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Abstract

In this paper, we study the existence and uniqueness of solutions for general fractional-

time parabolic equations of mixture type, and their probabilistic representations in terms of

the corresponding inverse subordinators with or without drifts. An explicit relation between

occupation measure for Markov processes time-changed by inverse subordinator in open sets

and that of the original Markov process in the open set is also given.
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1 Introduction

Fractional calculus has attracted lots of attentions in several fields including mathematics, physics,

chemistry, engineering, hydrology and even finance and social sciences (see [9, 19, 21, 20]). The

classical heat equation ∂tu = ∆u describes heat propagation in homogeneous medium. The time-

fractional diffusion equation ∂βt u = ∆u with 0 < β < 1 has been widely used to model the anomalous

diffusions exhibiting subdiffusive behavior, due to particle sticking and trapping phenomena (see

e.g. [19, 22]). Here the fractional-time derivative ∂βt is the Caputo derivative of order β ∈ (0, 1),

which can be defined by

∂βt f(t) =
1

Γ(1− β)

d

dt

∫ t

0
(t− s)−β (f(s)− f(0)) ds, (1.1)

where Γ(λ) :=
∫∞

0 tλ−1e−tdt is the Gamma function. The above definition says that the fractional

derivative of f at time t depends on the whole history of f(s) on (0, t) with the nearest past

affecting the present more. An interesting probabilistic representation is derived by Baeumer and

Meerschaert [2] for the solution u = u(t, x) of ∂βt u = ∆u with u(0, x) = f(x):

u(t, x) = Ex[f(XEt)], x ∈ Rd,

whereX is Brownian motion on Rd with infinitesimal generator ∆ and Et is an inverse β-subordinator

that is independent of X. In fact, the above representation holds for any operator L in place of ∆

that generates a strong Markov process X. This representation connects probability theory to time

1



fractional equations. The scaling property of the β-stable subordinator is used in a crucial way in

their derivation.

In applications and numerical approximations [8], there is a need to consider generalized fractional-

time derivatives where its value at time t may depend only on the finite range of the past from t−δ
to t, for example, d

dt

∫ t
(t−δ)+(t− s)−β (f(s)− f(0)) ds. Here for a ∈ R, a+ := max{a, 0}. Motivated

by this, for a given function w : (0,∞) → [0,∞) that is locally integrable on [0,∞), we introduce

a generalized fractional-time derivative

∂wt f(t) =
d

dt

∫ t

0
w(t− s) (f(s)− f(0)) ds, (1.2)

whenever it is well defined. Typically w(t) is a non-negative decreasing function on (0,∞) that

blows up at t = 0. Clearly, when w(s) = 1
Γ(1−β)s

−β for β ∈ (0, 1), ∂wt f is just the Caputo derivative

of order β defined by (1.1).

Let X = {Xt, t ≥ 0; Px, x ∈ E} be a strong Markov process on a separable locally compact

Hausdorff space E whose transition semigroup {Pt, t ≥ 0} is a uniformly bounded strong continuous

semigroup in some Banach space (B, ‖ · ‖). For example, B = Lp(E;m) for some measure m on E

and p ≥ 1 or B = C∞(E), the space of continuous functions on E that vanish at infinity equipped

with uniform norm. Let (L,D(L)) be the infinitesimal generator of {Pt, t ≥ 0} in B. We are

interested in the existence and uniqueness of solution u = u(t, x) for

κ
∂u

∂t
+ ∂wt u = Lu with u(0, x) = f(x)

and its probabilistic representation, where κ ≥ 0 is a positive constant.

Given a constant κ ≥ 0 and an unbounded right continuous non-increasing function w(x) on

(0,∞) with limx→∞w(x) = 0 and
∫∞

0 (1 ∧ x)(−dw(x)) <∞, there is a unique non-negative valued

Lévy process {St; t ≥ 0} with S0 = 0 (called subordinator) associated with it in the following way.

Here for a, b ∈ R, a ∧ b := min{a, b}. Let µ be the measure on (0,∞) so that w(x) = µ(x,∞).

Clearly

µ(0,∞) =∞ and

∫ ∞
0

(1 ∧ x)µ(dx) <∞.

It is well-known (cf. [3]) that there is subordinator {St; t ≥ 0} with Laplace exponent φ:

E
[
e−λSt

]
= e−tφ(λ), λ > 0, (1.3)

so that

φ(λ) = κλ+

∫ ∞
0

(1− e−λx)µ(dx). (1.4)

The measure µ is called the Lévy measure of the subordinator.

