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Abstract

Let D = H \ ∪Nk=1Ck be a standard slit domain, where H is the upper half plane and

Ck, 1 ≤ k ≤ N , are mutually disjoint horizontal line segments in H. Given a Jordan arc

γ ⊂ D starting at ∂H, let gt be the unique conformal map from D \ γ[0, t] onto a standard slit

domain Dt = H \ ∪Nk=1Ck(t) satisfying the hydrodynamic normalization at infinity. It has been

established recently that gt satisfies an ODE called a Komatu-Loewner equation in terms of

the complex Poisson kernel of the Brownian motion with darning (BMD) for Dt, extending the

classical chordal Loewner equation for the simply connected domain D = H.
We randomize the Jordan arc γ according to a system of probability measures on the family of

equivalence classes of Jordan arcs that enjoy a domain Markov property and a certain conformal

invariance property. We show that the induced process (ξ(t), s(t)) satisfies a Markov type

stochastic differential equation, where ξ(t) is a motion on ∂H and s(t) represents the motion of

the endpoints of the slits {Ck(t), 1 ≤ k ≤ N}. The diffusion and drift coefficients α and b of ξ(t)

are homogeneous functions of degree 0 and −1, respectively, while s(t) has drift coefficients only,

determined by the BMD complex Poisson kernel that are known to be Lipschitz continuous.

Conversely, given such functions α and b with local Lipschitz continuity, the corresponding

SDE admits a unique solution (ξ(t), s(t)). The latter produces random conformal maps gt(z)

via the Komatu-Loewner equation. The resulting family of random growing hulls {Ft} from

the conformal mappings is called SKLEα,b. We show that it enjoys a certain scaling property

and a domain Markov property. Among other things, we further prove that SKLEα,−bBMD
for

a constant α > 0 has a locality property if and only if α =
√

6, where bBMD is a BMD-domain

constant that describes the discrepancy of a standard slit domain from H relative to BMD.
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1 Introduction

In 2000, Oded Schramm [S] introduced a stochastic Loewner evolution (SLE) on the upper half

plane H with driving process ξ(t) =
√
κBt, where Bt is the standard Brownian motion on ∂H and

κ is a positive constant. The solution of the SLE is a family of random conformal mappings from

H\Kt to H indexed by t ≥ 0. The increasing family of random hulls {Kt; t ≥ 0} is nowadays called

SLEκ. It has a certain conformal invariance and a domain Markov property. SLEκ is a powerful

tool in studying two-dimensional critical systems in statistical physics. SLEκ has been proved to

be the scaling limit of various critical two-dimensional lattice models, such as loops erased random

walk, uniform spanning trees, critical percolation, critical Ising model, and has been conjectured

for a few more including self-avoiding random walks. In particular, SLE6 was found to have a

special property called locality by Lawler-Schramm-Werner [LSW1, LSW2]. Later, it was proved

by S. Smirnov that SLE6 is the scaling limit of the critical percolation exploration process on two-

dimensional triangular lattice. In honor of Schramm, SLE is now also called Schramm-Loewner

evolution.

In this paper, we extend the SLE theory from the upper half plane H to a standard slit domain –a

specific canonical multiply connected planar domain. Based on recent results of Chen-Fukushima-

Rhode [CFR] on chordal Komatu-Loewner (KL) equation and following the lines briefly laid by

R. O. Bauer and R. M. Friedrich [BF1, BF2, BF3], we show that, for a corresponding evolution

in a standard slit domain D = H \
⋃N
k=1Ck, the possible candidates of the driving processes are

given by the solution (ξ(t), s(t)) of a special Markov type stochastic differential equation whose

diffusion and drift coefficients are homogeneous function of degree 0 and −1, respectively. Here

ξ(t) is a motion on ∂H and s(t) is a motion of slits Ck, 1 ≤ k ≤ N . When no slit is present, ξ(t)

becomes
√
κBt as in the simply connected domain H case. The solution (ξ(t), s(t)) of the SDE then

produces a family of random conformal mappings from the multiply connected domains D \ Ft to
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the canonical slit domains D(s(t)) via KL equations. This family or its associated increasing family

of random growing H-hulls {Ft; t ≥ 0} is called a stochastic Komatu-Loewner evolution (SKLE in

abbreviation). We then study the locality property of SKLE.

We now recall the setting formulated in [CFR] and some of its results that will be utilized in

this paper. They are followed by a detailed description of the rest of the paper.

A domain of the form D = H\
⋃N
k=1Ck is called a standard slit domain where {Ck} are mutually

disjoint line segments in H parallel to the x-axis. Denote by D the collection of ’labeled (ordered)’

standard slit domains. For instance, H \ {C1, C2, C3, · · · , CN} and H \ {C2, C1, C3, · · · , CN} are

considered as different elements of D in general although they correspond to the same subset

H \
⋃N
i=1Ci of H. For D and D̃ in D, define the distance d(D, D̃) between them by

d(D, D̃) = max
1≤i≤N

(
|zk − z̃k|+ |z′k − z̃′k|

)
, (1.1)

where, zk and z′k (respectively, z̃k and z̃′k) are the left and right endpoints of the kth slit of D

(respectively, D̃).

We fix D ∈ D and consider a Jordan arc

γ : [0, tγ)→ D with γ(0) ∈ ∂H and γ(0, tγ) ⊂ D for 0 < tγ ≤ ∞. (1.2)

For each t ∈ [0, tγ), let

gt : D \ γ[0, t]→ Dt (1.3)

be the unique conformal map from D \ γ[0, t] onto some Dt = H \
⋃N
k=1Ck(t) ∈ D satisfying a

hydrodynamic normalization

gt(z) = z +
at
z

+ o(1/|z|), z →∞. (1.4)

The coefficient at is called the half-plane capacity of gt. The slits Ck(t), 1 ≤ k ≤ N , are uniquely

determined by D and γ[0, t]. See Figure 1. Let s(t) denote the endpoints of these slits Ck(t) (see

(3.1) below for a precise definition) and denote Dt by D(s(t)). We also define

ξ(t) = gt(γ(t)) ∈ ∂H, 0 ≤ t < tγ . (1.5)

For a Borel set A ⊂ H, we use ∂pA to denote the boundary of A with respect to the topology

induced by the path distance in H\A. For instance, when A ⊂ H is a horizontal line segment, then

∂pA consists of the upper part A+ and the lower part A− of the line segment A.

In [CFR, Section 8], the following results are established:

(P.1) For every 0 < s < tγ , gt(z) is jointly continuous in (t, z) ∈ [0, s]× ((D ∪ ∂pK ∪ ∂H) \ γ[0, s]),

where K =
⋃N
k=1Ck.

(P.2) at is strictly increasing and continuous in t ∈ [0, tγ) with a0 = 0 so that the arc γ can be

reparametrized in such a way that at = 2t, 0 ≤ t < tγ , which is called the half-plane capacity

parametrization.

(P.3) ξ(t) ∈ ∂H is continuous in t ∈ [0, tγ).

(P.4) Dt ∈ D is continuous in t ∈ [0, tγ) with respect to the metric (1.1) on D.
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Figure 1: Conformal mapping gt

Historically gt(z) has been obtained by solving the extremal problem to maximize the coefficient

at among all univalent functions on D\γ[0, t] with the hydrodynamic normalization at infinity. But,

in order to prove the above continuity properties, we used the following probabilistic representation

of gt(z) given in [CFR, §7]:

Let ZH,∗ = {ZH,∗
t , PH,∗

z , z ∈ D∗} be the Brownian motion with darning (BMD) on D∗ := D ∪
{c∗1, . . . , c∗N} obtained from the absorbing Brownian motion in H by rendering (or shorting) each

slit Ck into one single point c∗k. That is, ZH,∗ is an m-symmetric diffusion process on D∗ whose

subprocess killed upon leaving D is the absorbing Brownian motion in D. Here m is the measure

on D∗ that does not charge on {c∗1, . . . , c∗N} and its restriction to D is the Lebesgue measure in

D. BMD ZH,∗ is unique in law and spends zero Lebesgue amount of time on {c∗1, . . . , c∗N}; see

[CFR] for details. Set Ft := γ[0, t], Γr := {z = x + iy : y = r}, r > 0. For a set A ⊂ D∗, define

σA = inf{t > 0 : ZH,∗
t ∈ A}. Then (cf. [CFR, Theorem 7.2]

= gt(z) = lim
r→∞

r · PH,∗
z (σΓr < σFt). (1.6)

Here =gt(z) stands for the imaginary part of the conformal map gt(z). The above formula was first

obtained by Lawler [L2] with Excursion reflected Brownian motion (ERBM) formulated there in

place of BMD. See [CFR, Remark 2.2], [CF2, §6] and Remark 6.13 of the present paper for the

relationship between these two processes.

