9) and Young’s inequality, we have

k co
2a
K1(5) < Zf |§k+1|1+a] {1120 i+1]g |1 +k=j+20)/(1+a)) |M(S f)| dfds
— —c0 Rnd

2k—j+Dar

(o]
P f f 6|75 s, €)Pdéds
1 —co JRM

5T | Am ull2

N
.Mw T_

J

M»

~.
Il
—_
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2(1+a) 2(k—j+1)a

k .
<C Z 6—%”Aﬁ u”1+(k—j+2)a||f||1+(k—j+2)<r
J=1

2 2

a

1 .
< ZIIAZ(”‘”uH% + C5IIf 1l

Xk+1

Next we treat the trouble term K,(0). Let
Ewy = ELEn &), EY = (G b E)

and define
hi(s, 1) = fR (@ g5)(s, y» )0 p-
Integrating both sides of (3.4 with respect to variable &y, we get
Oshs — AniE® - Vawhs — Ahg

k
= fR . [Z &V, (P g) - g¢5] déy) = g,
j=1
and
ha(s,£9) = f e gl(r + 5,67 gW)dr.
0

Let
Ye(E®) = (111 ) = w(léial /1),

We make the following decomposition:

K@ = [ [ 1l (1= 0€) o €0
—oo JRO-0

+ f f et |50 (€0 hys(s, €0)dEPd s
—oo JR—kd
= K51(6, &) + K»n(6, &).

For K,;(6, €), we have

« 2o k k
K> (0,¢) < f f 11179 L ige sl asanfis(s, EMde®d s
—co R0

00
2 20712 2 g 2
<& “f (ka0 (s, £)dEds = || AL, ull5.
—00 le

For K»,(6, €), in view of fik) = &i41, We have

e 2a © _ _pA®
K»n(S &) = f f - €I (E0) f e gl (t + 5,67 Mg ®)drdgWds
—oco JR®- 0

:f f o (f '(em;kf(k))l'%%(emzkf(k))ewdt) 84 (5, g ds.
—00 RO~ 0

12



Letting
0 * 2a * _
Ye(€®) = f ("4 ED) Ty (e D)e M dr
0

A 1/a =
= |Epsr | T+ f X(ElEr + téi /1€ T e M de,
0

and recalling

k
S, :f 845 (& )€ +Z f &+ Ve, (1 ¢5)dé o,
RE j=1 Rkd
we may write

Kn(6, &) = f f e f 5 £ E9)0E 02V
—_ RV!— d Rl

(89

k 00
D[ S [ e Vet onenizas
j:l —00 R(n=k)d RA

=: K21(6, &) + Kan (9, €).
As in estimating (3.8]), we have
Ye(€®) < dléenl™ /e,
and also by the definition of g,
180, < 217112 + CSl&per| 711,

8 0 @A A Cd « 2a .9
K»1(0,¢) < = |Eeer| ™| f 0] + — |t | T+ ||
E Y Rm{ E Y Rmi

a

1 Co @ 2 -2 2
<(3+ L) IATTulls + CeN 1.

4 Xke+1

Hence,

Moreover, by elementary calculations, we also have

Ve Vo€ < Cléiar| ™ /6.

Thus, since it has compact support, by the integration by parts formula, we have

Kons (6, 8)] = ] f f f . 7 ED) (i 5)dE 0 dEV ds
—c0 Rn=kd J Rkd

C = PR
< — f f &kl |Exar |77 (|2 s )dEd s
E _ le

(o)

C * L2
s _f €kl 1k 7T 1017 L g i 12010y dEdLs
E —0o0 Rnd

a

< —f ErilTelal ds = —I[IAZ ulls.
E —o0 JRM E
13




Combining the above calculations, we obtain
ATl < (4 + SO ATl + AL Lull} + Coe + 51
Choosing 6 = £/(4C7), we get
||A2“‘+")u||2 282a||A