Conversely, given a subordinator subordinator {St; t ≥ 0}, there is a unique constant κ ≥ 0

and a Lévy measure µ on (0,∞) satisfying
∫∞

0 (1 ∧ x)µ(dx) < ∞ so that (1.3) and (1.4) hold.

Throughout this paper, {St; t ≥ 0} is such a general subordinator with infinite Lévy measure µ

and possibly with drift κ ≥ 0. When κ = 0, we say the subordinator is driftless or with no drift.

Define for t > 0, Et = inf {s > 0 : Ss > t}, the inverse subordinator. The assumption that the

Lévy measure µ is infinite (which is equivalent to w(x) := µ(x,∞) being unbounded) excludes
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compounded Poisson processes. Under this assumption, almost surely, t 7→ St is strictly increasing

and hence t 7→ Et is continuous.

The main purpose of this paper is to establish the following.

Theorem 1.1 Under the above setting, let w(x) = µ(x,∞), which is an unbounded right contin-

uous non-increasing function on (0,∞). The function u(t, x) := Ex[f(XEt)] is the unique solution

in B to the time fractional equation

(κ∂t + ∂wt )u = Lu with u(0, x) = f(x) (1.5)

for every f ∈ D(L) . Here ∂t is the time derivative ∂
∂t .

Our method of proof to the above theorem is different from that of [2] which is for stable

subordinators, as there is no scaling property for a general subordinator St. Our approach is quite

robust and direct that works for any subordinator with infinite Lévy measure and for a wide class

of infinitesimal generators. One feature of this paper is that possible mixture of the standard

time derivative ∂t and the general fractional time derivative ∂wt is covered and treated in a unified

way. In fact, we will establish a more general result for L being the infinitesimal generator of

any uniformly bounded strongly continuous semigroup in general Banach spaces; see Theorem 2.3

for a precise statement. Our Theorem 2.3 not only gives the existence but also the uniqueness

of solutions to the time fractional equation. The generalized Caputo derivative defined by (1.2)

with w(x) = µ(x,∞) extends the distributed order fractional derivative defined in [17] where St
is a mixture of β-subordinators. An important application of these more general time fractional

derivatives is to model “ultraslow diffusion” where a plume spreads at a logarithmic rate; see [17].

In Section 3 of this paper, we will study the relation between occupation measure for the time-

changed process X∗ := XEt by inverse subordinator in an open set D ⊂ E with that of X in

D.

2 General time fractional equations

Recall that {St; t ≥ 0} is a general subordinator with infinite Lévy measure µ and drift κ ≥ 0,

whose Laplace exponent φ(λ) is given by (1.4). Define w(x) = µ(x,∞) for x > 0 and φ0(λ) :=∫∞
0

(
1− e−λx

)
µ(dx). Note that φ0(λ) is the Laplace exponent of the driftless subordinator {S̄t :=

St − κt, t ≥ 0} having Lévy measure µ. Clearly

φ(λ) = κλ+ φ0(λ) and St = κt+ S̄t. (2.1)

Since µ(0,∞) =∞, almost surely, t 7→ S̄t is strictly increasing.

For every a > 0, by Fubini theorem,∫ a

0
w(x)dx =

∫ a

0

(∫
(x,∞)

µ(dξ)

)
dx =

∫ ∞
0

(∫ ξ∧a

0
dx

)
µ(dξ) =

∫ ∞
a

(ξ ∧ a)µ(dξ) <∞. (2.2)

The Laplace transform of w is∫ ∞
0

e−λxw(x)dx =

∫ ∞
0

e−λx
∫

(x,∞)
µ(dξ)dx =

∫ ∞
0

(∫ ξ

0
e−λxdx

)
µ(dξ)

=
1

λ

∫ ∞
0

(
1− e−λξ

)
µ(dξ) =

φ0(λ)

λ
. (2.3)
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Lemma 2.1 There is a Borel set N ⊂ (0,∞) having zero Lebesgue measure so that

P(S̄s ≥ t) =

∫ s

0
E
[
w(t− S̄r)1{t≥S̄r}

]
dr for every s > 0 and t ∈ (0,∞) \ N .

Consequently, for every t ∈ (0,∞) \ N , s 7→ P(S̄s ≥ t) is continuous and P(S̄s = t) = 0 for every

s > 0.

Proof. Note that since r 7→ S̄r is strictly increasing a.s., by Fubini theorem,∫ s

0
E
[
w(t− S̄r)1{t≥S̄r}

]
dr =

∫ s

0
E
[
w(t− S̄r)1{t>S̄r}

]
dr.