It is proved in [CFR, Theorem 9.9] that the family of conformal maps {gt(z); t ≥ 0} satisfies

the Komatu-Loewner (KL) equation under the half-plane capacity parametrization of γ:

∂tgt(z) = −2πΨt(gt(z), ξ(t)) for 0 ≤ t < tγ with g0(z) = z ∈ (D ∪ ∂pK) \ γ[0, tγ), (1.7)

where Ψt(z, ξ), z ∈ Dt, ξ ∈ ∂H, is the BMD-complex Poisson kernel for Dt, namely, the unique

analytic function in z ∈ Dt vanishing at ∞ whose imaginary part is the Poisson kernel of the BMD
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for the standard slit domain Dt with pole ξ ∈ ∂H. Here ∂t := ∂
∂t stands for the partial derivative

in t.

The ODE (1.7) was derived in [BF3] as well as in its original form by Y. Komatu in [K], but

only in the sense of left-derivative in t on its left hand side. In [CFR, §9], a Lipschitz continuity

of the complex Poisson kernel Ψ(z, ξ) of the BMD for D ∈ D under the perturbation of D ∈ D is

established, which together with (P.4) yields the following property by taking K(t) =
⋃N
k=1Ck(t):

(P.5) Ψt(z, ξ) is jointly continuous in (t, z, ξ) ∈
⋃
t∈[0,tγ){t} × (Dt ∪ ∂pK(t) ∪ (∂H \ {ξ})).

(P.1), (P.3), (P.5) imply that the righthand side of the equation (1.7) is continuous in t and

consequently it becomes a genuine ODE.

The rest of this paper is organized as follows. In Section 2, we show under the above mentioned

setting of [CFR] that the endpoints s(t) of the slits Cj(t), 1 ≤ j ≤ N, satisfy an ODE analogous

to the KL equation, in terms of the boundary trace of the BMD-complex Poisson kernel Ψt(z, ξ).

In Section 3, we introduce a probability measure on a collection of Jordan arcs γ using the

half-plane capacity parametrization that satisfies a domain Markov property and an invariance

property under linear conformal map. We then study the basic properties of the induced process

Wt = (ξ(t), s(t)). In particular, under certain regularity assumption (conditions (C.1) and (C.2)

in subsection 3.5), Wt is shown to satisfy an SDE for which the diffusion and drift coefficients for

ξ(t) are homogeneous functions α(s) and b(s) of degree 0 and −1, respectively, and the endpoints

s(t) of the slit motion component satisfy the KL equation.

Conversely, given locally Lipschitz continuous homogeneous functions α and b of degree 0 and

-1, respectively, we establish in Section 4 that the corresponding SDE for Wt has a unique strong

solution. We show that the solution (ξ(t), s(t)) has a Brownian scaling property and is homogeneous

in x-direction.

The solution (ξ(t), s(t)) obtained above generates a family of (random) conformal mappings

{gt(z)} via the Komatu-Loewner equation (5.19). The associated random growing hulls {Ft} is

called the SKLE drivn by (ξ(t), s(t)) determined by coefficients α, b and is denoted by SKLEα,b. Its

basic properties including pathwise properties as a solution of an ODE as well as a certain scaling

property and a domain Markov property of its distribution are studied in Section 5. The induced

random measures on {Ft; t ≥ 0} are shown to have the domain Markov property and a dilation and

translation invariance property.

In Section 6, we introduce a constant bBMD measuring a discrepancy of a standard slit domain

from H relative to the BMD. We call this constant the BMD domain constant. This section

concerns the locality of SKLEα,b-hulls {Ft}, which is a property that {ΦA(Ft)}, after a suitable

time change, has the same distribution as {Ft} for any hull A ⊂ D ∈ D and its associated canonical

map ΦA : D \ A 7→ D̃ ∈ D. We do not know if {Ft} is generated even by a continuous curve.

Nevertheless, a generalized Komatu-Loewner equation (6.28) for the map g̃s(z) associated with the

image hulls {ΦA(Ft)} can be derived by first establishing the joint continuity of g̃t(z) using BMD

and the absorbing Brownian motion. This equation and a generalized Itô formula will lead us to

Theorem 6.11 asserting that SKLEα,−bBMD
for a constant α > 0 enjoys a locality property if and

only if α =
√

6.

To establish the equation (6.28), we need a comparison of half-plane capacities obtained by S.

Drenning [D] using ERBM. A full proof of this comparison theorem using BMD instead of ERBM

will be supplied in the Appendix, Section 7, of this paper.
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An SKLE is produced by a pair (ξ(t), s(t)) of a motion ξ(t) on ∂H and a motion s(t) of slits

via Komatu-Loewner equation, while an SLE is produced by a motion on ∂H alone via Loewner

equation. They are subject to different mechanisms. Nevertheless. as a family of random growing

hulls, it is demonstrated in [CFS] that, when α is constant, SKLEα,b is, up to some random hitting

time and modulo a time change, equivalent in distribution to the chordal SLEα2 . Moreover, it is

shown in [CFS] that, after a reparametrization in time, SKLE√6,−bBMD
has the same distribution as

chordal SLE6 in upper half space H. In relation to Theorem 6.11 of the present paper, the locality

of SLE6 will be revisited and examined in [CFS].

The present paper only treats chordal SKLEs. The study of K-L equations and SKLEs for other

canonical multiply connected planar domains as annulus, circularly slit annulus and circularly slit

disk will be recalled and examined in [CFS].

Throughout this paper, we use “:=” as a way of definition. For a, b ∈ R, a∨ b := max{a, b} and

a ∧ b := min{a, b}.

2 Komatu-Loewner equation for slits

We keep the setting and the notations of [CFR] that are described in the preceding section.

In this and the next sections, we consider simple curves only. We use them to find out what kind

of driving processes should be for general stochastic Komatu-Loewner equation. We parameterize

the Jordan arc γ by its half-plane capacity, which is always possible in view of (P.2). For t ∈ [0, tγ),

the conformal map gt from D \ γ[0, t] onto Dt can be extended analytically to ∂pK in the following

manner.

Fix j ∈ {1, . . . , N}, and denote the left and right endpoints of Cj by zj = a+ ic and zrj = b+ ic,

respectively. Denote the open slit Cj \ {zj , zrj} by C0
j . Consider the open rectangles

R+ := {z : a < x < b, c < y < c+ δ}, R− := {z : a < x < b, c− δ < y < c},

and R := R+ ∪ C0
j ∪ R−, where δ > 0 is sufficiently small so that R+ ∪ R− ⊂ D \ γ[0, tγ). Since

=gt(z) takes a constant value at the slit Cj , gt can be extended to an analytic function g+
t (resp.

g−t ) from R+ (resp. R−) to R across C0
j by the Schwarz reflection.

We next take ε > 0 with ε < (b−a)/2 so that B(zj , ε)\Cj ⊂ D\γ[0, tγ ]. Then ψ(z) = (z−zj)1/2

maps B(zj , ε) \ Cj conformally onto B(0,
√
ε) ∩H. As in the proof of [CFR, Theorem 7.4],

f `t (z) = gt ◦ ψ−1(z) = gt(z
2 + zj)

can be extended analytically to B(0,
√
ε) by the Schwarz reflection and by noting that the origin

0 is a removable singularity for f `t . Similarly, we can induce an analytic function f rt on B(0,
√
ε)

from gt on B(zrj , ε) \ Cj .
For an analytic function u(z), its derivatives in z will be denoted by u′(z), u′′(z) and so on.

Lemma 2.1 (i) ∂tg
±
t (z), (g±t )′(z) and (g±t )′′(z) are continuous in (t, z) ∈ [0, tγ)×R.