Xk+1

ully +2C5(1 + 16(CHH2 NI,
which then yields (3.6) for j = k + 1 by letting € = (||f||2/||Axk+2u||2)ﬁ. O

Xk+2

4. Proor oF THEOREM [[.1]

4.1. Case: p = 2. Without loss of generality, we may assume f € COR!"). Tt
follows from Fourier’s transformation and Holder’s inequality that

) 00 2
f A,, f _/mrs srsf (E+ s, )de
f f >

Rnd
2
L flyra NkaTAT £24.. A A%
f & f e IR f G s, e )
Rnd
R

f f (f gt RIh Y fp g e )P dt)
nd
X (f &, Pe 2 h 'w?w)*e”‘*flzd’df) déds.
0

Let O, be the dilation operator defined by (I.7). By definitions (I.3), (1.6) and (1.7), it
is easy to see that

ds

2

déds

f e T s f ( + 5,E)d1

1R (oye™E = (o) e Opn ().
Thus, by the change of variables and as in showing (2.3), we have for some ¢ > 0,

t 1
f (o4, ) e ™ éfdr = f (04, )" e ™ @ur(E)Pdr > c|®2&F,
0 0
and similarly,

f (0,) e eldr > c®unél.

Hence,

0 1t g —rA* £12 « 2 * 2
f |§n|2€_7 bl ye™ draqr < f |§n|26—0|®,1/2§| dr < f |scn|le—ct|§n| dt = C_l,
0 0 0

and

0 * _1qrt a x L (1=r)A* g2 00 * _ 2
[ e pert b gy < [, feeneiar
0 0

(oo}
i 2=t e 2 _
f |t ffjlze < Sl dr < 2¢71.
0

14
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Thus, by the change of variables and Fubini’s theorem, we further have
<c! f f f & Pet bt e et fp g e-fA*g)Pdt) déds
—00 Rnd 0

= ¢! f f f I(efA*§>,,|2e—%fg|<o—z+,>*e“'>A*f'2df|f(z+s,f)lzd’)dfds
—o0 JRM 0

_ 0 0 * _1 a * A (1=1)A* £12 A
=c"! f f f (e &),Pe™2 b e d’dt) |f(s. &)Pdéds
—00 Rnd 0

<2c? f fis, )Pdgds = 21 fIE.
—00 Rmi

The proof of (I.10) for p = 2 is thus complete by (3.7).

2

ds
2

Ax,, f e_/u7-s,t+sf(t + s, -)dt
0

4.2. Case: p € (2,00). For j=1,---,nand g € (0, 1), let us define
L e .
Dif = Pife(s, x) = A fo e VT & St + 5, x)d8,

where f.(t,x) = f(f) * 0.(x), 0:(x) = £™o(x/e) is a family of mollifiers with o €
C(R™) and f o = 1, and the superscript a denotes the dependence on the diffusion
coefficient a. To use Theorem [2.4] our main task is to show that 32}9 is a bounded

linear operator from L®(R!*"¢) to BMO. More precisely, we want to prove that for any
f € L>®R") with ||fll < 1, and any Q = Q,(ty, xo) € Q,

f |2 fo(s,0) = I < C, (4.1)
Q

where CjQ

not on &.

is a constant depending on Q and f, and C only depends on n, «, p, d, and

Lemma 4.1. (Scaling Property) For any Q = Q,(ty, xo) € Q, we have
2 3 2
JC |24 fuls, %) = ] :JC | P4 s, x) — (4.2)
0,(0,x0) 0100

where ¢ € R, &, = a2y, and fu(t, x) := fu(r’t+15, ©,x + e x0). Here ©, is the dilation
operator defined in (1.7).