For each fixed s > 0, the Laplace transform of t 7→ P(S̄s ≥ t) is∫ ∞
0

e−λtP(S̄s ≥ t)dt =

∫ ∞
0

e−λtP(S̄s > t)dt

= − 1

λ

∫ ∞
0

P(S̄s > t)de−λt =
1

λ
+

1

λ

∫ ∞
0

e−λtdtP(S̄s > t)

=
1

λ
− 1

λ
E
[
e−λS̄s

]
=

1− e−sφ0(λ)

λ
.

By Fubini theorem and (2.3), the Laplace transform of t 7→
∫ s

0 E
[
w(t− S̄r)1{t≥S̄r}

]
dr is∫ ∞

0
e−λt

(∫ s

0
E
[
w(t− S̄r)1{t≥S̄r}

]
dr

)
dt =

∫ s

0
E
[∫ ∞

0
e−λtw(t− S̄r)1{t>S̄r}dt

]
dr

=

∫ s

0
E
[
e−λS̄r

∫ ∞
0

e−λxw(x)dx

]
dr

=
φ(λ)

λ

∫ s

0
e−rφ0(λ)dr =

1− e−sφ0(λ)

λ
,

which is the same as the Laplace transform of t 7→ P(S̄s > t). By the uniqueness of the Laplace

transform that for each fixed s > 0,

P(S̄s ≥ t) =

∫ s

0
E
[
w(t− S̄r)1{t≥S̄r}

]
dr (2.4)

for a.e. t > 0. Hence there is a Borel subset N ⊂ (0,∞) having zero Lebesgue measure so that (2.4)

holds for every t ∈ (0,∞)\N and for every rational s > 0. Note that for each fixed t > 0, s 7→ P(S̄s ≥
t) is right-continuous. On the other hand, for each fixed t > 0, s 7→

∫ s
0 E

[
w(t− S̄r)1{t≥S̄r}

]
dr is

continuous. It follows that (2.4) holds for every t ∈ (0,∞) \ N and every s > 0. Consequently,

for every t ∈ (0,∞) \ N , s 7→ P(S̄s ≥ t) is continuous. Since the subordinator t 7→ S̄t is strictly

increasing a.s. and is stochastically continuous in the sense that P(S̄r = S̄r−) = 1 for all r > 0, we

have

P(S̄s ≥ t) = lim
r↑s

P(S̄r ≥ t) = P(S̄s > t) for every s > 0.

In other words, P(S̄s = t) = 0 for every t ∈ (0,∞) \ N and all s > 0. 2
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Define G(0) = 0 and G(x) =
∫ x

0 w(t)dt for x > 0. Then by (2.2), G(x) is a continuous function

on [0,∞) with G′(x) = w(x) on (0,∞). By the integration by parts formula, for every t > 0,∫ t

0
w(t− r)P(Ss > r)dr = −

∫ t

0
P(Ss > r)drG(t− r)

= G(t) +

∫ t

0
G(t− r)drP(Ss > r)

= G(t)−
∫ t

0
G(t− r)drP(Ss ≤ r)

= G(t)− E
[
G(t− Ss)1{t≥Ss}

]
. (2.5)

In particular,

E
[
G(t− Ss)1{t≥Ss}

]
≤ G(t) for every t > 0.

For each fixed t > 0, by (2.2) and dominated convergence theorem,

s 7→
∫ t

0
w(t− r)P(Ss > r)dr =

∫ t

0
w(t− r)P(Ss ≥ r)dr

is a right continuous increasing function. Hence by (2.5), s 7→ E
[
G(t− Ss)1{t≥Ss}

]
is a right

continuous decreasing function on [0,∞).

Corollary 2.2 Let N ⊂ (0,∞) be the set in Lemma 2.1, which has zero Lebesgue measure.

(i)

∫ ∞
0

E
[
w(t− S̄r)1{t≥S̄r}

]
dr = 1 for every t ∈ (0,∞) \ N .

(ii)

∫ ∞
0

E
[
G(t− S̄r)1{t≥S̄r}

]
dr = t for every t > 0.

(iii)

∫ ∞
0

E
[
G(t− Sr)1{t≥Sr}

]
dr ≤ t for every t > 0.

Proof. (i) just follows from Lemma 2.1 by taking s→∞.

(ii) For t > 0, we have by (i) and Fubini theorem that

t =

∫ t

0

(∫ ∞
0

E
[
w(s− S̄r)1{s≥Sr}

]
dr

)
ds

=

∫ ∞
0

E
[∫ t

0
w(s− S̄r)1{s≥Sr}ds

]
dr

=

∫ ∞
0

E
[
G(t− S̄r)1{t≥S̄r}

]
dr.