(ii) ηt(z, ζ) := Ψt(gt(z), ζ) can be extended to an analytic function η+
t (z, ζ) (resp. η−t (z, ζ)) from

R+ (resp. R−) to R by the Schwarz reflection, and

(η±t (z, ζ))′ are continuous in (t, z, ζ) ∈ [0, tγ)×R× ∂H. (2.1)
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(iii) (g±t )′(z) are differentiable in t ∈ (0, tγ) and

∂t(g
±
t )′(z) are continuous in (t, z) ∈ [0, tγ)×R. (2.2)

(iv) ∂tf
`
t (z), (f `t )

′(z) and (f `t )
′′(z) are continuous in (t, z) ∈ [0, tγ ]×B(0,

√
ε).

(v) η̃t(z, ζ) := Ψt(f
`
t (z), ζ) = Ψt(gt(ψ

−1(z)), ζ) can be extended to an analytic function from

B(0,
√
ε) ∩H to B(0,

√
ε) and

(η̃t(z, ζ))′ is continuous in (t, z, ζ) ∈ [0, tγ)×B(0,
√
ε)× ∂H. (2.3)

(vi) (f `t )
′(z) is differentiable in t ∈ (0, tγ) and

∂t(f
`
t )
′(z) is continuous in (t, z) ∈ [0, tγ)×B(0,

√
ε). (2.4)

(vii) The statements (iv), (v), (vi) in the above remain valid with f rt in place of f `t .

Proof. (i) This follows from the Cauchy integral formulae of derivatives of g±t combined with the

property (P.1) and (1.7).

(ii) This can be proved in the same way as (i) using (P.1) and (P.5).

(iii) For 0 < s < t < tγ , define gt,s = gs ◦ g−1
t , which is a conformal map from Dt onto

Ds \ gs(γ[s, t]). Define ξ(t) = gt(γ(t)) = limz→γ(t),z∈D\γ[0,t] gt(z). It is easy to see that ξ(t) ∈ ∂H.
Furthermore, there exist unique points β0(t, s) < β1(t, s) from ∂H such that β0(t, s) < ξ(t) <

β1(t, s), gt,s(β0(t, s)) = gt,s(β1(t, s)) = ξ(s), and

=gt,s(x+ i0+)

{
= 0 for x ∈ ∂H \ (β0(t, s), β1(t, s)),

> 0 for x ∈ (β0(t, s), β1(t, s)).

See Figure 2. We know from [CFR, (6.22)] that

gs(z)− gt(z) =

∫ β1(t,s)

β0(t,s)
Ψt(gt(z), x)=gt,s(x)dx. (2.5)

Taking derivative in z yields

(g±s )′(z)− (g±t )′(z) =

∫ β1(t,s)

β0(t,s)
(η±t (z, x))′=gt,s(x)dx.

On the other hand, it is established in [CFR, Lemma 6.2] that for 0 ≤ s < t < tγ that

2(s− t) = at − as =
1

π

∫ β1(t,s)

β0(t,s)
=gt,s(x+ i0+)dx. (2.6)

Taking quotient of the last two displays and then passing s ↑ t yields

∂−t (g±t )′(z) = −2π(η±t (z, ξ(t)))′, (2.7)
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Figure 2: Conformal mapping gt,s

where ∂−t denotes the left-derivative in t. In view of (2.1) and the property (P.3), the right hand

side of (2.7) is continuous in t ∈ [0, tγ). Thus, as in the proof of [CFR, Thoerem 9.9], (g±t )′(z) is

differentiable in t. Consequently, (2.2) follows in view of (2.7).

(iv) Let γ̃ be a closed smooth Jordan curve in B(0,
√
ε). By Cauchy’s integral formula

(f `t )
′(z) =

1

2πi

∫
η

f `t (ζ)

(ζ − z)2
dζ, z ∈ ins γ̃.

Since f `t (ζ) = gt(ζ
2 + zj) is continuous in t uniformly in ζ ∈ γ̃ by (P.1), we get the desired

continuity. The same is true for (f `t )
′′(z).

(v) Since =η̃t(z, ζ) is constant in z onB(0,
√
ε)∩∂H\{0}, it extends analytically toB(0,

√
ε)\{0}

by the Schwarz reflection. Note that 0 is a removable singularity because =ηt(z, ζ) is bounded near

{0}. The second assertion can be shown as the proof of (ii) using (P.1) and (P.5).

(vi) Taking z to be ψ−1(z) in (2.5), we have

f `s(z)− f `t (z) =

∫ β1(t,s)

β0(t,s)
η̃t(z, x)=gt,s(x)dx for z ∈ B(0,

√
ε) and s < t.

Differentiating in z gives

(f `s)
′(z)− (f `t )

′(z) =

∫ β1(t,s)

β0(t,s)
(η̃t(z, x))′=gt,s(x)dx for z ∈ B(0,

√
ε) and s < t.

Taking quotient of the above with (2.6) and passing s ↑ t yields ∂−t (f `t )
′(z) = 2π(η̃t(z, ξ(t)))

′. Since

the right hand side is continuous in t by (2.3) and (P.3), we arrive at the conclusion (vi). 2
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Denote by zj(t) and zrj (t) the left and right endpoints of the slit Cj(t), where 1 ≤ j ≤ N , for

Dt ∈ D and t ∈ [0, tγ). Since gt is a homeomorphism between ∂pCj and ∂pCj(t), for each t ∈ [0, tγ)

and 1 ≤ j ≤ N , there exist unique

z̃j(t) = x̃j(t) + iyj ∈ ∂pCj and z̃rj (t) = x̃rj(t) + iyj ∈ ∂pCj

so that gt(z̃j(t)) = zj(t) and gt(z̃
r
j (t)) = zrj (t).

Lemma 2.2 (i) If z̃j(t) ∈ C+
j \ {zj , zrj}, then

(g+
t )′(z̃j(t)) = 0, (g+

t )′′(z̃j(t)) 6= 0. (2.8)

(ii) If z̃j(t) ∈ C−j \ {zj , zrj}, then (2.8) holds with g−t in place of g+
t .

(iii) If z̃j(t) ∈ ∂pCj ∩B(zj , ε), then, for ψ(z) = (z − zj)1/2,

(f `t )
′(ψ(z̃j(t))) = 0, (f `t )

′′(ψ(z̃j(t))) 6= 0. (2.9)

(iv) If z̃j(t) ∈ ∂pCj ∩B(zrj , ε), then, for ψ(z) = (z − zrj )1/2,

(f rt )′(ψ(z̃j(t))) = 0, (f rt )′′(ψ(z̃j(t))) 6= 0. (2.10)

(v) The above four statements also hold for z̃rj (t) in place of z̃j(t).

Proof. It suffices to prove (i) and (iii). g+
t is analytic on R and z̃j(t) ∈ R. Suppose g+

t (z)− zj(t)
has a zero of order m at z̃j(t): for some analytic function h with h(z̃j(t)) 6= 0,

g+
t (z)− zj(t) = g+

t (z)− g+
t (z̃j(t)) = (z − z̃j(t))mh(z).

Then, in view of [A, p131, Th.11], there exists ε0 > 0 with B(z̃j(t), ε0) ⊂ R and δ0 > 0, such

that, for any w ∈ B(zj(t), δ0), (g+
t )−1(w) ∩ B(z̃j(t), ε0) consists of m distinct points. Since gt is

homeomorphic between ∂pCj and ∂pCj(t), there exists δ00 > 0 such that, for any δ ∈ (0, δ00) and

for any w ∈ B(zj(t), δ)∩Cj(t) with w 6= zj(t), (g+
t )−1(w) ⊂ B(z̃j(t), ε0)∩C+

j consists of two points

because zj(t) is an endpoint of Cj(t) and so w corresponds to two distinct points of ∂pCj(t). Hence

m = 2.

(iii) Except for the last part, the following proof is similar to that of (i).

f `t is analytic on B(0,
√
ε) and ψ(z̃j(t)) ∈ B(0,

√
ε). Suppose f `t (z) − zj(t) has a zero of order

m at ψ(z̃j(t)): for some analytic function h with h(ψ(z̃j(t))) 6= 0,

f `t (z)− zj(t) = f `t (z)− f `t (ψ(z̃j(t))) = (z − ψ(z̃j(t)))
mh(z), z ∈ B(0,

√
ε).