Proof. Let us write
us(s, x) := f e VT, Jolt + 5, )dr.
0

By the change of variables, we have

(8, %) := 1 2u(r’s + to, ©,x + e x) = f e_A"TfHng(t + s, x)dr.
0

15



Noticing that

1 1
A7 1), %) = (AT u)(7s + 10, ©,x + e ),

by the change of variables again, we have

1 1
i 2 . 2
T+2(n—)) _ T+2(n—)) ~
JC AT T up(s,x) = | = J[ AT (s, x) = cf .
O,(to.x0) 01(0)

The proof is finished. O

Noticing that

f e T ot + 5, x)dt = f e'NTE fo(t, x)dt,
0 K
for s € [-1, 1], we split Ezjf(s, X) = @flf(s, X) + @jzf(s, x) with

1 2
P (s, x) = AT f eI £, x)dt,

N

1 0
Pof(s,x) = A" f e CIT fult, x)dt.

2

Convention: Without extra declaration, all the constants contained in “<” will depend
only on n, «, p,d.

Lemma 4.2. Under (1.2), there is a constant C = C(n,k, p,d) > 0 such that for all
fe L2 R with IIfllo < 1,

sup f |25 f(s, 0 < C. (4.3)
01(0)

£€(0,1)

Proof. For s € [-1, 1], let

2 00
Ue(s, x) = f e'CIT fuolt, x)dt = f e T (1121 £ () (x)de.

Since || f|l < 1, we have
lug()llo <3, s€[-1,1]. (4.4)
By (2.6), we have for any s € [-1, 1],

2 2
IV, ue($)lleo < f IV, T fe(Dllodt < f (t—s)""Pdr < 1. (4.5)
Let ¢ be a nonnegative smooth cutoff function in R" with ¢(x) = 1 for |x| < n and
¢(x) = 0 for |x| > 2n. Notice that
asus + Zus + f:gl[_l’z](s) =0.
It is easy to see that u ¢ satisfies

0s(uep) + L5 (ugp) = ZLy(uep) — (Lsue)p — fepli121(s) =: g%,
16



which implies by (1.9) that

(Uep)(s, X) = f e'T 841, x)dt.

By the definition of ,@f , we have

1 1
2 +2(n—j 2 +2(n—j 2
f |‘@j1f| :f |A)lcj2( j)u8| < fl d|(A)lcj-2( j)us)§0|
01(0) 01(0) RI+n

SE T 2 SForm R 2
<20A5 7 wep)|], + 2/|ATT o) = AT w e, =1 1y +
For I, by (LIQ) for p = 2 and @.4)), 4.3), we have

I N Ao
A)l(;Z(n*j) f e/l(x_t)Tv,tgz(t, x)dl,

N

For I, if j = n, then by (@.4) and @.3),
L=2 usAx,,‘p + vanus : Vx,,QOHi s
if j=1,---,n— 1, then by definition 2.4) and (4.4),

A
—

11:

< gl <
2

1) (1 1) 1)
0 u, 6% 165 1 63l
12 = d+2/(1+2(n—))) de < d+2/(1+2(n—))) de
R4 |Zj| 5 R4 |Zj|
1)
65, ¢l LAkl
< 5. -4z 5 A4 S L.
Rd |Zj|d+2/(l+2(n—])) J Rd |Zj|d+2/(l+2(n—])) J
The proof is complete. O

The next lemma is crucial for treating 9}92 f-

Lemma 4.3. Under (I.3), there is a constant C = C(n,k, p,d) > 0 such that for all
f e L@ with || fllo < 1 and all s € [-1,1],

(o6}
sup [
£€(0,1) J2

Proof. Noticing that by (T.9), for each s € (0, f) and x € R",

1

1 i
A T folt,0) = A" T, fo(2, 0)|dr < C. (4.6)

Toufe(t, X) = Tufo(t, x) = fo S LT rafeo(t, x)dr, 4.7
we have
(s, 1) = AWTO,JS(L 0) - AWTS,JS(I, 0)
:lﬂMﬁ@zwamﬁmm

For j =1, we have for all s € [-1, 1],

00 00 s 1
[ o= [C] [ (AT V27 ) 0
2 2 0

17
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f f IA““” w OV T fl(t, 0)drdt
ff(t—r) 32drdr < 1.

