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ABSTRACT. For p € (1, ), let u(t, x,v) and f(¢, x,v) be in LP(R X R? x
R9) and satisfy the following nonlocal kinetic Fokker-Plank equation on
R!*24 in the weak sense:

u+v -V =A"u+ f,

where @ € (0,2) and AS/ ? is the usual fractional Laplacian applied to
v-variable. We show that there is a constant C = C(p, @, d) > 0 such that
for any f(t, x,v) € LP(R x RY x RY) = LP(R!*%4),

AT, + AT ull, < Clf s
where || - ||, is the usual L-norm in L(R'*2¢; dz). In fact, in this paper
the above inequality is established for a large class of time-dependent
non-local kinetic Fokker-Plank equations on R'*?¢_ with U,v and 2y in
place of v- V, and A" See Theorem 3.3 for details.

1. INTRODUCTION

Consider the following classical heat equation in R'*¢ = R x R¢:
ou =Au+ f,

where A is the Laplacian in R?. It is by now a classical result that for any
p € (1,00), there is a constant C = C(d, p) > 0 such that for all f(¢,x) €
LP(R x RY),
Alogi-ay < Cllfllzogrea,

which is an easy consequence of the classical Mihlin’s multiplier theorem
(cf. [8]), and plays a basic role in the L”-theory of second-order parabolic
equations (cf. [7]). This type of estimate has been extended to the nonlocal
Lévy operators (a class of pseudo-differential operators with non-smooth
symbols) in [9] and [15].

In this paper, we are concerned with the following kinetic equation in
Rl+2d :

Ou+v-Vau=A"u+f, ae(0,2], (1.1)

where u(t, x, v) and f(t, x, v) are Borel measurable functions in R'*%, (¢, x, v)

stands for the time, position and velocity variables, and Ag/ 2= —(=A)Y? is
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the usual fractional Laplacian with respect to the velocity variable. When
a = 2, Kolmogorov in [6] first constructed the fundamental solution of de-
generate operator d, + v - V, — A,. Observe that, using It6’s formula, it is
easy to verify that the infinitesimal generator of the diffusion process

!
t— (xo - f X}°ds, X,VO)
0

where X;° is a Browian motion on R starting from v, with infinitesimal
generator A, 1s Ay — v - V.. Thus for T > 0, the solution u(¢, x, v) to (1.1) on
(=00, T] X RY x RY with @ = 2 and u(T, x, v) = 0 is given by

T—t s
u(t,x,v):E[f f(T—t—s,x—erVdr,XZ)ds].
0 0

In [5], Hormander established a famous hypoelliptic theorem for general

second order partial differential operators. A more precise global hypoel-

liptic regularity estimates are established by Bouchut in [2] in 2002:
Al + 1A Pully < Clif - (1.2)

Note that for “nice” f(t, x,v) on R x RY x R,

u(t,x,v) = — foo f(s,x+v(s—1),v)ds

is a solution to d,u + v - V,u = f. One can show directly (see [2]) that for
any a > 0,
”Az/(2(1+a/))u”2 <c ||A$/2M||;/(l+w) ||f||(21/(1+(1/)
In particular, taking o = 2 yields
1/3 1/3 1 o112/3
1A ully < c llAvully A1

This explains the mystery of 1/3 appeared in the exponent of Ay in (1.2).
When p # 2, through establishing some weak-type (1, 1) estimate, Bra-
manti, Cupini, Lanconelli and Priola [3] proved the following global regu-
larity estimate

lAull, < ClIfll,, p € (1,00),
which, together with a result of Bouchut in [2], also yields that
IAY ull, < ClIfll,, p € (1,00).

It should be noted that the optimal local LP-estimates for hypoelliptic dif-
ferential operators have been studied by Rothschild and Stein in [10], where
IIA}/ 3u||2 term first appeared.

On the other hand, for @ € (0,2), Alexander [1] proved the following
L?*-regularity estimate for (1.1) by using Fourier’s transformation,

231 2
|A27CA+ N 11 4 |AY2 U]y < ClIflo.
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A natural question arises whether the above fractional hypoellipticity esti-
mate still holds for general p € (1, 00). Clearly, such type estimates belong
to the theory of singular integral operators. In fact, as pointed out in [1], the
main motivation of studying the above nonlocal regularity also comes from
the investigation of spacially inhomogeneous Boltzmann equations. Let us
explain this point in detail (see also [13]). Denote by v and v, the veloc-
ities of two particles immediately before the collision, and v’ and v/, their
velocities immediately after the collision. Physics law says
V=v-—(Vv-v,ww, V.=Vv,+{-V, 0w, weS",
where S97! is the unit sphere in RY. We have the following relations:
VAV =V VL, Vvl =V =V VPP = VP IVE
(i.e. conservation of velocities and conservation of energies) and
(V' w) =(vi,w), (V,,w)=(v,w).
Let f be the density of gases. The classical Boltzmann equation says

8tf(t’ X, V) +Vv- fo(ta X, V) = Q(f’ f)(t’ X, V)a
where Q(f, g) is the collision operator defined by
O(f,9)(v) := f (f(v)e(V') = f(v.)g(WM)B(V — V.|, w)dwdv,,
R4 gd-1
where
B(lv = V.|, w) = [v = v."B(KV = V.., w)|/IV = V.),
and
b(s) < s @€ (0,2)andy +a € (-1, 1),

where < means that both sides are comparable up to a constant. Here and
below, we drop “(¢, x)” for simplicity. By an elementary calculation, the col-
lision operator has the following Carleman’s representation (see Appendix
4.1):

o =2 [ L =g e v s g

X B(lh — w|, w/[wDIw|'"“dhdw.

l-a

(1.3)

In particular, when b(s) = s~ ~%, we can split Q into two parts

O(f.8) = Qi(f, 8 + Qa(f. 8)s

where Q:(f, g)(v) := g(v)H(v) with
|h _ |y+1+a

Hy(v) = 2ff (f(v—h)—f(v—h+w))—ddhdw,
R (hw=0) [wlo*
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and
Ky(v,w)

|W|a+d

Oo(f, (V) := fR S8V +w) = g(v)) dw

with
Kp(v,w) =2 f fv = h)h—w**dh.
{h-w=0}

The linearized Boltzmann equation then takes the following form that in-
volves non-local operator of fractional Laplacian type:

dg+v-Vig=pv. | (8¢ +w)-g()———07F
R4 [wl

Note that K is a symmetric kernel in w, i.e., K¢(-,w) = K¢(-,—w), and gH
is a zero order term in g.

dw + g Hy.

The goal of this paper is to study the following nonlocal kinetic Fokker-
Planck equation:

osu+ UV -Vau+ Au = f [u(~ +ow)+u(-+ow)— 2u(-)]vs(dw),
R4

where 1 > 0, v, : R, — LY and U,, 0, : R, — M are measurable
functions. Here, L2 is the space of non-degenerate symmetric a-stable
Lévy measures and M?  is the space of all nonsingular d X d-matrices.
Under suitable assumptions on v, o and U, we will establish in Theorem

3.3 of this paper the following L”-maximal hypoelliptic regularity:
g G|+ [y, < Cllflly p e (1, 00).

The rest of the paper is organized as follows. In Section 2, we give some
preliminaries. In particular, we derive some estimates about the density
of the processes associated with the nonlocal operators. We also recall
Fefferman-Stein’s theorem. In Section 3, we prove our main result Theo-
rem 3.3 for p # 2 by showing the boundedness of suitably defined operators
from L™ to BMO-spaces. Some useful facts needed in this paper are col-
lected in Subsections 4.1-4.2 of the Appendix of this paper. The proof of
Theorem 3.3 for p = 2 is given in Subsection 4.3. Its proof is new and more
elementary even for the time-independent case (that is, U is independent
of s) studied in Alexander [1]. This elementary proof is based on a direct
Fourier transform.

Throughout this paper we use the following convention. The letter C
with or without subscripts will denote an unimportant constant, whose value
may change in different places. Moreover, f < g means that f < Cg for
some constant C > 0, and f =< g means that C~'g < f < Cg for some
C > 1. We use := as a way of definition. For two real numbers a and b,
aV b :=max{a, b}, a A b := min{a, b} and a* := max{a, 0}.
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2. PRELIMINARIES

Let L™ be the set of all symmetric Lévy measures v on R?, that is, (pos-
itive) measures v on R? such that

v(=dx) = v(dx), v({0}) =0, f (1 A xP)v(dx) < +co.