(iii) Since G(x) is an increasing function in x, we have by (ii)∫ ∞
0

E
[
G(t− Sr)1{t≥Sr}

]
dr ≤

∫ ∞
0

E
[
G(t− S̄r)1{t≥S̄r}

]
dr ≤ t.

This proves the corollary. 2
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We define the generalized Caputo derivative ∂wt by

∂wt f(t) :=
d

dt

∫ t

0
w(t− s)(f(s)− f(0))ds, (2.6)

whenever it is well-defined in some function space of f .

Suppose that {Tt; t ≥ 0} is a strongly continuous semigroup with infinitesimal generator (L,D(L))

in some Banach space (B, ‖ · ‖) with the property that supt>0 ‖Tt‖ < ∞. Here ‖Tt‖ denotes the

operator norm of the linear map Tt : B → B. Note that by the uniform boundedness principle,

supt>0 ‖Tt‖ < ∞ is equivalent to supt>0 ‖Ttf‖ < ∞ for every f ∈ B. Typical examples of such

uniformly bounded strongly continuous semigroups are:

(i) Transition semigroup {Pt; t ≥ 0} of a strong Markov process X = {Xt, t ≥ 0; Px, x ∈ E}
on a Lusin space E that has a weak dual with respect to some reference measure m on E.

Then for every p ≥ 1, {Pt; t ≥ 0} is a strongly continuous semigroup in B := Lp(E;m) with

supt>0 ‖Pt‖p→p ≤ 1. The infinitesimal generator (L,D(L)) of {Pt; t ≥ 0} in Lp(E;m) is called

the Lp generator of the Markov process X.

(ii) Transition semigroup {Pt; t ≥ 0} of a Feller process X = {Xt, t ≥ 0; Px, x ∈ E} on a locally

compact separable Hausdorff space E. In this case, {Pt; t ≥ 0} is a strongly continuous

semigroup in the space (C∞(E), ‖ · ‖∞) of continuous functions on E that vanish at infinity

equipped with uniform norm. The infinitesimal generator (L,D(L)) of {Pt; t ≥ 0} in B :=

(C∞(E), ‖ · ‖∞) is called the Feller generator of X.

(iii) Certain Feynman-Kac semigroups (can be non-local Feynman-Kac semigroups or even gener-

alized Feynman-Kac semigroups) in Lp-space or in C∞(E) of a Hunt process X; cf. [4, 6].

For α > 0, let Gα :=
∫∞

0 e−αtTtdt be the resolvent of the semigroup {Tt; t ≥ 0} on Banach space

B. Then by the resolvent equation, D(L) = Gα(B) = G1(B), which is dense in the Banach space

(B, ‖ · ‖).

Let Et := inf{s > 0 : Ss > t}, t ≥ 0, be the inverse subordinator. Define

u(t, x) = E [TEtf(x)] =

∫ ∞
0

Tsf(x)dsP(Et ≤ s) =

∫ ∞
0

Tsf(x)dsP(Ss ≥ t). (2.7)

The following is the main result of this paper, which gives the existence and uniqueness of

solutions to time fractional equation (2.8). Theorem 1.1 is its particular case, where Tt is the

transition semigroup of a strong Markov process X given by Ttf(x) = Ex[f(Xt)].

Theorem 2.3 Suppose that (L,D(L)) is the infinitesimal generator of a uniformly bounded strongly

continuous semigroup {Tt; t ≥ 0} in a Banach space (B, ‖ · ‖). For every f ∈ D(L), u(t, x) :=

E [TEtf(x)] is a solution in (B, ‖ · ‖) to

(κ∂t + ∂wt )u(t, x) = Lu(t, x) with u(0, x) = f(x) (2.8)

in the following sense:
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(i) supt>0 ‖u(t, ·)‖ < ∞, x 7→ u(t, x) is in D(L) for each t ≥ 0 with supt≥0 ‖Lu(t, ·)‖ < ∞, and

both t 7→ u(t, ·) and t 7→ Lu(t, ·) are continuous in (B, ‖ · ‖);

(ii) for every t > 0, Iwt (u) :=
∫ t

0 w(t− s)(u(s, x)− f(x))ds is absolutely convergent in (B, ‖ · ‖) and

lim
δ→0

1

δ

(
u(t+ δ, ·)− u(t, ·) + Iwt+δ(u)− Iwt (u)

)
= Lu(t, x) in (B, ‖ · ‖).

Conversely, if u(t, x) is a solution to (2.8) in the sense of (i) and (ii) above with f ∈ D(L), then

u(t, x) = E [TEtf(x)] in B for every t ≥ 0.