For j = n, we have for all s € [-1, 1],

folol;f(s, nldr = foo
2

f f Klen Xn r,tfs| + |(Vx,1 . Vxn,l)Tr,tf:sD(t’ O)dl’df

< f f (t—r)2drdt < 1.
2 0

For j=2,---,n—1, since A;;z(””) is a nonlocal operator, we have to carefully treat the

—l =
trouble term A" (x; - V.. T, fe)(2, 0). Fix

S

(A i@, - V2) + (Y, - Vo )T fe)(2, 0)dr| dt

2=+l Qn—j+1)
76( " 2n—)) )

By 2.4) and @.7), we may write

. dz
(s, 1) = (6:, To.fo(1, 0) = 6. T fo(t, 0))W
zj1>27 J

5 VT £t O)dr| ——
+ e o thr(ar' xn) r,tfs(t, )l" |Zj|d+2/(1+2(”—j))

s dzj
+ j|;|<ﬂ (fo 5Zj(A.x . V(].;,t.f:‘))(t, O)dr) Wm
Ly (s, 1) + (s, ) + 15(s, 1).

For Is (s, 1), thanks to v > 2(n— J)+1

€ =2y/(1+2(n~j))
f |I 1(s,0)ldr < f [I>ﬂ |Z]|d+2/(1+2(" ])) f d drs 1.
2j

For I%,(s, 1), by 2.6) and y < %, we have for all s € [-1, 1],

dz;
[ onaes [T [ 9T iy o
JI
Izjldzj
(t = )= ( f drdt
f f e |Zj|d+2/(1+2(n )

< f (t— 1)—(2(n—j)+3)/2t7(1—2/(1+2(n—j)))dt <1.
2

18

we have forall s € [-1, 1],



For Is S (s, 0), letting Z; = (0,---,0,z;,0,---,0) and observing that

|zjl<r |Zj|d+2/(1+2(n_j))

by 2.6) and y < M , we have for all s € [-1, 1],

)
f f Tt 5)—— g,
<j x rtl)e z, Zj T Ty
0Ji i< j-1 |d+2/(1+2(n )

f 15 (s, )ldt = f
2 2
00 S . dZ
= 2j - V(T fe(t,Z)) — T (2, 0))mdr
2 [JoJpi<r il
< |z, ||VXjVXj_17-r,lf8||oomdr
2 |zj|<[7 |
oo 2
< f f (t — r) 202 f lZ’ "z, )dt
) e |Zj|d+2/(1+2(n )

< f (l‘ _ 1)—2(n—j)—2t7(2—2/(1+2(n—j)))dt < 1.
2

Combining the above calculations, we obtain the desired estimate. m]

dt

dr

dt

Lemma 4.4. Under (I.3), there is a constant C > 0 depending only on n, k, p,d such
that for all f € LR with || flle < 1

’

sup f |5, f(s,x) = Z5f(0,0) < C. (4.8)
01(0)

£€(0,1)

Proof. By definition, we have
P5f(s, %) = P5,1(0,0)] < f €160 — M JATTT T £ (1)odt
2
00 1 1
+ f e YA T fot, X) = AL T fo(2,0)]de
2

) 1 1
+ f AT fult, 0) = AT T fi(e, O)ldr
2

=: [1(s) + L(s, x) + I3(s).
Noticing that by (2.6),

1
+2(n—j -1
1A T fe@ll S (= 5)7",

”Vx,(A;;fZ(n—/) 7-s,tfs(t)||oo < (l )—(Z(n—k)+3)/2’
we have for all s € [-1, 1],

Il < f |e/l(s—t) _ e—/ltl(t _ S)_ldt
2

<let —1] f e Mdr=le" - 1le /A< 1,
2



and for all (s, x) € 0,(0),

L(s,x) < f (t — 5)"Cn=0rI2qr < 1.
D>

=1
Moreover, by (4.6), we have for all s € [-1, 1],

L(s) < 1.
Combining the above calculations, we obtain (4.8]). O

Now we can give

Proof of (L10) for p € (2,c0). By Lemmas[.1} 4.2land[4.4] it is easy to see that &7 :
L*(R!"*") — BMO is a bounded linear operator with bound independent of &. Esti-
mate (I.10) for p € (2, ) follows by Theorem [2.4] and the well-proved estimate for
p= 2. O