R
We equip L with the weak convergence topology. For @ € (0,2), let
L@ c 9™ be the set of all symmetric a-stable measures v'® with form

VD(A) = f m( f w)dn A € BRY), (2.1
0 gd-1

r1+a'

where X is a finite symmetric measure over the sphere S¢~! (called spherical
measure of v\¥).
We introduce the following notions.

Definition 2.1. (i) A symmetric a-stable measure v\ € L™ s called
non-degenerate if

f N 6 - 617Z(d6) > 0 for every 6 € S*". (2.2)
"

The set of all non-degenerate symmetric a-stable measures is denoted
b Lsym,(a)
y non .

(ii) For vi,v, € L™, we say that v, is less than v, (simply written as
vi <) if

vi(A) < v2(A)  forany A € BRY).

Remark 2.2. In this paper, for simplicity we only consider symmetric sta-
ble Lévy measures. This assumption is not crucial. All the results of this
paper can be extended to non-symmetric stable Lévy measures.

For a function f € Ci(Rd), we define the difference operators of first and
second orders as follows: for x,y € R,

SVf) = fo+ 0 - fo), 6PF) =600+ 6N fG).  (2.3)
Using the fact that

1
FO+ 30— fO) = x- fo Yy + sx)ds,

we have for any p € [1, 0] and f € CA(R?) N LP(RY) that

165 £, < AV AUl A ), (2.4)

167 fll, < AV £l XY A GIFIL)- (2.5)
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Let M be the space of all real d x d-matrices and M , the set of all non-
singular matrices. The identity matrix is denoted by I, and the transpose of
a matrix o is denoted by o*. Let S(RY) be the space of rapidly decreasing
functions. For given v € L™, o € M? and a € (0,2), we consider the

following Lévy operator:

Zrf) = f SOfOMAR), f € SRY. (2.6)
R4
Let ¢/ be the symbol of operator £, i.e.,

LI = -yl f &),

where f denotes the Fourier transform of f. The function Y 1s also called
a Fourier multiplier. It is easy to see that

Yh(€) =2 fR (1= cos (&, axpv(dx). (2.7
In particular, for given v;, v, € L™, if v; < v,, then for any o € M¢,
UE) S URE), YEERY, (2.8)
and by (2.7), (2.1) and (2.2), for any v@ € L@,
W (&) = o E’, £ € R, o e M (2.9)

Moreover, if v(dy) = [y|™¢"®dy, then Yr(€) = caalo™é|®, where cq, 1s a
constant only depending on d, @. In this case,

LYFO) = caaAIf (), (2.10)

where A? is the usual fractional Laplacian. In this paper, up to a constant
multiple, we always use the following definition of fractional Laplacian:

d
AT f(y) = f 52 f(y) lxldf@- @11
R4

We have the following commutator estimate.

Lemma 2.3. Let @ € (0,2),0 € M? and v € LY y@ e LY@ with
v < V9, Forany p,q € [1,00] with p < g andy € ((a — 1)*, 1), and for any
¢ e Cf’(Rd), there is a positive constant Cy depending on ||V§</)|| »+éll, and
llol, V'@, d, a, p, q,y such that for any measurable function f on R?,

12:(£9) = (L2 Nl < Coll sy + 1111l (2.12)

where [f1g, := sup, (163 fll,/1x").



Proof. By definition (2.6), we have

L)~ (LN~ L0 =2 f 500 £ 60 v(d).

R

Hence, by Holder’s inequality with 1‘—7 = é +Landy <V,

IZ5(fp) = (L5 Nl < fllg 125811 + 2j1;d 166f1lg 165117 (dx).

Notice that
1652 £1ly < ([flgylox) A 2UI£1l)-
The desired estimate then follows by (2.1), (2.4) and (2.5). O

2.1. Fundamental solutions of nonlocal kinetic Fokker-Planck opera-
tor. In the following, for a function f(x,v) € C;(R*), we shall write

SV Fx,v) == 0V fx, V), 8P f(x, V) = 8P f(x, (V).
LYV = LU0, AL F(xv) = AT f(x, (W),

and similarly for 59) f(x,v), 5;2) f(x,v), A% f(x,v).
Let o, U : R —» M? be two matrix-valued measurable functions with

non

. -1 -1
ko := llolleo + o oo + Ul + sup (2 = $)IITIL}]]) < oo,
s<t

y (2.13)
where II;, := f U.dr, s,te Rwith s <.

The above assumptions correspond to the non-degeneracy on o and U. Let
v : R — L" be a measurable map and satisfying that for some « € (0, 2),

(@) (@) (@) | (@) m,
Vi <<y, VY e L@, (2.14)

non

Notice that by (2.8) and (2.9), there is a constant x; € (0, 1) depending on
ko and a such that

K <y (&) < k0, EeR (2.15)

By the above notations, we consider the following time-dependent nonlocal
kinetic Fokker-Planck operator

A f(x,v) 1= 232 f(x, V) + Uy - V) f(x,v). (2.16)

In this subsection we study the existence of smooth fundamental solu-
tions for #; by using a probabilistic approach, and establish some short
time asymptotic estimates for the heat kernel. Note that the existence of
smooth fundamental solution of nonlocal Hérmander operators was studied

in [16, 17, 18] (see also the references therein).
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Let N(dt, dv) be the Poisson random measure on R'*¢ with intensity mea-
sure v,(dv)dz, and N(dt, dv) := N(dt, dv)—v,(dv)ds the compensated Poisson
random measure. For s < 7, define

t t
Ly, := f f vN(dr, dv) + f f vN(dr, dv), (2.17)
sk sJv>1

and I, := fs ' U,dr as well as

t r !
Ks,t = (Xs,t, Vs,t) L= (f U, |:f o-r’dLs,r'] draf O-rdLs,r)
st s t s
= (f Hr,to-rdLs,r’f O-rdLs,r) s

where the second equality is due to Fubini’s theorem. Notice that (X;,, V)
solves the following liner SDE:

d(XS,la Vs,t) = (Utvs,ta O)dt + (O’ O-tdLs,t), (Xs,s, Vs,s) = (Oa 0), t=s. (219)

(2.18)

Forany s < fand x,v € R4, let
K(x,v) =K, + (x+1II,v,v) = (X, + x+11,v, Vi, +v),
which solves (2.19) with starting point (x, v). In particular,
(K (x, V), > s, (x,v) € R*)

forms a family of time-inhomogenous Markov processes. Let 7, be the
associated Markov operator:

Toef (6,V) := Bf (K, (x, V), f € Bp(RY), (2.20)
where B,(R?) is the set of bounded measurable functions on R?. Clearly,
foreach r > s and p € [1, 0], 7, is a contraction operator in L” (R?%) and

Tsif =TT rsf, SS<r<t. (2.21)
Moreover, for any f € C;(R*), T, f satisfies the following backward Kol-

mogorov’s equation (for example, see [14]): for Lebesgue-almost all s < ¢
and all x,v € R¢,

OsT 51 f (X, V) + AT 5,1 f(x,v) = 0, (2.22)
where 7 is defined by (2.16). The Fourier transform of 7, f is given by
Touf (€ 1) = Be ETLOK0 fig T £). (2.23)

Below, we use the following convention: If a quantity depends on v, o
and U, and when we want to emphasize the dependence, we shall write them
in the place of superscript. For example, there is no further declarations, we
sometimes use X;f;U, Ve, Ky T, and so on.