Then, as in the proof of (i), there exists ε0 > 0 with B(ψ(z̃j(t)), ε0) ⊂ B(0,
√
ε) and δ0 > 0, such

that, for any w ∈ B(zj(t), δ0), (f `t )
−1(w) ∩ B(ψ(z̃j(t)), ε0) consists of m distinct points. Since

zj(t) is the endpoint of Cj(t) and gt is homeomorphic between ∂pCj and ∂pCj(t), there exists

δ00 > 0 such that, for any δ ∈ (0, δ00) and for any w ∈ B(zj(t), δ) ∩ Cj(t) with w 6= zj(t),

(gt)
−1(w) ⊂ ∂pCj ∩ B(zj , ε) consists of two points. In fact, w corresponds to two distinct points

w+ ∈ C+
j (t), w− ∈ C−j (t) so that g−1

t (w) = {w̃+, w̃−} with gt(w̃±) = w±. Then (f `t )
−1(w) =

ψ(g−1
t (w)) = {ψ(w̃+), ψ(w̃−)} consists of two distinct points of B(0,

√
ε). Therefore m = 2. 2
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We let h(t, z) = (g+
t )′(z). Then h(t, z) is a C1-function in (t, z) ∈ (0, tγ)×R by virtue of Lemma

2.1.

Assume that z̃j(t0) ∈ C+
j \ {zj , zrj}. By (2.8),

h(t, z̃j(t)) = 0 for t ∈ (t0 − δ1, t0 + δ1) (2.11)

for some δ1 > 0. On the other hand, |h′(t, z)| = |(g+
t )′′(z)| > 0 by Lemma 2.2. So by the implicit

function theorem , there is some δ2 ∈ (0, δ1) so that t 7→ z̃j(t) is C1 in t ∈ (t0 − δ2, t0 + δ2).

Differentiating (2.11) in t yields

d

dt
z̃j(t) = −∂th(t, z)

h′(t, z)

∣∣∣
z=z̃j(t)

for t ∈ (t0 − δ2, t0 + δ2). (2.12)

The same assertions hold for z̃j(t) when z̃j(t) ∈ C−j \ {zj , zrj}. A similar argument shows, by

using (iii) and (iv) of Lemma 2.2, that ψ(z̃j(t)) is a C1 function of t in a neighborhood of t0 when

z̃j(t0) ∈ ∂pCj ∩
(
B(zj , ε) ∪B(zrj , ε)

)
.

Theorem 2.3 The endpoints zj(t) = xj(t) + iyj(t), z
r
j (t) = xrj(t) + iyj(t), of Cj(t) satisfy the

following equations for 1 ≤ j ≤ N :

d

dt
yj(t) = −2π=Ψt(zj(t), ξ(t)), (2.13)

d

dt
xj(t) = −2π<Ψt(zj(t), ξ(t)), (2.14)

d

dt
xrj(t) = −2π<Ψt(z

r
j (t), ξ(t)). (2.15)

Proof. It suffices to prove (2.13)-(2.14). It follows from (1.7) and (i), (iv) of Lemma 2.1 that

∂tg
±
t (z) = −2πΨt(g

±
t (z), ξ(t)) for z ∈ ∂pCj \ {zj , zrj} (2.16)

and

∂tf
`
t (z) = −2πΨt(f

`
t (z), ξ(t)) for z ∈ ∂pCj ∩B(zj , ε). (2.17)

Note that zj(t) = g±t (z̃j(t)) when z̃j(t) ∈ ∂pCj \ {zj , zrj} and zj(t) = f `t (z̃j(t)) when z̃j(t) ∈
∂pCj ∩B(zj , ε). Since z̃j(t) is C1 in t, we have by Lemma 2.2

d

dt
zj(t) =

d

dt
(g±t (z̃j(t)) = ∂tg

±
t (z̃j(t)) + (g±t )′(z̃j(t))

d

dt
z̃j(t) = −2πΨt(zj(t), ξ(t))

when zj(t) ∈ ∂pCj \ {zj , zrj}, and

d

dt
zj(t) =

d

dt
f `t (z̃j(t)) = ∂tf

`
t (z̃j(t)) + (f `t )

′(z̃j(t))
d

dt
z̃j(t) = −2πΨt(zj(t), ψ(t))

when zj(t) ∈ ∂pCj ∩B(zj , ε). This proves (2.13)-(2.14). 2
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Remark 2.4 (i) The equation (2.13)-(2.15) was derived in [BF3] by assuming that z̃j(t) ∈ ∂pCj \
{zj , zrj} and also by taking for granted the smoothness of ‘ ddzgt(z)’ in two variables (t, z), which is

now established by Lemma 2.1.

(ii) If

gt(zj) = zj(t) and gt(z
r
j ) = zrj (t) for t ∈ (0, tγ) and 1 ≤ j ≤ N, (2.18)

then Theorem 2.3 is merely a special case of the Komatu-Loewner equation (1.7) with z = zj and

z = zrj , 1 ≤ j ≤ N , respectively. But in general (2.18) is not true. 2

We call (2.13)-(2.15) the Komatu-Loewner equation for the slits.

3 Randomized curve γ and induced process W

3.1 Random curve with domain Markov property and a conformal invariance

As in the previous sections, for a standard slit domain D = H\
⋃N
k=1Ck, the left and right endpoints

of the kth slit Ck are denoted by zk = xk + iyk and zrk = xrk + iyrk, respectively. Recall that D is

the collection of all labeled (or, ordered) standard slits domains equipped with metric d of (1.1).

We define an open subset S of the Euclidean space R3N by

S =
{

s := (y,x,xr) ∈ R3N : y, x, xr ∈ RN , y > 0, x < xr,

either xrj < xk or xrk < xj whenever yj = yk, j 6= k
}
. (3.1)

The Borel σ-field on S will be denoted as B(S). The space D can be identified with S as a

topological space. We write s(D) (resp. D(s)) the element in S (resp. D) corresponding to D ∈ D
(resp. s ∈ S).

A set F ⊂ C is called an H-hull if F is compact, F = F ∩H and H \F is simply connected. For

D ∈ D and an H-hull F ⊂ D, there exists a unique conformal map g from D \F onto some D̃ ∈ D
satisfying the hydrodynamic normalization g(z) = z + a

z + o
(

1
|z|

)
as z →∞. In what follows, such

a map g will be called a canonical map from D \ F . The associated constant a (which is real and

non-negative) will be called the half-plane capacity of g and can be evaluated as

a = lim
z→∞

z(g(z)− z). (3.2)

Set

D̂ = {D̂ = D \ F : D ∈ D and F ⊂ D is an H-hull}.

For D̂ = D \ F ∈ D̂, let

Ω(D̂) =
{
γ = {γ(t) : 0 ≤ t < tγ} : Jordan arc, γ(0, tγ) ⊂ D̂, γ(0) ∈ ∂(H \ F ), 0 < tγ ≤ ∞

}
.

Two curves γ, γ̃ ∈ Ω(D̂) are regarded equivalent if γ̃ can be obtained from γ by a reparametrization.

Denote by Ω̇(D̂) the equivalence classes of Ω(D̂).

Given γ ∈ Ω(D̂) for D̂ = D\F ∈ D̂, let gt be the canonical map from D̂\γ[0, t] = D\(γ[0, t]∪F )

with the half-plane capacity at, t ∈ [0, tγ). Note that gt = ĝt ◦ g, where g is the canonical map
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from D \ F onto some D̂ ∈ D and ĝt is the canonical map from D̂ \ g(γ[0, t]) onto some Dt ∈ D.

It then follows from (3.2) that at = a+ ât, where a and ât are the half-plane capacity of g and ĝt
respectively.

Since ât = at − a0 is strictly increasing and continuous in t ∈ [0, tγ) with â0 = 0 by (P.2), the

curve γ can be reparametrized as γ̃(t) = γ(â−1
2t ) for 0 ≤ t < tγ̃ := 1

2 âtγ so that the corresponding

half-plane capacity becomes a0 + 2t. The curve γ̃ is called the half-plane capacity renormalization

of γ.