Proof. (a) (Existence) Clearly for f ∈ D(L),

sup
t>0
‖u(t, ·)‖ ≤ sup

t>0
E [‖TEtf‖] ≤ sup

r>0
‖Trf‖ <∞.

By the same reason, supt>0 E [‖TEtLf‖] ≤ supr>0 ‖TrLf‖ < ∞. It follows from the closed graph

theorem for the generator (L,D(L)) that u(t, ·) ∈ D(L) and Lu(t, ·) = E [TEt(Lf)]. Since {Tt; t ≥ 0}
is a strongly continuous semigroup on B with supt≥0 ‖Tt‖ <∞ and t 7→ Et is continuous a.s., we have

by bounded convergence theorem that both t 7→ u(t, ·) = E [TEtf ] and t 7→ Lu(t, ·) = E [TEt(Lf)]

are continuous in (B, ‖ · ‖).
It follows from (2.7), (2.5), and the integration by parts formula that for every t > 0,∫ t

0
w(t− r)(u(r, x)− u(0, x))dr

=

∫ t

0
w(t− r)

(∫ ∞
0

(Tsf(x)− f(x))dsP(Ss ≥ r)
)
dr

=

∫ ∞
0

(Tsf(x)− f(x))ds

(∫ t

0
w(t− r)P(Ss > r)dr

)
= −

∫ ∞
0

(Tsf(x)− f(x))dsE
[
G(t− Ss)1{t≥Ss}

]
=

∫ ∞
0

E
[
G(t− Ss)1{t≥Ss}

]
LTsf(x)ds.

Note that since sups>0 ‖Tsf‖ <∞ and sups>0 ‖LTsf‖ = sups>0 ‖TsLf‖ <∞, by (2.2) and Corol-

lary 2.2, all the integrals in above display are absolutely convergent in the Banach space (B, ‖ · ‖),
while the second inequality is justified by the Riemann sum approximation of Stieltjes integrals,

Fubini theorem and the dominated convergence theorem. On the other hand, P(Sr ≥ s) = 1 when

s ≤ κr, while for a.e. s ∈ (κr,∞), we have by Lemma 2.1 that

P(Sr ≥ s) = P(S̄r ≥ s− κr) =

∫ r

0
E
[
w(s− κr − S̄y)1{s−κr>S̄y}

]
dy. (2.9)

So for every t > 0,∫ t

0
P(Sr ≥ s)ds = (κr) ∧ t+ E

∫ r

0

(∫ t

(κr)∧t
w(s− κr − S̄y)1{s−κr>S̄y}ds

)
dy

= (κr) ∧ t+ 1{κr<t}E
∫ r

0
G(t− κr − S̄y)1{t−κr>S̄y}dy. (2.10)
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Since

Lu(s, x) = LE [TEsf(x)] = E [TEsLf(x)]

=

∫ ∞
0

TrLf(x)drP(Es ≤ r) =

∫ ∞
0

TrLf(x)drP(Sr ≥ s),

we have by (2.9) and (2.10) that∫ t

0
Lu(s, x)ds

=

∫ t

0

(∫ ∞
0

TrLf(x)drP(Sr ≥ s)
)
ds

=

∫ ∞
0

TrLf(x)dr

(∫ t

0
P(Sr ≥ s)ds

)
= E

∫ t/κ

0
TrLf(x)

(
κ+G(t− κr − S̄r)1{t−κr>S̄r} − κ

∫ r

0
w(t− κr − S̄y)1{t−κr>S̄y}dy

)
dr

=

∫ ∞
0

TrLf(x)E
[
G(t− Sr)1{t≥Sr}

]
dr + κ

∫ t/κ

0
TrLf(x) (1− P(Sr ≥ t)) dr

=

∫ ∞
0

TrLf(x)E
[
G(t− Sr)1{t≥Sr}

]
dr + κ

∫ ∞
0

P(Sr < t)dr (Trf(x)− f(x))

=

∫ ∞
0

TrLf(x)E
[
G(t− Sr)1{t≥Sr}

]
dr + κ

∫ t/κ

0
P(Et > r)dr (Trf(x)− f(x))

=

∫ ∞
0

TrLf(x)E
[
G(t− Sr)1{t≥Sr}

]
dr + κ

∫ ∞
0

(Trf(x)− f(x)) drP(Et ≤ r)

=

∫ ∞
0

TrLf(x)E
[
G(t− Sr)1{t≥Sr}

]
dr + κE [TEtf(x)− f(x)]

=

∫ ∞
0

TrLf(x)E
[
G(t− Sr)1{t≥Sr}

]
dr + κ(u(t, x)− u(0, x)).