First of all, we have
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Lemma 2.4. Under (2.14), for any q € [0,«), there is a constant C =
c, v(;'), q, @) > 0 such that for any bounded measurable function f : R —

M and s < t,
o s

Proof. Since v is symmetric, we can write

! t
L, = f f vN(dr,dv) + f f vN(dr, dv).
sUvIg(t—s)l/e sUV|>(t—s)l /@

By Holder’s inequality and the isometry of stochastic integral, we have

2\q/2
' f f f.vN(dr, dV) ( ]
[vI<(@-s)l/e
q/2
:( f f | frvlzvr(dv)dr)
sJVIL(@-s)l /e

q/2
(2.14) ) (Q)
< flein | C=9) V7 (dv)

< OISl (= 9% (2.24)

f.vN(dr, dv)

\SEORE

NNGEORA

@n . 4
<y (8= 95
If g € (1, @), then by Burkholder’s inequality (see [11, (2.10)]),

t q t q
E f f FVN(dr,dv)| < ( f f | frvlvr(dv)dr)
sJ|V[>(t—s)l/ sJV[>(t—s)l/a
!
+ff | fsv|?v,(dv)dr
sUv[>(t—s)l/

q

ufan@t)( ) hdvg”(dv))
V> (t—s)/e

1 W (7 = 5) V57 (dv)
V> (t—s)/e

20 B
<= )5
If g € (0, 1], then

| f f JrvN(dr, dv) ( f f |fVI“N(dr, dv))
[v|>(t—s)/@ [VI>(t—s)!/e

f f vty dvydr < A R G
[V[>(t—s)/a

Combining the above calculations, we obtain the desired estimate. O
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The following is a crucial lemma of this paper.

Lemma 2.5. Under (2.13) and (2.14), the random variable K, defined
by (2.18) has a smooth density p},(x,v). Moreover, for any n m € Ny
and q1,q> € [0,a) with g, + g, < a, there exists a positive constant C =
C(d,n,m, ko, vga), qi, @) such that for all s < t,

f x| V2 VIV L (x, vldxdy < C(2 — 5)(@0(reremmie (3 25)
R2d

Proof. We divide the proof into four steps. All the constants below will

depend only on d, n, m, «q, vga), g,

(i) First of all, we assume that

— @ sym,(@)
vy = v e LY.

Let L be an a-stable process with the Lévy measure . Since for any
s < t, L"” has the following scaling property:

Y@ (d) Y@
(Lu—s)r),/ (@=L ), >0’
by (2.18) and the change of variables, we have

1 ~
Kﬁ”@(a—sﬁ+{f'nﬂ~rL”>u—sw”f ndu@)
’ 0o 0 (2.26)

a, 1o
= ((t= 9" X7, (0 = 97V,

where U, := U(—s)r+s and 0, := 0 (1_5)+s. This implies that
,,( ) ., _U_g @ 5 _1_ _1
Vv =@- 7y 70— -7, (227)

Hence, 1f one can show that for any n, m € N,
f 9 V2 7V o7 (x, v)ldady < (2.28)
R2d

then (2.25) for v, = v immediately follows by (2.27).
(ii) We make the following further decomposition:
VO = v+ vy, vi(dv) == vO>dV) L, va(dv) = vO>dV) Isr. (2.29)

Let L, i = 1,2 be two independent Lévy processes with the Lévy measures
v; respectively. Fori = 1,2, let K}/, = (X}, V) be defined as in (2.18) with

8,12

&, U and L in place of o, U and L . In particular,

5,0 (d) KV] + sz

s,

K (2.30)

which implies that

V( )O' Vi V: V:
U(x V) = Epm( onl,V—Vz)
10



where py', (x, v) is the distributional density of Ki',. In view of g + g2 < @,
by (2.18) and (2.24), we have

E[(1+1X217)(1 + Vi3 1®)] < oo.

Thus, in order to show (2.28), it suffices to prove that for any n,m € N,

f (1 + |x1")(1 + [V[™)IViVY pyt (x, v)ldxdy < C. (2.31)
R2d ’

(iii) Below, for simplicity of notation, we drop the tilde over &, U. Recall
fors <1, K}, = ( ﬁ ' I1,,0,dL;", ﬁ ' O'rdLr') . By step function approximation,
we have

!
BN — Bexp (i [ {omg s omary ))

!
= exp (—f Yy (O'jHZ,f + an) dr), (2.32)
where 1! is the characteristic exponent of L, that is, Eeiél' = ¢ W"®,
which has the following expression
v©= [ a-cosemm e, (2.33)
lvi<1

Denote the Lévy exponent of L"” and L by y”” and y”, respectively.
Then 2 1s bounded and Wm) (&) < |€]*. Hence there are constants M > 1
and ¢y > 0 so that

V) =@ 9O 2 colél” forlél > M.
On the other hand, note that

l//v‘(§)>f (1 = cos (&, V)V (dv) =: ')
vi<1/2M)

Since y|" is C-smooth with V' (0) = 0, we have

1l
1) = ff f (&,v)? cos (ss5'&, vIV@(dv)dsds’
0Jo Ji<1/em)

> cos() &, VYVD(Av) > colé*  for |é] < M.
[vI<1/(2M)

Thus by decreasing the value of ¢ if needed, we have
U (E) > co(él Alél")  for & e R (2.34)
Hence

ft Y (o’jnjtf + O'jl]) ds > ¢ ft

2 a
ds

A

*TT* * B *
O-FHr,tg + O-rn O-rHr,té‘: + O-rn
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. collleIZT A lle M)
(ko + 1)?=@
inf f |t — 7' & + 7 dr. (2.35)
I£I2+Irll2

Fix ¢, € € (0, 1/2) being small, whose values will be determined below. For
&, € R with |€]* + |7j|*> = 1, we have either |£]> > 1 — § or |fj|* > 6. Since
la + bI* > 1la* - |bl%, in the former case, we have

! s+e(t—s)
f |t =) 1H*g+q| dr > f |(t = 7' € + nl dr

s+e(t—s) X 0 s
> [ (-9 - ) ar

s+e(t—s) |g| 2
> [ (—1) dr ~ 7Pe(t - 5)
B TS T ]

1 —
= ( 25 —6)s(t— s),
4/<0

(I = 98 mP Al = )€ mI°)

and in the later case,

[i-amseatar [ for-te-ant)o

> (30 - IUIE&?) et = 5).

Combining the above two cases, by first choosing ¢ small enough and then
e small enough, one finds that for some ¢, = c»(a, xp) > 0,

!
_inf f |t - ) 1H*t§+n| > (1 — 5), (2.36)
EP+7lP=1 J

which together with (2.35) gives

1
f W (0 06 + o) ds > et = 9 (1 = 9EDP AN = 96 mI).
(2.37)
Hence by (2.32),
FelENKD « exp (_c3(t_ s)(|((t_ &P AN = $)E, n)la)).
On the other hand, by (2.33), one sees that ¢ is smooth and for any k € N,
VA1 @) < CE™ + 1), é € R (2.38)

for some m € N and C > 0. Thus (2.32), (2.37) and (2.38) in particular
implies that

(o) > B 61400 € SR,
12



Therefore, K;'; has a smooth density p'(x,v) € S(R*), which is given by
the inverse Fourier transform

Vi _ —( VT WHKEM.K )
X,V) = e Ee o’dédn.
Py ( ) LM &dn

In particular, (2.31) holds.

(iv) Finally, we assume (2.14), and make the following decomposition

Vs = V(la) + Us,

where u; = v, — v(l‘“) e L. Let L be an a-stable process with the
Lévy measure v(la), and let Ny(dz,dv) be an independent Poisson random
measure with intensity measure y,(dv)dz. Let L’S‘J be defined as in (2.17) and

K, = (X}, Vi) be defined as in (2.18) with L{, in place of L},. Clearly,

(d) V(ﬂ) (d) V(ﬂ)
(L{)ser = (L + L5 s KY, = Ko + K (2.39)

Thus, the distributional density of K7, is given by
S@
Pex,v) =Epl (x = X, v—=Vi,). (2.40)
As above, by (2.24) and |I1;,| < [|U]|~(f — s5), we have
EIX! " < C(t = 5)™ %, BIVA|® < C(r = 5)7,

and
q1 ) N
E(lxﬁ“tl‘hlvé"thz) < (ElXi‘quﬁ'qz)ql"qz (El‘/ﬁltl%‘*qz)ql’“lz <C(t- S)q1+‘“aq2 ,
which, together with (2.40) and what we have proved, gives (2.25). m|

Remark 2.6. Let p,,(x',V'; x, V) be the smooth density of K, ,(x,v) = K, +
(x + I ,v, V), which is given by

Pss(XVix,v) = pi (X — x =TI ,v,v' = ). (2.41)
For any ny,m, np, my € Ny, there is a constant C = C(d, n;, m;, ko, v(lr’), ) >
0 such that for all s < t and x,v € R,
VeV VEVEp (), V5 2, VIdX' AV < Ot — )~ Cremiirarmisme,
“ (2.42)
which follows by the chain rule, |I1;,| < ||U||(¢ = s) and (2.25).