Throughout the rest of this paper, each γ̇ ∈ Ω̇(D̂) will be represented by a curve (denoted by

γ̇ again) belonging to this class parametrized by the half-plane capacity. We conventionally adjoin

an extra point ∆ to H and define γ̇(t) = ∆ for t ≥ tγ̇ so that γ̇ can be regarded as a map from

[0,∞] to H ∪ {∆}. We then introduce a filtration {Ġt(D̂); t ≥ 0} on Ω̇(D̂) by

Ġt(D̂) := (σ{γ̇(s) : 0 ≤ s ≤ t}) ∩ {t < tγ̇}, Ġ(D̂) := σ{γ̇(s) : s ≥ 0}.

For each D ∈ D, we consider a family of probability measures {PD,z; z ∈ ∂H} on (Ω̇(D), Ġ(D))

that satisfies the property

PD,z({γ̇(0) = z}) = 1, z ∈ ∂H, (3.3)

as well as the following (DMP) and (IL).

For each D̂ ∈ D̂ and t ≥ 0, define the shift operator θ̇t : Ω̇(D̂) ∩ {t < tγ̇} 7→ Ω̇(D̂ \ γ̇[0, t]) by

(θ̇tγ̇)(s) = γ̇(t+ s) for s ∈ [0, tγ̇ − t). (3.4)

(DMP) (Domain Markov property): for any D ∈ D, t ≥ 0 and z ∈ ∂H,

PD,z
(
θ̇−1
t Λ

∣∣Ġt(D)
)

= Pgt(D\γ̇[0,t]),gt(γ̇(t))(gt(Λ)) for every Λ ∈ Ġ(D \ γ̇[0, t]). (3.5)

Here gt(z) is the canonical map from D \ γ̇[0, t]. Note that gt(D \ γ̇[0, t]) ∈ D and gt(γ̇(t)) ∈ ∂H is

well-defined since gt(z) can be extended continuously to ∂p(D \ γ̇[0, t]).

(IL) (Invariance under linear conformal map): for any D ∈ D and any linear map f from D onto

f(D) ∈ D,

Pf(D),f(z) = PD,z ◦ f−1 for every z ∈ ∂H. (3.6)

Remark 3.1 For D̂ = D \ F ∈ D̂, let Φ be the canonical map that maps D̂ onto Φ(D̂) ∈ D.

Suppose that Φ can be extended continuously to ∂p(H \ F ). Then for each z ∈ ∂p(H \ F ), one can

define P
D̂,z

= P
Φ(D̂),Φ(z)

◦ Φ−1. We can therefore restate (3.5) as

PD,z
(
θ̇−1
t Λ

∣∣Ġt(D)
)

= PD\γ̇[0,t],γ̇(t)(Λ) for every Λ ∈ Ġ(D \ γ̇[0, t]). (3.7)

This explains why we call (3.5) the domain Markov property. The formulation (3.5) avoids the

technical issue whether Φ can be extended continuously to ∂p(H \ F ) for general D̂ = D \ F ∈ D̂.

See Proposition 5.10 and Theorem 5.11 in Section 5. 2
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3.2 Markov property of W

For each D ∈ D, γ̇ ∈ Ω̇(D) and t ∈ [0, tγ̇), γ̇ induces the conformal map gt from D \ γ̇[0, t]

onto Dt = gt(D) ∈ D. The conformal map gt(z) can be extended to a continuous map from

D∪∂pK∪∂pγ[0, t]∪∂H onto H. We occasionally write gt as gDt or gD\γ̇[0,t] to indicate its dependence

on γ̇ ∈ Ω̇(D). Note that gt sends γ̇(t) to ξ(t) ∈ ∂H.

Let {s(t) = s(Dt), t ∈ [0, tγ̇)} be the induced slit motion with D0 := D. We will consider the

joint process

Wt =

{
(ξ(t), s(t)) ∈ R× S ⊂ R3N+1, 0 ≤ t < tγ̇ ,

δ, t ≥ tγ̇ .

Here the real part of ξ(t) ∈ ∂H is designated by ξ(t) again and δ is an extra point conventionally

adjoined to R× S. We shall occasionally write s(t) as gDt (s) with s = s(D).

To establish the Markov property of Wt, we need the following measurability results.

Lemma 3.2 Fix D ∈ D and t ≥ 0.

(i) For each z ∈ D, =gt(z) is a [0,∞)-valued Ġt(D)-measurable function on Ω̇(D).

(ii) gt(z) is an H-valued B(D ∪ ∂pK ∪ ∂pγ̇[0, t]∪ ∂H)× Ġt(D)-measurable function on (D ∪ ∂pK ∪
∂pγ̇[0, t] ∪ ∂H)× Ω̇(D).

(iii) Wt is an R3N+1-valued Ġt(D)-measurable function on Ω̇(D).

Proof. (i) We make use of the probabilistic representation (1.6) of =gt(z). Take r > 0 such that

the set Hr = {z ∈ H : =z < r} contains γ̇(0, t]∪K. It suffices to show Fz,r(γ̇) = PH,∗
z (σΓr < σγ̇(0,t])

is a Ġt(D)-measurable function on Ω̇(D) for each fixed z ∈ D.
Let ZHr,∗ = (ZHr,∗

t , ζ,PHr,∗
z ) be the BMD on H∗r = (D ∩ Hr) ∪ {c∗1, · · · , c∗N} obtained from the

absorbing Brownian motion on Hr by rendering each hole Ck into a single point c∗k, with life time

ζ. Then

Fz,r(γ̇) = PHr,∗
z (σγ̇(0,t] =∞) = PHr,∗

z (γ̇(0, t] ∩ ZHr,∗
[0,ζ) = ∅). (3.8)

Let H∗r ∪{∆} be the one-point compactification of H∗r .. As the sample space (Ξ,B(Ξ)) of ZHr,∗,

we take

Ξ = {Z ∈ C([0,∞) 7→ H∗r ∪ {∆}) : Zt = ∆, t ≥ ζ(= σ∆)}

and B(Ξ) = σ{Zt, t ≥ 0}. We consider the direct product Ω̇(D) × Ξ of the measurable space

(Ω̇(D), Ġt(D)) and (Ξ,B(Ξ)). Then the set Λ = {(γ̇, Z) ∈ Ω̇(D) × Ξ : γ̇(0, t] ∩ Z[0,∞) = ∅} is

Ġt(D)×B(Ξ)-measurable because

Λ =

∞⋃
n=1

⋂
u∈[0,t]

⋂
Q+

⋂
v∈Q+

{|γ̇(u)− Zv| > 1/n},

where Q+ denotes the set of positive rational numbers.

In view of (3.8), Fz,r(γ̇) = PHr,∗
z (Λγ̇) for the γ̇-section Λγ̇ = {Z ∈ Ξ : (γ̇, Z) ∈ Λ} of Λ and so

Fz,γ(γ̇) is Ġt(D)-measurable by the Fubini Theorem.
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(ii) By (i) and (1.6), =gt(z) = limr→∞ rFz,r(γ̇) is Ġt(D)-measurable in γ̇ for each z ∈ D. On

the other hand, it is continuous in z ∈ D ∪ ∂pK ∪ ∂pγ̇[0, t]∪ ∂H for each γ̇ ∈ Ω̇(D). Therefore =gt
is B(D ∪ ∂pK ∪ ∂pγ̇[0, t] ∪ ∂H)× Ġt(D)-measurable in (z, γ̇).

Since gt is obtained from =gt explicitly via [CFR, (10.17)], gt enjoys the same joint measurability.

(iii) This follows from (ii). 2

For ξ ∈ R and s ∈ S, we denote the probability measure PD(s),ξ+i0 on (Ω̇(D(s)), Ġ(D(s))) by

P(ξ,s).

Theorem 3.3 (Time homogeneous Markov property) The process {Wt, t ≥ 0;P(ξ,s), ξ ∈ R, s ∈ S}
is {Ġt(D(s(0)); t ≥ 0}-adapted, and

P(ξ,s)(W0 = (ξ, s)) = 1, (3.9)

P(ξ,s)

(
Wt+s ∈ B

∣∣ Ġt(D(s))
)

= PWt(Ws ∈ B) for t, s ≥ 0, B ∈ B(R× S). (3.10)

Proof. Wt is Ġt(D(s(0))-measurable by Lemma 3.2. (3.9) follows from (3.3).