Thus we have for every t > 0,

κ(u(t, x)− u(0, x)) +

∫ t

0
w(t− r)(u(r, x)− u(0, x))dr =

∫ t

0
Lu(s, x)ds.

Consequently, (κ∂t + ∂wt )u(t, x) = Lu(t, x) in B as t 7→ Lu(t, ·) is continuous in (B, ‖ · ‖).

(b) (Uniqueness) Suppose that u(t, x) is a solution to (2.8) in the sense of (i) and (ii) with

f ∈ D(L). Then v(t, x) := u(t, x) − E [TEtf(x)] is a solution to (2.8) with v(0, x) = 0. Hence we

have for every t > 0,

κv(t, x) +

∫ t

0
w(t− r)v(r, x)dr =

∫ t

0
Lv(s, x)ds. (2.11)

Let V (λ, x) :=
∫∞

0 e−λtv(t, x)dt, λ > 0, be the Laplace transform of t 7→ v(t, x). Clearly for every

λ > 0, V (λ, ·) ∈ B with ‖V (λ, ·)‖ ≤ λ−1 supt>0 ‖v(t, ·)‖. By the closed graph theorem, for each

λ > 0, V (λ, ·) ∈ D(L) with

LV (λ, ·) =

∫ ∞
0

e−λtLv(t, ·)dt and ‖LV (λ, ·)‖ ≤
∫ ∞

0
e−λt‖Lv(t, ·)‖dt ≤ 1

λ
sup
t>0
‖Lv(t, ·)‖.
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Taking Laplace transform in t on both sides of (2.11) yields

V (λ, x)

(
κ+

∫ ∞
0

e−λxw(x)dx

)
=

1

λ

∫ ∞
0

e−λtLv(t, x)dt =
LV (λ, x)

λ
.

Thus by (2.1) and (2.3), LV (λ, x) = (κλ+ φ0(λ))V (λ, x) = φ(λ)V (λ, x). In other words,

(φ(λ)− L)V (λ, x) = 0 for every λ > 0.

Since L is the infinitesimal generator of a uniformly bounded strongly continuous semigroup {Tt, t ≥
0} in Banach space B, for every α > 0, the resolvent Gα =

∫∞
0 e−αtTtdt is well defined and is the

inverse to α − L. Hence we have from the last display that V (λ, ·) = 0 in B for every λ > 0. By

the uniqueness of Laplace transform, we have v(t, ·) = 0 in B for every t > 0. This establishes that

u(t, x) = E [TEtf(x)] in B for every t ≥ 0. 2

Remark 2.4 (i) The assumption that f ∈ D(L) in Theorem 2.3 is to ensure that all the integrals

involved in the proof of Theorem 2.3 are absolutely convergent in the Banach space B. This

condition can be relaxed if we formulate the equation (2.8) in the weak sense when the

uniformly bounded strongly continuous semigroup {Tt; t ≥ 0} is symmetric in a Hilbert space

L2(E;m) and so its quadratic form can be used to formulate weak solutions. This will be

carried out in the ongoing joint work [5] with Kim, Kumagai and Wang. It in particular

applies to the case where {Tt; t ≥ 0} is the transition semigroup of any m-symmetric Markov

process on a Lusin space E, which is a strongly continuous contraction symmetric semigroup

in L2(E;m).

(ii) There are two closely related work [18, 12]. Suppose that X = {Xt, t ≥ 0;Px, x ∈ Rd}
is a Lévy process on Rd and generator L, and {St; t ≥ 0} is a driftless subordinator with

Laplace exponent φ and Lévy measure µ. Let Et := inf{s > 0 : Ss > t} be the inverse

subordinator. Under the assumption that κ = 0, µ(0,∞) = ∞,
∫ 1

0 x| log x|µ(dx) < ∞ and

that the Lévy process X has a transition density function, it is shown in [18, Theorem 4.1]

that u(t, x) := Ex [f(XEt)] is a mild solution of the following pseudo-differential equation

φ(∂t)u(t, x) = Lu(t, x) + f(x)µ(t,∞).

Here φ(∂t) is a pseudo-differential operator in time variable t formulated using Fourier mul-

tiplier.