Corollary 2.7. Under (2.13) and (2.14), for any f € B,(R*), Ts.f satisfies
the following backward Kolmogorov’s equation: for Lebesgue-almost all
s <tandall x,v e R

OsT 51 f (x, V) + AT 51 f(x,v) = 0, (2.43)

where ¥ is defined by (2.16).
13



Proof. First of all, as a consequence of (2.42), we have for any n, m € N,
ViV T suflleo < C(2 = )™ fll, s < 1. (2.44)

Thus, by Lebesgue’s differentiable theorem, it suffices to prove that for all
s <ty <tandall x,veRY,

Toaf (6, V) = T f (X, V) + f ST i f (x, v)dr.

Fix t; € (%, t) and define g(x,v) := 7, ,f(x,v). By (2.21), we only need to
show that for all s < fy and all x,v € RY,

0]
‘7-s,l1g(x’ V) = 7-t(),t1g(x’ V) + f t/ni/r?-r,tlg(-x’ V)dr-

Since g € C(R*) by (2.44), it follows by (2.22). O

Lemma 2.8. Let 8,y € (0,2). Under (2.13) and (2.14), for any & € M?
and v € L™ with ||5]| < ko and v < v € LYY, and for any n,m € Ny,
there is a positive constant C depending only on g, v,n,m,d, VE") VY By
such that for any f € CZ(RM) andt > s,

Here we use the convention: £y, = 1 the identity operator.

- B
VIV LE T £, < €@t = s)~Cdrarmsbnie) g (2.45)

_ B
VIV LY N T of]|., < Ct = 5) et mBn/oh) g (2.46)

Proof. Let p,,(x’, V', x,v) be given by (2.41). Notice that by definition,

_ ] _ 8
VIVILY TS f(x,v) = f VIVE Ly (X V6, VAL f(x, v)dx'dv
2d

R
B _
= f A\%’Vzvygdzvps,t(x/’ V/’ X, V)f(x,, V,)dx/dV/’
RZd
and
s yrym gy 'y nygm s(2) o(2) - P
A‘%,VXVV g&’vps’t(x VX, V)= vav 6\7’ 65-\7ps,t(x , Vi, X, V)V(dV)
R4 JRE

By using (2.4), (2.5) and (2.42), it is easy to see that for some C > 0 inde-
pendent of x, v, Vv, V’,

dv’
|\—,/|d+,3 '

n(l+a)+m

VIV 26D p (X, v, X, v|dXdY < Ct— )7 o

v

X (= WP A (= 972 AP A ).

Hence,

- B _ mrn(l+e)
IVIVELE TS flleo < Ct =)™+ lIflleo
14




dv’
|‘—,/ |d+,B '

X f f (= ) W PRR) A (= 972 (WP A RP) A 1P(d9)
R4JRY
If we calculate the double integral in the following four regions separately,
fl<a-s)mFI<@-97Julil< - 97> (- 97
Ulel> (1= ). 1< (= )< U {8l > (1= )7, ¥ > (1= 5)7},
then we obtain (2.45). Similarly, one can show (2.46). O

2.2. Fefferman-Stein’s theorem. In this subsection we recall the classical
Fefferman-Stein’s theorem. First of all, we introduce a family of “balls”
looking like a “parallelepiped” in R'*2¢, as seen below, which is natural for
treating the kinetic operator. More precisely, fixing @ € (0, 2), and for any
r > 0 and point (¢y, Xo, vo) € R, we define

O(to, X0, Vo) = {(£, X, V) : 1 € Bya(ty), X € Byiso(xo + L,y Vo), v € B,(vo)},
2.47)

where I, , := ft (: U,dr and B,(vy) is the Euclidean ball with radius » and

center vo. The set of all such balls is denoted by Q. For f € L; (R!*?),
we define the Hardy-Littlewood maximal function by

Mf(t, x,v) := supJC lf (¢, x',v)ldv'dx'dr’,
O(1,x,V)

r>0

and the sharp function by

M f(t, x,v) := sup JC If(', X', V') = fo,axwldvdx'dt,
O,(t,x,v)

r>0
where for a Q € Q, |Q| denotes the Lebesgue measure of Q and
1
fo = ch(t’,x',v’)dv’dx’dt’ = — ff(t’,x’,v’)dv’dx’dt’.
0 |0 0

One says that a function f € BMOR'**) if Mff € L®(R'*??). Clearly,
f € BMO(R'*??) if and only if there exists a constant C > 0 such that for
any Q € Q) and for some ay € R,

JC If(',x', V') —apldv'dx'dt’ < C.
(@)

We have the following simple property about Q, € Q.

Proposition 2.9. Let ¢; := 3+ V3V (3 + 4||Ullo)™ and ¢; = ¢|"* . We
have

(i) If Q.(t0, X0, Vo) N O, (1, x(> V() # 0, then

Qr(th X0, VO) - chr(t(,)’ xz)’ V(I)) (248)
15



(ii) 1Qc, (10, X0, Vo)l < 2|0, (to, X0, Vo).
Proof. (i) By the assumption, we have
ltg — 1ol < 21", |vo — Vol < 2r,
and for some ¢’ € B,a(fy) N By (1)),
|x0 — I, »vo — (x5 — H,(/),,/v{))| < 2rite,
Thus, for any (¢, x, v) € Q,(t, X0, Vo), we have
|t — 15 < 3r%, |v— vyl < 3r
and
|x — (x5 — H[6’1V6)| < |x —(xo — H,O,tv0)| + |x0 — 11, vo — (xy — H[(/)JVE))|
<P 4 |xg = Ty v = (3 = T V)| + [T (vo = vp)|
<4 2P L AU = B+ AU )P

From these, we immediately obtain (2.48).

(i) It follows by noticing that |Q,(ty, Xo, Vo) = c3r'>*¥ for some c;3
C3(d).

Remark 2.10. By Proposition 2.9 and [12, Theorem 1, p.13], for any p €
(1, 0], there is a constant C > 0 such that for any f € LP(R'*?%),

IMANl, < ClIflp. (2.49)

We need the following version of Fefferman-Stein’s theorem, whose proof
is given in Appendix 4.2.

Theorem 2.11. (Fefferman-Stein’s theorem) For any p € (1, 00), there exists
a constant C = C(p,d, @) > 0 such that for all f € LP(R'*?*),

IA1l, < CIUMEFII,,. (2.50)
Using this theorem, we have

Theorem 2.12. For g € (1,), let & be a bounded linear operator from
LI(R"*24) to L4R'2?) and also from L*R'**) to BMOR'*??). Then for
any p € [q, ) and f € LP(R'*2%),

12 fllp < Cllf s

where the constant C depends only on p, q and the norms of || || 414 and

12|~ BMmo-
16



Proof. Noticing that by the assumptions,
49)

(2.
IMAZ)lly < 2AMP )y < CIP flly < CNPlasrallfllg

and
IMHZ Flloo < 1211 a0l fllcos

by the classical Marcinkiewicz’s interpolation theorem (cf. [12]), we have
for any p € [g, 0),

IMAZ Pl < Cllflls
which together with (2.50) gives the desired estimate. m|

3. LP-MAXIMAL REGULARITY OF NONLOCAL KINETIC FOKKER-PLANCK EQUATIONS
For A > 0, we consider the following linear equation:
osu+ (H;—Du+ f=0, (3.1)
where % is defined by (2.16). We first introduce the following notion.
Definition 3.1. For given f € L (R'?), a function u € C(R;L! (R*))

loc loc

is called a weak solution of equation (3.1) if for all s < T and any ¢ €
C2R),

T T
ws).0) = .0+ [ o, - voars [ oo G2
where (u,p) = fde u(x, vV)¢(x,v)dxdv and #* := £}, — Uy -V, is the
adjoint operator of .
We need the following simple result.

Proposition 3.2. Given p € [1,00] and f € LP(R'*2?), the unique weak
solution of equation (3.1) with u € C(R; L?(R*)) and limy, . u(T,) = 0
weakly for some deterministic sequence T,, — oo is given by

u(s, x,v) = f eI (1, x, v)de, (3.3)

where T, f is defined by (2.20).