For D = D(s) ∈ D, γ̇ ∈ Ω̇(D) and t ∈ [0, tγ̇), gDt is a conformal map from D \ γ̇[0, t] ∈ D̂ onto

Dt ∈ D sending γ̇(t) to ξ(t) ∈ ∂H and so, by (3.5), for Λ ∈ Ġ(D \ γ̇[0, t]) and z ∈ ∂H

PD,z(θ̇−1
t Λ

∣∣ Ġt(D)) = PDt,ξ(t)(g
D
t (Λ)). (3.11)

Set, for t, s ≥ 0 and B ∈ B(R× S),

Λt,s =
{
η̇ ∈ Ω̇(D \ γ̇[0, t]) : η̇(0) = γ̇(t), (ξ̂(s), ŝ(s)) ∈ B

}
.

Here, by means of the canonical (conformal) map g
D\γ̇[0,t]
s from (D \ γ̇[0, t]) \ η̇[0, s] onto D̂s ∈ D,

we define ξ̂(s) = g
D\γ̇[0,t]
s (η̇(s)) and ŝ(s) = s(D̂s). Then we have

θ−1
t Λt,s = {γ̇ ∈ Ω̇(D) : Wt+s ∈ B} and gDt (Λt,s) =

{
γ̇ ∈ Ω̇(Dt) : γ̇(0) = ξ(t), Ws ∈ B

}
.

In fact, the first identity is due to the relation

gDt+s(z) = gDt\gDt γ̇[t,t+s] ◦ g
D
t (z),

while the second one is obtained by the observation that gDt induces a one-to-one map between

Ω̇(D \ γ̇[0, t]) and Ω̇(Dt).

The conclusion of the theorem now follows from (3.11). 2

Remark 3.4 The filtration {Ġt(D(s)), t ≥ 0} in the identity (3.10) depends on the second com-

ponent s of the initial state (ξ, s). Nevertheless we can regard the process (Wt,P(ξ,s)) as a Markov

process on R×S in a usual sense. If we write w = (ξ, s) and introduce a transition function Pt on

R× S by

Ptf(w) = Ew[f(Wt)], f ∈ Bb(R× S),

then (3.10) implies that, for any 0 ≤ t1 < t2 < · · · < tn, f1, f2, · · · , fn ∈ Bb(R×S), and w ∈ R×S,

Ew

[
n∏
k=1

fk(Wtk)

]
=

∫
(R×S)n

n∏
k=1

fk(wk)Ptk−tk−1
(wk−1, dwk)

with t0 := 0 and w0 := w. 2
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3.3 Brownian scaling for W

Lemma 3.5 For D ∈ D, γ ∈ Ω(D), let at = at(γ,D) be the associated half-plane capacity. Then

for any c > 0

at(cγ, cD) = c2at(γ,D), t ∈ [0, tγ). (3.12)

In particular, if γ is parameterized by the half-plane the half-plane capacity, then

(ċγ) (t) = c γ̇(c−2t), 0 ≤ t < c2tγ̇ =: t ˙(cγ)
. (3.13)

is the half-plane capacity parametrization of the curve cγ in cD.

Proof. Let gt(z) be the canonical map from D \ γ. Then gct (z) = cgt(z/c) is the canonical map

from cD \ cγ. (3.12) follows from (3.2) and

z(gct (z)− z) = c2 z

c

(
gt(
z

c
)− z

c

)
.

(3.13) follows from at(γ̇, D) = 2t and (3.12). 2

We make a convention that c ∆ = ∆ for any constant c > 0. Then the identity (3.13) holds for

any t ≥ 0; for t ≥ c2tγ̇ , the both hand sides of (3.13) equal ∆. Keeping this in mind, we show the

following:

Proposition 3.6 For D ∈ D, z ∈ ∂H and any c > 0

{c−1γ̇(c2t), t ≥ 0} under PcD,cz has the same distribution as {γ̇(t), t ≥ 0} under PD,z. (3.14)

Proof. For a fixed c > 0, f(z) = cz is a conformal map from D onto cD ∈ D. By the invariance

under linear conformal map (3.6), we have for D ∈ D, z ∈ ∂H

PD,z(Λ) = f−1
∗ PcD,cz(Λ) = PcD,cz(f(Λ)), Λ ∈ Ġ(D). (3.15)

For Λ = {γ̇ ∈ Ω̇(D) : γ̇ ∈ B} ∈ Ġ(D) with B ∈ B
(
(H ∪ {∆})[0,∞)

)
, f(Λ) = {γ̇ ∈ Ω̇(cD) : ˙(γ/c) ∈

B}. By (3.13),
˙(γ/c)(t) = c−1γ̇(c2t), t ≥ 0, (3.16)

and so (3.14) follows from (3.15). 2

Theorem 3.7 (Brownian scaling property of W) For ξ ∈ R, s ∈ S and c > 0

{c−1Wc2t, t ≥ 0} under P(cξ,cs) has the same distribution as {Wt, t ≥ 0} under P(ξ,s). (3.17)

Proof. For fixed D ∈ D and c > 0, consider the canonical map gcDt associated with cD and a curve

{γ̇(t), t ≥ 0} ⊂ Ω̇(cD). The induced process Wt = (ξ(t), s(t)), t ∈ [0, tγ̇), is given by s(t) = gcDt (cs)

for s = s(D) and ξ(t) = gcDt (γ̇(t)).

Now the curve on the left hand side of (3.14) defined for γ̇ ∈ Ω̇(cD) belongs to Ω̇(D) in view of

(3.16) and the associated canonical map g̃Dt from D is given by

g̃Dt (z) = c−1gcDc2t(cz), z ∈ D, for t ∈ [0, tγ̇/c2), (3.18)
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which induces the motion {c−1Wc2t : t ∈ [0, tγ̇/c2)}, because g̃Dt (s) = c−1s(c2t) and g̃Dt (c−1γ̇(c2t)) =

c−1ξ(c2t) for t ∈ [0, tγ̇/c2).

Let {Wt, t ≥ 0} be the (R × S)-valued motion produced by D ∈ D and γ̇ ∈ Ω̇(D). Then, for

0 ≤ t1 < t2 < · · · < tn, (Wt1 ,Wt2 , · · · ,Wtn) equals an (R× S)n-valued Ġ(D)-measurable function

F (γ̇) of γ̇ ∈ Ω̇(D) by virtue of Lemma 3.2. Therefore we can conclude from (3.14) and the above

observation that (3.17) holds. 2

3.4 Homogeneity of W in x-direction

Lemma 3.8 For D ∈ D, γ ∈ Ω(D), let at = at(γ,D) be the associated half-plane capacity. Then

for any r ∈ R,

at(γ + r,D + r) = at(γ,D), t ∈ [0, tγ). (3.19)

In particular, the half-plane capacity parametrization of the curve γ + r in D+ r is given by γ̇ + r;

in other words,
˙(γ + r)(t) = γ̇(t) + r, 0 ≤ t < tγ̇ . (3.20)

Proof. Let gt(z) be the canonical map associated with (γ,D). Then grt (z) = gt(z − r) + r is the

canonical map associated with (γ + r,D + r). (3.19) follows from (3.2) and

z(grt (z)− z) =
z

z − r
· (z − r) (gt(z − r)− (z − r)) .

(3.20) follows from at(γ̇, D) = 2t and (3.19). 2

The identity (3.20) holds for any t ≥ 0 because both hand sides of (3.20) equal ∆ when t ≥ tγ̇ .

Proposition 3.9 For D ∈ D, z ∈ ∂H and any r ∈ R

{γ̇(t)− r, t ≥ 0} under PD+r,z+r has the same distribution as {γ̇(t), t ≥ 0} under PD,z. (3.21)

Proof. For a fixed r ∈ R, consider the sift f(z) = z + r, z ∈ D. By the invariance under linear

conformal map (3.6), we have for D ∈ D, z ∈ ∂H

PD,z(Λ) = f−1
∗ PD+r,z+r(Λ) = PD+r,z+r(f(Λ)), Λ ∈ Ġ(D). (3.22)

Λ ∈ Ġ(D) can be expressed as Λ = {γ̇ ∈ Ω̇(D) : γ̇ ∈ B} for B ∈ B
(
(H ∪ {∆})[0,∞)

)
. Then

f(Λ) = {γ̇ ∈ Ω̇(D + r) : ˙(γ − r) ∈ B}.