4.3. Case: p € (1,2). We shall use duality argument to show (L.10) for p € (1, 2). Let
T ,; be the adjoint operator of 77, that is,

f 8T s.f = f JT .8

By the definition of 7,, we have

A
T (0 o= T f() = Bf (e(s_’)Ax - e<s-r>Aade,).

For j=1,---,n, we introduce a new operator

D5f 1= 2 f(s,x) = f

—00

t

1
e/l(s_t)Ti}aA;;Z(n_ﬂﬁa(s, )C)dS,

where f.(t,x) = f(t,") * 0:(x) so that 2 is well defined for f € L® (R, Notice
that Q;’ can be considered as the adjoint operator of 9}“ in the sense that

[#ire= [ 2er

As in the previous subsection, we want to show that
27 is a bounded linear operator from L*(R'*") to BMO.

First of all, as in Lemma 4.1 we have

JC |£2?fs(5, x) — C|2 = JC |Q?f;(s, x) — c|2,
Q:(to.x0) 01(0)

where @ and f are defined as in Lemma[.Il We aim to prove that there is a constant
C = C(n,k, p,d) > 0 independent of & € (0, 1) such that for all f € L*(R'"*") with
1flle < 1,

f |27 Fi(s,0) - o < C.
01(0)
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Below we drop a and the tilde, and make the following decomposition as above,

t -2
Qj.f(t,x):( f + f )e*“—’) A‘”(” D fuls, x)ds =1 2 f(1, x) + 25 f (¢, %).
-2 —00

The following lemma is crucial for treating 27,.

Lemma 4.5. Let ¢ € C¥(R™). For any p € [1,2], there are constants Ce, B > 0 such
that for allh € L>(R™) and 0 <t — s < 3,

L
1A (T h) = @ Ts @)l < Cylt = sV 1A, (4.9)
IIA”Z(" M (@5 Ts.(ph)) = @ IAZZ(" "T ol < Cplt = sV 1AL, (4.10)
where ¢, (x) := o™ x).
Proof. (1) Let p(o)(y) be the distribution density of X;;(0). By the definition and the

chain rule, we have

Vo Touf(x) = f(y)vx,pﬁf?(y — &™) (x)dy

(1= 5"
\vj 0 (t A d
fR ) f(y)Z( e P T

i=1

j ..
(t— sy
e ;Wy,-pf?)(y)wd

By this formula, we have
||ij7-s,t(‘102h) - QOS,IVXJTS,I(‘ph)Hp

j-i 4.11)

J

~ 9

<9l Y [ 19,100 ray.
i=1 YR"

By (2.1, we have

IV, PNy (¢ = 5) 02 f [yle™ o1 dy

Rnd =1 Rnd
< Z(t _ S)—(n2d+2(k—i))/2f e—CIG(,,S)fl/zylzﬂdy < Z(t _ S)i_k.
=1 R =1

Substituting this into (&.11)), we obtain

IV, T(@h) = 0 Vo T o)l < llohll,p (2 = 8" < IRl = 5)7™",
and further,

IV, (Ts.0(0%h) = 05, T (@)l < Whlla(t = 5)7".