Proof. Let o : R** — [0, ) be a smooth function with compact support
and fg = 1. For € > 0, define

0:(x,v) 1= e 30(e7 x, e72V), fult,x,V) = f(t) * o(x, V),

where * denotes the convolution, and

ug(s, x,v) := f e fu(t, x, v)dt.
N
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Since f, € LP(R; C;*(R*!)), we have by (2.22),
Osug + (Hy— Du, + f, = 0.

In particular, for all s < 7 and ¢ € C>(R?),

T T
<M&@:Wﬂm@+f<%@¢Ku@@w+f<mm@w

By taking limits € — 0 and the dominated convergence theorem, one sees
that u is a weak solution of equation (3.1). Moreover, we also have u €
C(R; LP(R*!)) and limy_., u(T) = 0 weakly.

On the other hand, let u be a weak solution of (3.1). In (3.2), taking
¢ = 0.(x —-,v—"-)and setting u, := u * 0., f, := f * 0., one has

T T
ug(s) = u(T) + f (7 = Dug(t)de + f (fe + g)(0)dr, (3.4)
where

g:(t, x, V) = f u(t, x', v YU,V = v) - V,o.(x — X', v—v)dx'dv’
R2d
= f u(t,x = x',v—=v) Uy -V, 0.(x',v)dx'dv’.
RZd

Since u, € C(R; Cy(R*)) and lim,_, uo(T,) = 0, the unique solution of
(3.4) is given by

U (8, X, V) = f eI (fe + go)(t, x, v)dt. (3.5)

Notice that by the definition of o,

llgeOll, < Nu@ll, f [ UV - [V0.(x',v)ldx'dv" < Cellu()|l, — 0.
R2z
By taking limits € — O for both sides of (3.5), we obtain (3.3). O

Now we can present our main result of this paper.

Theorem 3.3. Under (2.13) and (2.14), for any p € (1, ), there exists a
positive constant C = C(ko, p,d, VEQ) ,@) such that for all A > 0 and f €
LP(R1+2d),

(43
2(1+c
||Ax(l+r) ul”p + |

A, < Cilfl, (3.6)

where u'(s,x,v) = J; T 0T fi(x, v)dt is the unique weak solution of
equation (3.1).
18



When p = 2 and U is independent of s, estimate (3.6) was proved in [1].
The proof of Theorem 3.3 for p = 2 will be given in Appendix 4.3, which
is new and more elementary even for the time-independent case considered
in [1].

3.1. Proof of Theorem 3.3 for p € (2, c0). We introduce the following two
operators:

P f = PPV (s, xv) 1= AT f e T f (1, x,v)dt,
N

Pof = P37V f(s,x,v) 1= A] f eI f(t, x, vt
S

By Theorem 2.12 and (3.6) for p = 2, our main task is to show that &7 and
2, are bounded linear operators from L*(R'*2?) to BMO. More precisely,
we want to prove that for any f € L®(R'*?>?) with ||f|lo < 1, and any

Q = O,(f, Xo, Vo) € Q,
JC |<@;”U’Uf(S, X, V) — Cl,-Q|2 <C, 3.7
(@)

0

where a° is a constant depending on Q and f, and C only depends on

Ko, P, d, VE“), a.

Lemma 3.4. (Scaling Property) For any Q = Q.(ty, X0, Vo) € Q¥ and i =
1,2, we have

2 R
JC |91Y’”’Uf(s, X, V) — a| = JC L@;”‘T’Uf(s, x,V)—a
0, (t0,%0,v0) 01(0)

where a € R, Vs 1= Viagyyy, Oy 1= Oragyyy, Us i= Uyegyy, and

2
IER
f(t,x,v) = f(rt + 1, P+ xo + I, jor410 Vo, 7V + Vo).

Proof. Let us write

(o)
u(s, x,v) = f T f(t, x, v)dt
S
and
(s, x,v) :=r “u(r's + to, P+ X + I, o541, Vo, PV + Vo),

where I o144y = ftor o U, dr’. By the change of variables, we have

[¢3 2 [°3 - 2
JC |A§““” u(s, x,v) — a| = JC |A§““’) (s, x,v) — a| .
0,(10,X0,v0) 01(0)

On the other hand, by Proposition 3.2, one sees that

(s, x,v) = f ed(s_’)"i‘s‘?;&’Uf(t, x, v)dr.
* 19



Thus, we obtain (3.8) for i = 1. Similarly, (3.8) holds for i = 2. O
Below we split Z;f = P, f + Ppf,i=1,2, where

(43 2 a 2
E%f:A?WjN&”TJmm,g%f:Aﬁfe““ﬁme

Piof = AT f NT f(DOdt, Pof = Al f e f(p)dt.
2 2
First of all, we treat &2, f, %5, f.

Lemma 3.5. Under (2.13) and (2.14), there is a constant C > 0 depending
only on ko, p,d, Vl@, a such that for all f € LR with ||f]l. < 1,

f |2 fs,x, V> <C, i=1,2. (3.9)
01(0)
Proof. For s € [-1,1], let

2 )
wsxv)i= [T fexnde = [T a0
Since ||f]le < 1, we have
u(Hleo <3, s€[-1,1]. (3.10)
By (2.4), (2.5) and (2.44), we have for any ¢ > s,
16T 5 f(Dlleo < (VT 50 fOlleolX) AT e fOllow < (2 = $TE AL

16T f Dl < VT f OV AT f Olleo < (£ = $) 77V A L

Since a A1 < @ for any a > 0 and y € [0, 1], we have for any v, €
0,a/(1 + @),

2
16 u(s)lloo < 12" f et — )" emleqr < Cla, (3.11)

and for any y, € (0,a A 1),

2
w?mmuwafﬁwﬁm—@ﬂmw<CM% (3.12)

where C > 0 is independent of 4 > 0.

Let ¢ be a nonnegative smooth cutoff function in R* with ¢(x, v) = 1 for
|(x, V)] < 4 and ¢(x) = O for |(x, v)| > 8. By Definition 3.1, it is easy to see
that ugp is a weak solution of equation (3.1) with f replacing by

8 = ( fo+ Hypu+ f ) 6 PusMy vs(dv)) 1 1.29(9).
R:
Noticing that by (3.10) and (3.12),

llgll < Co,
20



and by Proposition 3.2, we have

(up)(s, x,v) = f e T g1, x, V)1,
which implies by (3.6) for p = 2 that

AT (ug)]|, + || A5 ()|, < Clig,ll> < C. (3.13)
By the definition of &, and (2.12), (3.11), (3.13), we have

2 M, |2 e 2
f 211 f] =f |AZ" ul <f (A" w)el
01(0) 01(0) RI+2d

<2 AT w)|[; + €, sup 6L ullo/ 1" + ) < €.,

and by (2.12), (3.12) and (3.13),

2 g 2 Z 2
f P 1 = f ASul < f (Aful
01(0) 01(0) R1+2d

< 2)|Af )]s + Co sup 16V ullo/ VP + Jlulls) < C.

The proof is complete. O
To treat A, f, ¥, f, we need the following estimate.

Lemma 3.6. Under (2.13) and (2.14), there is a constant C > 0 depending
only on kg, p,d, vl(.a), a such that for all f € LR with |||l < 1 and all
se[-1,1],

Lk
f

Proof. First of all, by (2.46) with y = «a and B = 1=, we have for all
S [_1’ 1]’

a @

AT £(1,0,0) = AT T, £(2,0,0)|dr < C, G149

AIT,, £(1,0,0) — AT, (2,0, 0)‘dt <C. (3.15)

[

[ 0.0 - a7 7y 0.0)a
2

< f f 0, AT, £(1,0,0)|drdr
2 JO

@

= f f | AT f(2,0,0)|drdr
2 JO

< f f (t—r)2drdr < 1,
2 0

which give (3.14).
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Next we deal with (3.15). Let y be a smooth cutoff function with y(s) = 1
for s € [0, 1] and x(s) = 0 for s > 3. Fix y € (1, 1 + 3%) and define

h(V) := x(IVl/27), >0, v e RY
By definition, we have
AIT,.f(1,0,0) = f SPT . f(,0,0)—— " |d+“ = 1,(s,1) + Iy(s, 1),
where

dv
hsn= [ 5§2)Ts,zf(t,0,0)(1—hz-s(V))—MdW’