Under the assumption that the Lévy measure µ of the subordinator St satisfying condition

µ(dξ) ≥ ξ1+βdξ on (0, ε) for some ε > 0 and β > 0, and {Tt; t ≥ 0} is the transition semigroup

of a Feller process X = {Xt, t ≥ 0;Px, x ∈ Rd} on Rd whose domain of infinitesimal generator

contains C2(Rd) ∩C∞(Rd), [12, Theorem 8.4.2] asserts that for every f ∈ C2(Rd) ∩C∞(Rd),
u(t, x) := Ex [f(XEt)] satisfies

A∗tu(t, x) = Lu(t, x) + f(x)A∗(1(0,∞))(t) with u(0, x) = f(x),

where A∗ is the dual of the infinitesimal generator of the subordinator St and notation

A∗tu(t, x) means that the operator A∗ is applied to the function t 7→ u(t, x). Here C2(Rd) is

the space of C2-smooth functions on Rd and C∞(Rd) is the space of continuous functions on

Rd that vanish at infinity. In [12, Theorem 8.4.2] , the subordinator St may have drift κ ≥ 0.
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(iii) Cauchy problems with distributed order time fractional derivatives (where κ = 0) were also

studied in [16] for uniformly elliptic generators of divergence form in bounded C1,γ domains

with Dirichlet boundary condition, under certain regularity conditions of the diffusion matri-

ces. We also mention [14, Theorem 2] where {St;≥ 0} is a subordinator without drift and

{Tt; t ≥ 0} is the transition semigroup of a one-dimensional diffusion killed at certain rate via

Feynman-Kac transform.

(iv) There are limited results in literature on the uniqueness for the time fractional equations

(2.8); see [10, 11, 15] for cases of ∂βt u = Lu and [13] for distributed order time fractional

equation ∂wt u = Lu where L is a one-dimensional differential operator in a bounded interval.

We mention that Remark 3.1 of a recent preprint [1] contains a uniqueness result for solutions

to ∂βt u = Lu, where L is the Feller generator of a doubly Feller process killed upon leaving

a bounded regular domain, proved also by using Laplace transform similar to our uniqueness

proof for Theorem 2.3 in this paper.

(v) When the uniformly bounded strongly continuous semigroup {Tt; t ≥ 0} in Theorem 2.3 has an

integral kernel p(t, x, y) with respect to some measure m(dx), then there is a kernel q(t, x, y)

so that

u(t, x) := E [TEtf(x)] =

∫
E
q(t, x, y)f(y)m(dy);

in other words,

q(t, x, y) := E [p(Et, x, y)] =

∫ ∞
0

p(s, x, y)dsP(Et ≤ s)

is the fundamental solution to the time fractional equation (κ∂t + ∂wt )u = Lu under the

setting of this paper. In [5], two-sided estimates on q(t, x, y) are obtained when κ = 0 and

{Tt; t ≥ 0} is the transition semigroup of a diffusion process that satisfies two-sided Gaussian-

type estimates or of a stable-like process on metric measure spaces.

Example 2.5 (i) When {St; t ≥ 0} is a β-subordinator with 0 < β < 1 with Laplace exponent

φ(λ) = λβ, it is easy to check that St has no drift (i.e. κ = 0) and its Lévy measure is

µ(dx) = β
Γ(1−β)x

−(1+β)dx. Hence

w(x) := µ(x,∞) =

∫ ∞
x

β

Γ(1− β)
y−(1+β)dy =

x−β

Γ(1− β)
.

Thus the fractional derivative ∂wt f defined by (1.2) is exactly the Caputo derivative of order

β defined by (1.1). In this case, Theorem 2.3 recovers the main result of [2].

(ii) We call a subordinator {St; t ≥ 0} truncated β-subordinator if it is driftless and its Lévy

measure is

µδ(dx) =
β

Γ(1− β)
x−(1+β)1(0,δ](x)dx

for some δ > 0. In this case,

wδ(x) := µδ(x,∞) = 1{0<x≤δ}

∫ δ

x

β

Γ(1− β)
y−(1+β)dy =

1

Γ(1− β)

(
x−β − δ−β

)
1(0,δ](x).

10



So the corresponding the fractional derivative of (1.2) is

∂wδt f(t) :=
1

Γ(1− β)

d

dt

∫ t

(t−δ)+

(
(t− s)−β − δ−β

)
(f(s)− f(0))ds.

This is the fractional-time derivative whose value at time t depends only on the δ-range of

the past of f as mentioned in the Introduction. Theorem 2.3 says that the corresponding

time fractional equation (1.5) can be solved by using the inverse of truncated β-subordinator.

Clearly, as limδ→∞wδ(x) = w(x) := 1
Γ(1−β)x

−β. Consequently, the fractional derivative

∂wnt f(t)→ ∂wt f(t)), the Caputo derivative of f of order β, in the distributional sense. Using

the probabilistic representation in Theorem 2.3, one can deduce that as δ →∞, the solution

to the equation ∂wδt u = Lu with u(0, x) = f(x) converges to the solution of ∂βt u = Lu with

u(0, x) = f(x).