Hence, for j=1,2,--- ,n—1,

L
AT (T (@7 h) = @0 T (@)l
21



dz;
2 J
< fR T = Ty

dz;
<2 f (Tl + s TPl )
lej1> (=57 |z,

|z;ldz;
+ f UV (T @) = 05 T ey~ im0
lejI<(t=syr=i |z

de

il (s |23/ 1H20=D)

< (lp?hll, + llghll )

|z;ldz;

j 2(n—j)
+ 1Al — 5)™" f ————— < ||hll(t = 5)” D,
IZJIS(I—S)”’f |Zj|d+2/(1+2(n—j))

Thus we get (4.9). For j = n, (4.9) is direct by the chain rule.
(2)For j=1,---,n—1, by 2.7) we have

1 1

AT (@3 T () — @ AT T (o)l
- f 165005 ool T (o),

X Rd

| Zj|d+2/(l+2(n— ) Zj

LA (= 9)"Iz;]) 21-)
<t [ ey S = 97,

which gives (@.10). For j = n, (4.10Q) is direct by the chain rule.

O

Lemma 4.6. Under (I.3), there is a constant C = C(n,k, p,d) > 0 such that for all

f e L>®R™ ) with ||f]le < 1,

sup f |25, f (s, Y <C.
01(0)

£€(0,1)

Proof. Fort € [-2, 1], define

1

us(t, x) := 25, f(t,x) = f e CIT AT (Lo fo)(8))()ds.

—00

(4.12)

Let ¢ be a nonnegative smooth cutoff function in R with ¢(x) = 1 for |x| < 1 and

¢(x) = 0 for |x| > 2. We have

2 2
||M||L2(Q1(0)) < 1=, nuell, = sup f Lo jue™h
lAlla<1 JRI+d

1t
= sup f 1 dl[_w [ f T (*h(1))dt
R+n .

[lAll2<1

< sup
[Ihll2<1

1 1
T2 A" f e IT (P*h(e))dt

22

1



Since the support of ¢ (x) = ¢(e"4x) is contained in {x : |x| < n} for |t — 5| < 3, by
@9) and (@.10), we have for any h € L2 (R'*) with ||h||, < 1.

1l
“1[_2,1]A;;””‘“ f e T, (P h(D)dt

@9
<

1

L 1
oA f e T (ph()dt|| +1

1

@.10)

1 1
< -2 f e AT (ph(t)de]| + 1

1

+1

1 L
<o, f g AT (oh(h)dr

2

1 1
T Ay f e T (ph(t)de]| +1

<
2
@9
<

1 e
A)lc;rz(n—/) f e/l(s_t)Tv,t( 1 2.1] gozh(t))dt

Sll*hll, +1 51,

+1
2

where the last step is due to (I.IQ) for p = 2. The proof is complete. |

The following lemma is the same as in Lemma 4.4

Lemma 4.7. Under (I3, there is a constant C = C(n,k, p,d) > 0 such that for all
fe LR with Iflle < 1,

sp [ 19500 - 2700 <.
£€(0,1) J 0,(0)

Proof. By @2.77), we have forall ¢ € [-1, 1],

[ trar
S,

-2t .
= f f |2 T AT £(s, 0)|drds
—00 ()

1 1
Tolhi 7 fol,0) = T oA fulls, 0)]ds

0, A" f(5,0)|drds

2 L
= f f ltr(a, - V2T 2, A" £.(s,0)|drds
—00 0

-2
< Cf f(r —s)2drds < C.
—00 0

Using this estimate and (2.7), as in the proof of Lemma 4.4l we obtain the desired

estimate. O
23



Proof of (10) for p € (1,2). By Lemmas[4.6land we know that
2% : L(R'*?) — BMO is bounded with norm independent of .
Moreover, by duality, we also have
2% PR - L*(R'>?) is bounded with norm independent of &.

Hence, for g = p/(p — 1) € (2, ), by Theorem 2.4} we have for some C > 0 indepen-
dent of ¢,

12511, =

! 1
‘f e/l(x—t)T;itA;;z(n—j) fgds
—00

Now for p € (1,2), by Fatou’s lemma, we get

t 1
f e/l(S—t)T::tA)lc;-Z(n—J) hds

< Cliflly
q

12 fll, < IIfl, sup

i<t [|J=e0 g
4 1
< |Ifll, sup lim f TN hods|| < ClIfllp,
Il <1 =0 || =0 .
which gives (LI0) for p € (1,2). o
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