L(s.0) = f SO, £(1,0,0)h,. s<v>| lm
R4

Thus, we can write

7

< f‘” |1,(s, 1) = I1;(0, )|dr + f‘” |1>(s, 1) — 1(0, 1)|dr. (3.16)
2 2

ST f(1,0,0) = AL To, f(1,0,0)|de

In view of ¥ > 1, we have for all s € [—-1, 1],

L |11(S,t)|dlﬁf (f I(1 = hy—s(v))| |d+“)
sf (f )dt f(t—s)ydt<l
2 syl [VITHE

On the other hand, let us write

f |I(s, 1) — (0, 1)|dr < f f |0, (7, t)|drds < J; + J>,
2 2 Jo
© s 2 dv
Jl = |5v arﬂ,tf(ta 0’ O)ht—r(v)|Tdrdt’
2 JoJre [v]are

00 S d
I = f f 16T, £(2, 0,000, b, (V)| ——drdr.
2 JoJre [v|d+e

Recalling definition (2.3), by (2.43) and (2.45), we have
166,77,/ (1,0,0)|
<10PLY T f(8,0,0)] + [(U,v - VYT f(2,0,V) = T, f (2,0, =)

<2AV2LY Tt OllolVP + 20Ul VRIV VT f Ol < VR = )75
22

(3.17)

where



By Fubini’s theorem, we have for all s € [-1, 1],

s 2 d
Ji < f f ( (t—r)_l_«ht_,(v)%)drdt
2 Jo \Jre [v]dre
= ff (fd _1_7ht(V)| |d+a 2)dtdr
0J2-r R

Sf T “7dr < Isincey € (1,1 + 5%). (3.18)
1

For J;, noticing that
—v/a—1 -1
|02 (V)] = ZIVlt Yty () /07 < 2 lloo Vi iy

we also have

J2<fw(f Uy |d+) _fwt_l_ydtﬁl. (3.19)
1 1

Combining (3.16), (3.17), (3.18) and (3.19), we obtain (3.15). O
Now, we treat &, f, P f as follows.
Lemma 3.7. Under (2.13) and (2.14), there is a constant C > 0 depending
only on ko, p, d, vl(.a), a such that for all f € LR with ||f]le < 1,
f | P f(s,x,v) = Ppf(0,0,0 <C, i=1,2. (3.20)
01(0)

Proof. For i = 2, by definition, we have

| Do f(5,%,V) = P f(0,0,0)] < f €167 — &M [|AF T, fllodt
2
+ f e VAT f (6, V) = ALT (0, 0)lds
2

. [ T e MANTL£(0.0) — AVT, £(0, 0)lds
=: 121(s) + I(s, x,v) + I3(s).
Noticing that by Lemma 2.8,
IAIT S f Dl < Ct = )7,
IV AT, fOlle < Ct = 5707,
IV AT, f(D)lle < Clt = 57572,

we have for all s € [—1, 1],

f |e/l(s 1) —e /lt S) ldt



< Cle™ - 1] f e Mdr = Cle™ - 1le™*/1 < C,
2
and for all (s, x,v) € 0(0),
L(s, x,v) < C f ((z sy (- s)’i’z)dt <C.
2

Moreover, by (3.15), we have for all s € [0, 1],

13(5) < C.
Combining the above calculations, we obtain (3.20) for i = 2 with C inde-
pendent of A. For i = 1, it is similar. O

Now we can give

Proof of Theorem 3.3 for p € (2,00). By Lemmas 3.4, 3.5 and 3.7, we know
that

P, LR - BMO,i = 1,2 are bounded linear operators.
Estimate (3.6) for p € (2, ) follows by Theorem 2.12 and the well-known
estimate for p = 2. O

3.2. Proof of Theorem 3.3 for p € (1,2). We shall use the dual argument
to show that &, i = 1,2 are still bounded linear operators in L”(R!**?) for
p € (1,2). Let 7, be the adjoint operator of 77, that is,

f T f = f [T

By definition (2.20), we have
f ! f
T f(x,v) =Ef (x + f U, |v+ f a',/dL,/,,] dr,v + f O',dL,,t).

Let p € (1,2) and g = ﬁ € (2, 00). By the dual relation between L” and
L1, we have

”‘@Ifllp = sup f f Ts,tfdt . A;(I(M)h
RI+2d Jg

heC® (RI*2 ||nl,<1

t (03
= sup f f- (f Tthj‘”‘”hds).
hECg“(R1+2‘1),||h||q<1 RI1+2d —oco

a

(03
Since 7,A7"™ h = A" T},h, as in the previous subsection, one has

‘ f T AT hds|| = (AT f T hds
—oo q —00

Hence, by Holder’s inequality,

12 fll, < ClIfll,. (3.21)
24

< CllAlly.
q



Similarly, we have

!
= s [ (Lot e
heC2R129 |||, <1 JRI+2 e

However, we can not treat it as &, because

To overcome this difficulty, for £ € (0, 1), we introduce a new operator
!

Dof 1= 207 f(s,x,v) = f e CITITYA fols, x, v)ds,

—00

where f.(t,x,v) = f(t,-) * 0.(x,Vv) so that 2, f is well defined for f €
L>(R'*29), Notice that 2, can be considered as the formal adjoint operator
of &,. As in the previous subsection, we want to show that

2, is a bounded linear operator from L*(R!**?) to BMO.

First of all, as in Lemma 3.4 we have
2 O 2
JC |207Y f(s,x,v) —d| = Jf | 227V F(s,x,v) —al”.
0 (to,X0,v0) 01(0)

where 7,5, U and f are defined as in Lemma 3.4. We aim to prove that
there is a constant C = C(k, p, d, vg‘”, a) > 0 independent of € € (0, 1) such
that for all f € L°(R'**?) with ||f]le < 1,

oo i 2
JC |Q;"”Uf(s, X, V) — a| < C.
01(0)

Below we drop #,&, U and the tilde. As above, we make the following
decomposition

. -2
9. f = ( f + f )eﬂ“-')ﬁjAg fi(s)ds =: 25 f + D5f.
-2 —o0

Lemma 3.8. Let ¢ € CX(R*). For any p € [1,2), there exist constants
C,,y > 0 such that for all h € L*(R*) and 0 < 1 — s < 3,

1A (T5.(0°h) = @, T (@)l < Colt = ) (IRl (3.23)
where ¢, ,(x,v) := @(x + I1,v,v) and 11, = fst U,dr.

Proof. Let p} (x,v) be the distributional density of K7 ,. Notice that
V2T f(x,v) = f S, V’)V%p‘s”t(x’ —x =TI, v = )(v)dx'dv’
R2d

= &+ x+ v,V + v)Dg (1, v)dx'dv’,
R2d
25



where

ij _ E : i’ v’ v 2 : i’ v v
(Ds,t - Hs,tns,t axi' axj' ps,t + 2 Hs,taxi’ 6V_jps,t + aVianps,l'
i/ j/ l'/

For any 8 € (0, @), by (2.25), it is easy to see that
VT @*h) = 0, VT su(eh)l,

< [@lgllghll, fM(IX'IB + VP)ID, (', v)ldx'dv’
R

Blan)=2

< Clellihll( =),

where [¢lg := sup_.., [¢(2) — @(2)|/|z - Z'[P. Furthermore, by the chain rule
we have
Blanl)-2

IVUT o(@*h) = 0 Tsslgh)ly < Collhll(t = s)" = .
Hence, by definition (2.11) and (2.5), we have

AL (T (%) — @ Tr@h)l,

dv
< f 62T (@*h) = @ TPy ——
Re [v]@+e

dv
<4 T @)l + s, T sleM,) ——
ﬁ P (175 Wl + s T )||,,)|V|d+a

Blanb)-2 , dv
+ Cyllhlla(t = )™ f VP ——
[VI<(t—5)@-BlanD)/2e) |V|

Blan)

< Cyllhlla(t — )
Thus, we obtain (3.23). O

Lemma 3.9. Under (2.13) and (2.14), there is a positive constant C only
depending on kg, p,d, vl@, a such that for all f € LR with || flle < 1
and all € € (0, 1),

f 12: f(s, x, V)I* < C. (3.24)
01(0)

Proof. Fort € R, define

!
u(t, x,v) := f eI AL (12 f)(9)(x, V)ds.

o0

Let ¢ be a nonnegative smooth cutoff function in R* with ¢(x,v) = 1 for
|(x,v)] < 4 and ¢(x) = 0 for |(x, v)| > 8. We have

2 2
lllz2gi0p < Mgl = sup f uph
heC®R1¥24) [lhll<1 JRI+H
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= sup f Lean(9) fpAd f 'O (@ h(1))ds
R1+2d

heC2 R1+24) | Ih2<1 s

< 1l sup
heC (R1+24) [lh]l,<1

Let h € C®(R'*2) with ||hll, < 1. By (3.23), we have

1
LAl f eﬁ(s_t)ﬂ,t@zh(f))dl

1

1
|l1[—2,1]Av2 f eI (P h(r))dt

1

1
<1248 f e T (ph(r)dr|| + C.