This combined with (3.20) and (3.22) leads us to (3.21). 2

For r ∈ R, denote by r̂ the vector in R3N whose first N entries are 0 and the last 2N entries

are r. Note that s(D + r) = s(D) + r̂ for D ∈ D, r ∈ R.

Theorem 3.10 (Homogeneity of (Wt, P(ξ,s)) in x-direction) For ξ ∈ R, s ∈ S and r ∈ R,

{(ξ(t)− r, s(t)− r̂), t ≥ 0} under P(ξ+r,s+r̂) has the same distribution as {(ξ(t), s(t)), t ≥ 0} under

P(ξ,s).
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Proof. Fixed D ∈ D, z = ξ+ i0 ∈ ∂H, r ∈ R and put s = s(D). Consider the canonical map gD+r
t

associated with D + r and a curve {γ̇(t), t ≥ 0} ⊂ Ω̇(D + r). The process Wt = (s(t), ξ(t)), t ∈
[0, tγ̇), being considered under PD+r,z+r = P(ξ+r,s+r̂) is induced from gD+r

t by

ξ(t) = gD+r
t (γ̇(t)), s(t) = gD+r

t (s + r̂).

Now the curve on the left hand side of (3.21) belongs to Ω̇(D) in view of (3.20) and the associated

canonical map g̃Dt is given by

g̃Dt (z) = gD+r
t (z + r)− r, z ∈ D, for t ∈ [0, tγ̇).

The induced motion is {
g̃Dt (γ̇(t)− r) = gD+r

t (γ̇(t))− r = ξ(t)− r,
g̃Dt (s) = gD+r

t (s + r̂)− r̂ = s(t)− r̂.

The theorem now follows from (3.21) by the same reason as in the last paragraph of the proof of

Theorem 3.7. 2

3.5 Stochastic differential equation for W

We write w = (ξ, s) ∈ R×S. We know from Theorem 3.3 that W = (Wt,Pw) is a time homogeneous

Markov process taking values in R × S ⊂ R3N+1. The sample path of W is continuous up to its

lifetime tγ̇ ≤ ∞ owing to (P.3) and (P.4). Let Pt be its transition semigroup defined as

Ptf(w) = Ew[f(Wt)], t ≥ 0, w ∈ R× S.

Denote by C∞(R× S) the space of all continuous functions on R× S vanishing at infinity.

In this section, we assume that the Markov process W satisfies properties (C.1) and (C.2)

stated below.

(C.1) Pt(C∞(R× S)) ⊂ C∞(R× S), t > 0, C∞c (R× S) ⊂ D(L),

where L is the infinitesimal generator of {Pt, t > 0} defined by

Lf(w) = lim
t↓0

1

t
(Ptf(w)− f(w)), w ∈ R× S,

D(L) = {f ∈ C∞(R× S) : the right hand side above

converges uniformly in w ∈ R× S}. (3.23)

Under condition (C.1), W = {Wt,Pw} is a Feller-Dynkin diffusion in the sense of [RW]. In view

of [RW, III, (13.3)], the restriction L of L to C∞c (R×S) is a second order elliptic partial differential

operator expressed as

Lf(w) =
1

2

3N∑
i,j=0

aij(w)fwiwj (w) +

3N∑
i=0

bi(w)fwi(w) + c(w)f(w), w ∈ R× S, (3.24)

where a is a non-negative definite symmetric matrix-valued continuous function, b is a vector-valued

continuous function and c is a non-positive continuous function.
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The second assumption on W is

(C.2) c(w) = 0, w ∈ R× S.

This property is fulfilled if W is conservative: PD,z(tγ̇ = ∞) = 1 for any D ∈ D and z ∈ ∂H, or

equivalently,

Pt1(w) = 1 for any t ≥ 0 and w ∈ R× S. (3.25)

In fact, c(w) can be evaluated as

c(w) = lim
t↓0

1

t
(Pt1(w)− 1), w ∈ R× S,

according to Theorem 5.8 and its Remark in [Dy]. Hence (3.25) implies (C.2). Condition (C.2)

means that W admits no killing inside R× S, and so it is much weaker than the conservativeness

of W.

We take this opportunity to point out that the exit time Vη,x employed in [RW, III, Lemma

(12.1)] and in the formula following it should be corrected to be Vη,x ∧ ζ, where ζ is the lifetime, as

this lemma was taken from [Dy, V, Lemma 5.5] where an exit time had been defined in the latter

form.

Recall that, for s = (y,x,xr), zj = xj + iyj , z
r
j = xrj + iyj denote the endpoints of the jth slit

Cj in D(s) ∈ D. For s ∈ S, denote by Ψs(z, ξ) the complex Poisson kernel of the Brownian motion

with darning (BMD) on D(s). The KL equations (2.13)-(2.15) established in §2 for slits can be

stated as

sj(t)− sj(0) =

∫ t

0
bj(W(s))ds, t ≥ 0, 1 ≤ j ≤ 3N, (3.26)

where

bj(w) =


−2π=Ψs(zj , ξ), 1 ≤ j ≤ N,
−2π<Ψs(zj , ξ), N + 1 ≤ j ≤ 2N,

−2π<Ψs(z
r
j , ξ), 2N + 1 ≤ j ≤ 3N.

(3.27)

It follows that bj(w) in (3.24) is given by the above expression (3.27) for j ≥ 1 and aij(w) = 0

for i + j ≥ 1. Thus under the condition of (C.1) (in fact, (3.24)) and (C.2), it is known (see for

example, [RY, VII,(2.4)]) that Wt = (ξ(t), s(t)) satisfies{
dξ(t) =

√
a00(Wt)dBt + b0(Wt)dt,

dsj(t) = bj(Wt))dt, j = 1, . . . , 3N,
(3.28)

where B is a one-dimensional Brownian motion.

A real-valued function u(w) = u(ξ, s) on R× S is called homogeneous with degree 0 (resp. −1)

if

u(cw) = u(w) ( resp. u(cw) = c−1u(w) ) for any c > 0 and w ∈ R× S.

The same definition of the homogeneity is in force for a real-valued function u(s) on S.

Lemma 3.11 Assume conditions (C.1) and (C.2) hold.

(i) a00(w) is a homogenous function of degree 0, while bi(w) is a homogenous function of degree

−1 for every 0 ≤ i ≤ 3N .
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(ii) For every 0 ≤ j ≤ 3N , ξ ∈ R, s ∈ S and r ∈ R.

a00(ξ + r, s + r̂) = a00(ξ, s), bj(ξ + r, s + r̂) = bj(ξ, s). (3.29)

Proof. (i) By virtue of the Brownian scaling property (3.17), we have Pt(w, E) = Pc2t(cw, cE).

Consequently, Ptf(w) = Pc2tf
(c)(cw) and Lf(w) = c2Lf (c)(cw), where f (c)(w) = f(w/c). Hence

we get the stated properties of the coefficients aij and bi of L.
(ii) By virtue of the homogeneity in x-direction from Theorem 3.10, we have Ptf(w) = Ptf

r(w +

(r, r̂)) so that Lf(w) = Lf r(w + (r, r̂)) where f r(w) = f(w − (r, r̂)). Hence we get (3.29). 2

Remark 3.12 The properties of bj for 1 ≤ j ≤ 3N stated in the above lemma can be derived

without using conditions (C.1)-(C.2). In fact they follow directly from their definition (3.27)

combined with the conformal invariance of the BMD on D ∈ D established in Theorem 7.8.1 and

Remark 7.8.2 of [CF1]. Indeed, let K∗s (z, ξ), z ∈ D(s), ξ ∈ ∂D(s), be the Poisson kernel of the BMD

on D(s) ∈ D for s ∈ S. Then, by the stated invariance of the BMD under the dilation φ(z) = cz

for c > 0 that maps D(s) to D(cs), we have∫ cε

−cε
K∗cs(cz, ξ)dξ =

∫ ε

−ε
K∗s (z, ξ)dξ, ε > 0.