If we define

ηδ(r) =
Γ(2− β) δβ−1

β
wδ(r) = (1− β)δβ−1

(
x−β − δ−β

)
1(0,δ](x),

then ηδ(r) converges weakly to the Dirac measure concentrated at 0 as δ → 0. So the

fractional derivative ∂ηδt f(t) converges to f ′(t) for every differentiable f . It can be shown

that the subordinator corresponding to ηδ, that is, subordinator with Lévy measure

νδ(dx) :=
(1− β) δβ−1

β
x−(1+β)1(0,δ](x)dx,

converges as δ → 0 to deterministic motion t moving at constant speed 1. Using Theorem

2.3, one can show that the solution to the equation ∂ηδt u(t, x) = Lu(t, x) with u(0, x) = f(x)

converges to the solution of the heat equation ∂tu = Lu with u(0, x) = f(x). 2

3 Occupation measure for processes time-changed by inverse sub-

ordinator

Suppose X = {Xt, t ≥ 0; Px, x ∈ E} is a general strong Markov process on state space E and

{St; t ≥ 0} is a subordinator independent of X whose Lévy measure µ satisfies µ(0,∞) =∞. Let φ

be the Laplace exponent of X; that is, Ee−λSt = e−tφ(λ). Note that E [St] = tφ′(0) so in particular

φ′(0) = E [S1]. Let Et := inf{s > 0 : Ss > t} be the inverse subordinator, and X∗t := XEt . Suppose

D is an open subset of E and define τD := {t > 0 : Xt /∈ D} to be the first exit time from D by

the process X. In general, the time-changed process X∗ is not a Markov process but we can still

define its first exit time from D by

τ∗D := inf {t > 0 : X∗t /∈ D} .

Let ∂ be a cemetery point. The process X∗,D defined by X∗,Dt := X∗t when t < τ∗D and X∗t := ∂

for t ≥ τ∗D is called the part process of X∗ in D. The part process XD of X in D is defined

in an analogous way. We use Ex to denote mathematical expectation taken with respect to the
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probability law Px, under which the Markov process X starts from x ∈ E. For every x ∈ D, the

occupation measures for XD and X∗,D are defined by

νDx (A) = Ex
[∫ τD

0
1A(Xs)ds

]
and ν∗,Dx (A) = Ex

[∫ τ∗D

0
1A(X∗s )ds

]
, A ⊂ D.

Occupation measures describe the average amount of time spent by the processes in subsets of the

state space.

The next theorem says that the occupation measure for the part process X∗,D of X∗ in D

is proportional to that of the part process XD of X in D when φ′(0) < ∞, that is, when the

subordinator St has finite mean. When the subordination St has infinite mean, the occupation

measure for the part process X∗,D of X∗ in D is always infinite.

Theorem 3.1 For every measurable function f ≥ 0 on D and x ∈ D,

Ex

[∫ τ∗D

0
f(X∗t )dt

]
= φ′(0)Ex

[∫ τD

0
f(Xt)dt

]
= φ′(0)GDf(x).

In other words, ν∗,Dx = φ′(0)νDx for every open set D ⊂ E and every x ∈ D.

Proof. First note that

τ∗D = inf{t > 0 : XEt /∈ D} = inf{t > 0 : Et = τD}
= inf{t > 0 : SτD > t} = SτD .

For any f ≥ 0 on D, we have

Ex

[∫ τ∗D

0
f(X∗t )dt

]
= Ex

[∫ SτD

0
f(XEt)dt

]
= Ex

[∫ τD

0
f(Xr)dSr

]
= Ex

[∫ SτD

0
f(XEt)dt

]
= ExEx

[∫ τD

0
f(Xr)dSr

∣∣∣X]
= Ex

[∫ τD

0
f(Xr)d(ESr)

]
= Ex

[∫ τD

0
f(Xr)dr

]
φ′(0)

= φ′(0)GDf(x).

2

Remark 3.2 Taking f = 1 in Theorem 3.1 in particular yields the following relation on mean exit

times:

Ex [τ∗D] = φ′(0)Ex [τD] for every x ∈ D. (3.1)

When X is either a diffusion process determined by a stochastic differential equation driven by

Brownian motion or a rotationally symmetric α-stable process on Rd, and {St; t ≥ 0} is a tempered

β-subordinator having Laplace exponent φ(λ) = (λ + m)β −mβ for some m > 0 and 0 < β < 1,

(3.1) recovers the main result of [7], derived there using a PDE method.
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