1

Since ¢, = ¢(x + I1,,v, v) has support {(x, v) V) < 8(|U]Je + 1)}, and
forany y € (0, A 1),

16T ()ll2 < IV T2V A RUT 5. (ph)ll2)
<SC((t—s) 7 V) A 1< Ct — s)y oV,
by (2.12) and (3.23), we have

!
lonA? f e, T (ph(t))dt

1

1
< {12 f e AT, (ph(D)dt]| +C

N

1
1o f e AT (ph(D)de|| +C
. 2

N

1
1Al f e, T (ph(t)dt| +C
: 2

+C
2

!
< |[2nAy f eI (P h(t))dt

< Cllg*hlh + C < C.
Combining the above calculations, we obtain (3.24). O
The following lemma is the same as in Lemma 3.7.

Lemma 3.10. Under (2.13) and (2.14), there is a positive constant C only
depending on kg, p,d, vl@, a such that for all f € LR with ||flle < 1
and € € (0, 1),

[ 19 - 2tr0.000 <c
01(0)
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Proof. By (2.45) with 8 =y = a, we have for all € [-1, 1],

[
L1

-2 o
- f f t |20 T2 f(5,0,0)|drds
—00 0

—2 t
<C f f (t—r)2drdr < C.
—00 ()

Using this estimate, as in the proof of Lemma 3.7, we obtain the desired
estimate. O

TA £(5,0,0) = ToA; fi(5,0,0)|ds

8,T7,AL £.(5,0,0)|drds

Now we can give

Proof of Theorem 3.3 for p € (1,2). By Lemmas 3.4, 3.5 and 3.7, we know
that

2, : L°(R'"**? - BMO is bounded with norm independent of &.
Moreover, by duality, we also have
2, : L*(R"™) — L*(R'**?) is bounded with norm independent of &.
Hence, for ¢ = p/(p — 1) € (2,0), by Theorem 2.12, we have for some

C > 0 independent of &,

< ClIfllg-

q

!
121y = |l f e'CITEAL fuds

Now going back to (3.22), for p € (1,2), by Fatou’s lemma, we get

12211, < 11l sup

heCZR*2D ||h||,<1

!
f e A hds

o0

q

!
f eI A hods

(o)

< £l sup lim
heCﬁ"(R“M),llhllqsl -0

< ClIfllps

q

which together with (3.21) gives (3.6) for p € (1, 2). O

4. APPENDIX

4.1. Carleman’s representation for Boltzmann’s equation. Let us first

show the following elementary formula in calculus.
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Lemma 4.1. We have

f f F(x, w)dwdx = f f F(h = w,w)w|'"dhdw, 4.1)
R4 §d-1 RaJ {h-w=0}

where w := w/|w| and we have used the convention that F(h + w,w) =
F(h+w,w)+ F(h—w,w). In particular, if F(x,w) = F(x,—w), then

f f F(x, w)dwdx =2 f f F(h +w, w)|w|'"¢dhdw.
RdJ gd-1 R4S (h-w=0}

Proof. By the co-area formula and the change of variables, we have

f f F(x, w)dxdw = f f f F(h, w)dhdrdw
sa-1JRda s-1Jo  Jihwy=+r}
= f f f F(h, w)dhdrdw
§4-1J0  J {(htrw,w)=0}
= f f f Fh =+ rw, w)dhdrdw
s4-1J0  J{(h,w)=0)

= f f F(h = w, w)lw|'"“dhdw.
RAJ {(h,w)=0}

The desired formula follows. O

By a change of variables and (4.1), noting that (h, w) = 0, one can rewrite
the collision operator Q(f, g) as:

oo = [ [ = oo - oo

— f(v = v)gW)|B(v.|, w)dwdv.
:2ff [f(v—h—w+(h+w,w>w)g(v—<h+w,W>W)
R4 J{h-w=0}

— f(v =l = w)g(¥)|B(h + wl, w)lw'~dhdw

=2 f f [£(v = g(v = w) = f(v = h = w)g)]
Rd J{h-w=0}
X B(|h + wl, w)lw|'~“dhdw,
which gives representation (1.3) by changing w into —w.

4.2. Proof of Theorem 2.12. Let us introduce a quasi-metric in R as
follows:

p((to, X0, Vo), (t1, X1, V1))

1 1 1
=lto — il +|vo — vi| + |xo — x1 + Iy, vil ™ + [x1 — X0 + 11, 4 Vol T,
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where I, ,, := f;: U,dr. More precisely, p satisfies

(1) p((to, x0, Vo), (t1, x1,v1)) =0 = 1ty = 11, X9 = X1, Vg = Vy.
(ll) p((t()’ X0, VO)’ (tl’ X1, Vl)) = p((tl’ X1, VI), (t()’ X0, VO))'
(iii) For some constant ¢y > 1 and any points (t;, x;, v;) € R'*2 i =0, 1,2,
it holds that

p((to, X0, Vo), (2, X2, V2))
< CO(p((tO’ X0, Vo), (21, x1, V1)) + p((t1, x1, V1), (f2, X2, Vz)))-

Given (ty, X9, Vo) € R'*?*? and r > 0, a “ball” in R'*?¢ with radius r with
respect to the quasi-metric p is defined by

é,(to, X0, Vo) = {(t, x,v) € R p((ty, x0, Vo), (, X, V)) < r}.

Recalling the definition of the “ball” Q, in (2.47), we have the following
relation between Q, and Q,, whose proof is obvious by definitions.

Lemma 4.2. Let ¢; := (4 + ||U||o)% For any r > 0 and (ty, xo, Vo) € R34,
we have

Q,(to, X0, Vo) € Q,(to, X0, Vo) € Qe (to, Xo, Vo). (4.2)
In particular, let ¢, := (2¢))'"" 9 the following doubling property holds:
Qs (to, X0, Vo)l < €210 (to, X0, Vo). (4.3)

The doubling property (4.3) means that (R'*2?, p, dx) is a space of ho-
mogenous type in the sense of [4, Definition 1]. Thus by the 7'(b) theorem
(see [4, Theorem 11]) , we have

Lemma 4.3. With respect to the space (R'**¢, p, dx), there exists a collec-
tion of open subsets {0,; C R'"** n € Z, j € I,,}, where I, denotes some
index set depending on n, and constants 6 € (0, 1), ag > 0 and c3 > 0 such
that

(i) For eachn € N, R\ (Ujer,)Oxj)l = 0.
(ii) If n > k, then either O,;j C Oy or O, N Oy = 0.
(iii) For each (n, j) and k < n, there is a unique i € 1 such that O,; C Oy;.
(iv) Diameter of Oy; is less than c36", and hence, for each (t,x,V) € Oy,
we have

O, C é&n(l, X, V).
(v) For each (n, j), O,; contains some ball §a05n, and so

|0nj| = C35n.
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Let O,; be as in the above lemma, which will play the role of “cube” in
the classical Calderén-Zygmund’s decomposition. We write
Cy:={0,.j € I},

If we define O := N,ez(Ujer,)0,), then by (i), the complement O° has null
Lebesgue measure. By restricting on O, without loss of generality, we may
assume that C,, is a partition of R!*2¢. Thus, for each (¢, x,v) € R'*2¢, there
is a unique O, € C, such that (¢, x,v) € O,. We will also denote this O, by
O,(t, x,v), and for any local integrable function f, define

fi.@t x,v) = JC f(@,x',v)dv'dx'dr’.
Oy (t,x,v)

The function f, can be considered as a “conditional function of f given C,”.
By Lemma 4.3, one sees that {C,,n € N} forms a sequence of partitions in
the sense of [7, Definition 1, p.74]. More precisely,

(i) For each n and O, € C,, there is a unique O,_; € C,_; such that
0, c O,_1, and
|O0p—1] < CyalOnl.
(ii) For any continuous function f on R'*2¢, we have

lim f; (¢, x,v) = f(t,x,V), Y(t,x,v) € R"**,
Now we can give

Proof of Theorem 2.11. We define another sharp function associated to {C,,,n €
Z} by

MEf(t, x,v) := maxf If = fil.

n€L Jo,(t.x)
By [7, Theorem 10, p.81], for any p € (1, o), we have
11l < CIMES. (4.4)

On the other hand, by (iv) and (v) of Lemma 4.3, we have

Ou(t, X, V) € Quyn(t, X,V) C Qe (1, X, V)
and

|0n(t, X, V)l 2 C(sn 2 |Q65'l(t’ X, V)l'

Therefore,

JC |f _ ﬁ,,l < f JC |f(t,,.x,,V,) _ f(t//,x//,v//)l
On(t,x,v) n(t,X,V) J Op(1,x,V)

< f f |f(t’,.x,, V/) _ f(t”,x”, V/l)|
Qeon (,%,V) & Qegn (1,x,V)

<2f' = fomoun] S MFGE Y. (45)
Q('z?" (l‘,X,V) 3]



Estimate (2.50) now follows by (4.4) and (4.5). O

4.3. Proof of Theorem 3.3 for p = 2. In this subsection we give a proof
of Theorem 3.3 for p = 2. Let us first recall a key estimate due to Bouchut
[2]. Since there is a time inhomogeneous matrix U; in our formulation, we
need to modify the proof given in [1].

Theorem 4.4. Let U : R — M satisfy
ko := sup [|U|| + sup ((t — HTI;}) < oo,

s<t
where I, := fst U.dr. Let u, f € L*(R'"*2) with A?u € L2 (R'*2?) for some
a > 0, and satisfy

ou+ Uy -Vu+ f=0 inthe distributional sense. (4.6)

Then for some C = C(d, a, ky) > 0, we have

a 1 a

1AL ull, < CIAT ull 11,7 4.7

Proof. We follow the argument of [1] with modification to deal with the
time-dependent case. Taking Fourier transform in (x, v)-variables on both
sides of (4.6), we have

O —UE- Vi + f = 0. (4.8)
Here
& n) = f e E My (1 x, v)dxdy,
de

and f (t,&,7n) is defined in a similar way. Let ¢ : [0, co) — [0, 1] be a smooth
function with (s) = 1 for s < 1 and ¢¥(s) = 0 for s > 2. For € € (0, 1),
define

de(&.17) = Y(elnl /1€ ).
By Planchel’s identity, we have

a

+a ~ 2o .
AT w3 = f 17 (s, £ mdndéds
—ocoJR

<2f f €175 (1 = go(&, )0l (s, €, m)dndéds
—co JRA

4.9)
+2 f ) fR I E Dl s, £, mndgds
=S+ Ze.
For .7, by the definition of ¢, we have
7, <267 f ) fR ARG, €, mdndgds = 26 AT (4.10)
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To treat ¢Z,, let us write
By = Goll, foi= bof. goi= fot (UIE-Vido)it
Then by (4.8), it is easy to see that
Osity — U & - Vit + 8. = 0.
Multiplying both sides by the complex conjugate of i, we obtain
Ol — Ui - Vil + 2Re(@,, &) = 0.
It follows that

“d
~A 12 —_ _ Py 2 _ *
|u8| (S, '.;7‘:’ 77) - f; dtlusl (t9 é:’ 77 Hs,té‘:)dt

=2 [ Re(@doen- 00

Since the support of ¢, is contained in {g|n| < 2|£1/1+9}, we get

00 20 R
Je = f f Il 0 L sp<aigasonl el (s, €, m)dndéds
—ocoJR
00 e 00 R n %
< Zf f ke f Liepcaigason|@el liel(t, €,17 = T3 &)dedndéds
—o0JR s

00 2 0o A .
= zf fM Ifl lte f 1{8|7]—H?,§|<2\§|1/(1“’)}|g£| |l/l8|(l, é:, T])dtdﬂdde
—coJR K

* 20 ! A lin
= Zf f2d |&[ T+ (f 1{8|n—l'[;,§|<2|§1/(1“’)}ds) |8l (2, £, m)dndéds.
—ocoJR —00

Let us estimate the integral in the bracket. By the assumption, we have

f !
f 1{8|77_H;,§|<2|§|1/(]+”)}ds <f 1{|H;§|<|,7|+2|§||/(1+a)/£}ds

1
— 1/(1
S I LG a-syerims 2o ey ds = K0(|’7| + 20 ‘9)/ €l

Moreover, by the definition of g., we also have

TN A 1 A1\ 1A
1Bellits] < (1] + Kol bl "1 1 <o oo cay ) I

Therefore,

2k 0 a- N
e < ?0 f f d|f|ﬁ<s|n|+2|§|”“+“>>|fa||as|(z,f,n)dndfdt

00 JR%

+ 2K(2)||'7[//||oof f |§|%(8|TI| + 2|§|1/(1+a))

oo JR2d

X i1 <emgnao<oi] |ig|(2, &, n)dndéde
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8K 0 oA
<=2 [ [ i ndndsa
£ —oco JR2

+ 8511 llso (elnl)**|af* (¢, €, mdndédr
—oco JR2

[

2112 . 1 2 2 2 32
< Ce™|Ifll; + SNAZ" ull; + 8kl oo™ 1AT ull3.

Combining this with (4.9) and (4.10), we obtain

Azu‘ia) 2 < (1 + 8210 20 AS IR + Ce=2l| 112 lAZ(lnﬂy) 2
A ully; < (1 + 85l o)™ |AT ully + Ce™7[I f1l; + 5I1A ™ ully,

1

which gives the desired estimate by letting € = (C||f ||§ / ||AV% u||§)2t1+n>, O

Now we give

Proof of Theorem 3.3 for p = 2. Without loss of generality, we may assume
f € CX(R'24), 1t follows from Fourier transformation, (2.23), (2.32), and
Holder’s inequality that

00 00 2
||Ag/2u/1||2 = f Afvl/zf e/l(s—t),]-as’tf(t’ dd| ds
oo s )
(o) 0o 2
= f le |77|20t f e/l(s—t)‘]'s,zf(t, f, n)dt dﬂdfds
—00 R2a s

2
dndéds

2 As—t) o~ [ (I &—ndr 7 %
:f f L f &0 e b VE LAY fr, gy T, £)dt
—o0 JR s

< f f ( f gl & v MEd fp g Hﬁ,tf)lzdt)
—o0 JR2d s
% (f In|%~ N wfr’,(n’;,ré*—n)drdt) dndéds.

By (2.15) and a similar argument as that for (2.37), we have

! !
f U (1, € = mdr > ky f IIL,& = nl*dr > i@t = 9)I(, (1 = HI,
d

an
f !
f Yoy, (IL & + m)dr > Ky f IIL.,& + nl*dr > 1t = $)I(n, (1 — )OI

Hence,

o0 A . o 1
f lmae—f_c l//o—y(ns,rf—’l)d’dt < f |n|ae—61(1—s)|77| dr = —,
s s

(&1

and

! T vr * ! o3
f In + H’;Jﬂ“e‘fs Yo, (D g4+mdrq o zf mlae—q(t—S)lnl ds
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! . 1t eja 2 2||U||a/
+2 a { — @ ,—c1(t—s) "] ds= — + —— <
e, L,(( SN R T

Thus, by the change of variables and Fubini’s theorem, we further have

) 2
f Azf /l(b t)ﬂtf(l’ ) )dt

f f y f |n|"efs“*f’r(“?ff’”d’lf(t,f,n—n:,tf)lzd’) dndéds

1 ® e
— f f I+ I &0 Jo v CIémdn £ g, n)lzdt) dndéds

o JR2 K

1 o ! § T Vr T A
f f f In+ T, &% b Wtr*“mfmd'ds) (e, &, mPdndédi
2d

(o)

g 21IU1IS ) 22Ul
<(c% i ))fJ . & Pdndéds = (C% i )||f||2

The proof of (3.6) for p = 2 is thus complete by (4.7). O

ds

//\
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