Dividing the both hand side by 2cε and letting ε ↓ 0, we get K∗cs(cz, 0) = c−1K∗s (z, 0). Since the

complex Poisson kernel Ψs(z, ξ), z ∈ D(s), ξ ∈ ∂H, is the unique analytic function in z with the

imaginary part K∗s (z, ξ) satisfying limz→∞Ψs(z, ξ) = 0, we obtain

Ψcs(cz, 0) = c−1Ψs(z, 0), z ∈ D(s). (3.30)

Therefore bj(0, s) is homogeneous in s ∈ S with degree −1 for bj defined by (3.27), 1 ≤ j ≤ 3N. A

similar consideration for the shift φ(z) = z + r, r ∈ R, leads us to

K∗s (z, ξ) = K∗s+r̂(z + r, ξ + r) and Ψs(z, ξ) = Ψs+r̂(z + r, ξ + r) (3.31)

for s ∈ S , z ∈ D(s) and ξ, r ∈ R, and so the second property in (ii) holds. 2

Let

α(s) =
√
a00(0, s), b(s) = b0(0, s), s ∈ S.

It follows from Lemma 3.11 that α(s) and b are homogeneous functions on S with degree 0 and

−1, respectively. Moreover,√
a00(ξ, s) = α(s− ξ̂) and b0(ξ, s) = b(s− ξ̂).

Thus we have the following from (3.28) and Lemma 3.11

Theorem 3.13 Assume conditions (C.1) and (C.2) hold.
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(i) The diffusion Wt = (ξ(t), s(t)) satisfies under P(ξ,s) the following stochastic differential equa-

tion:

ξ(t) = ξ +

∫ t

0
α(s(s)− ξ̂(s))dBs +

∫ t

0
b(s(s)− ξ̂(s))ds, (3.32)

sj(t) = sj +

∫ t

0
bj(ξ(s), s(s))ds, t ≥ 0, 1 ≤ j ≤ 3N. (3.33)

(ii) For each 1 ≤ j ≤ 3N , bj(ξ, s) is given by (3.27), which has the properties that bj(ξ, s) =

bj(0, s− ξ̂) and that bj(0, s) is a homogeneous function on S of degree −1.

4 Solution of SDE having homogeneous coefficients

We consider the following local Lipschitz condition for a real-valued function f = f(s) on S:

(L) For any s(0) ∈ S and any finite open interval J ⊂ R, there exist a neighborhood U(s(0)) of s(0)

in S and a constant L > 0 such that

|f(s(1) − ξ̂)− f(s(2) − ξ̂)| ≤ L |s(1) − s(2)| for s(1), s(2) ∈ U(s(0)) and ξ ∈ J. (4.1)

Recall that ξ̂ denotes the vector in R3N whose first N -entries are 0 and the last 2N entries are ξ.

Recall that the coefficient bj(ξ, s) in the equation (3.33) is defined by (3.27) and satisfies (3.29).

Lemma 4.1 (i) The function b̃j(s) := bj(0, s) enjoys property (L) for every 1 ≤ j ≤ 3N .

(ii) If a function f on S satisfies the condition (L), then it holds for any s(1), s(2) ∈ U(s(0)) and

for any ξ1, ξ2 ∈ J that

|f(s(1) − ξ̂1)− f(s(2) − ξ̂2)| ≤ L
(
|s(1) − s(2)|+

√
2N |ξ1 − ξ2|

)
. (4.2)

Proof. (i) This follows immediately from [CFR, Theorem 9.1].

(ii) Suppose a function f on S satisfies the condition (L). For any s(1), s(2) ∈ U(s(0)) and for any

ξ1, ξ2 ∈ J with ξ1 < ξ2, we have

|f(s(1) − ξ̂1)− f(s(2) − ξ̂2)| ≤ |f(s(1) − ξ̂1)− f(s(2) − ξ̂1)|+ |f(s(2) − ξ̂1)− f(s(2) − ξ̂2)|.

Since s(2) ∈ U(s(0)), there exists δ > 0 such that s(2)− ξ̂ ∈ U(s(0)) for any ξ ∈ R with |ξ| < δ. Choose

points ri, 0 ≤ i ≤ `, with r0 = ξ1, 0 < ri − ri−1 < δ, 1 ≤ i ≤ `, r` = ξ2. The first term of the

righthand side of the above inequality is dominated by L|s(1)− s(2)|. The second term is dominated

by
∑`

i=1 |f(s(2) − r̂i) − f(s(2) − r̂i−1)| =
∑`

i=1 |f
(
(s(2) − (r̂i − r̂i−1))− r̂i−1)− f((s(2) − r̂i−1

)
| ≤∑`

i=1 L|r̂i − r̂i−1| = L
√

2N(ξ2 − ξ1). 2

In the rest of this section and throughout the next section, we assume that we are given a

non-negative homogeneous function α(s) of s ∈ S with degree 0 and a homogeneous function b(s)

of s ∈ S with degree −1 both satisfying the condition (L).

Theorem 4.2 The SDE (3.32), (3.33) admits a unique strong solution Wt = (ξ(t), s(t)), t ∈
[0, ζ), where ζ is the time when Wt approaches the point at infinity of R× S.
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Proof. In view of Lemma 4.1, every coefficient, say, f(ξ, s), ξ ∈ R, s ∈ S, in (3.32) and (3.33) is

locally Lipschitz continuous on R × S (⊂ R3N+1) in the following sense: for any s(0) ∈ S and for

any finite open interval J ⊂ R, there exists a ball U(s(0)) ⊂ S centered at s(0) and a constant L0

such that

|f(ξ1, s
(1) − f(ξ2, s

(2))| ≤ L0(|s(1) − s(2)|+ |ξ1 − ξ2|), s(1), s(2) ∈ U(s(0)), ξ1, ξ2 ∈ J.

Thus (3.32) and (3.33) admit a unique local solution. It then suffices to patch together those local

solutions just as in [IW, Chapter V, §1]. 2

Proposition 4.3 The solution Wt = (ξ(t), s(t)), t ∈ [0, ζ), of the SDE (3.32), (3.33) enjoys the

following properties:

(i) (Brownian scaling property) For s ∈ S, ξ ∈ R and for any c > 0,

{c−1Wc2t, t ≥ 0} under P(cξ,cs) has the same distribution as {Wt, t ≥ 0} under P(ξ,s).

(ii) (homogeneity in x-direction) For s ∈ S, ξ ∈ R and for any r ∈ R,

{(ξ(t)−r, s(t)−r̂), t ≥ 0} under P(ξ+r,s+r̂) has the same distribution as {(ξ(t), s(t)) t ≥ 0} under P(ξ,s).

Proof. (i) We put Wc(t) = c−1W(c2t) = (ξc(t), sc(t)) with ξc(t) = c−1ξ(c2t), sc(t) = c−1s(c2t).

W(t) = (ξ(t), s(t)) under P(cξ,cs) satisfies the equation (3.32) with cξ in place ξ. Hence, by taking

the homogeneity of α, b into account, we get

ξc(t) = ξ + c−1

∫ c2t

0
α(s(s)− ξ̂(s))dBs + c−1

∫ c2t

0
b(s(s)− ξ̂(s))ds

= ξ + c−1

∫ t

0
α(c(sc(s)− ξ̂c(s)))dBc2s + c

∫ t

0
b(c(sc(s)− ξ̂c(s)))ds

= ξ +

∫ t

0
α(sc(s)− ξ̂c(s))dB̃s +

∫ t

0
b(sc(s)− ξ̂c(s))ds,

where B̃s = c−1Bc2s. Therefore the equation (3.32) with a new Brownian motion B̃s is satisfied by

Wc(t) under P(cξ,cs). Similarly, (3.33) is also satisfied by Wc(t) under P(cξ,cs).

(ii) This is immediate from the expressions (3.32) and (3.33) of the SDE and the property (3.29).

2

5 Stochastic Komatu-Loewner evolutions

5.1 Stochastic Komatu-Loewner evolutions

Let us fix a pair of functions (ξ(t), s(t)), t ∈ [0, ζ), taking values in R×S satisfying the two following

properties (I) and (II):

(I) ξ(t) is a real-valued continuous function of t ∈ [0, ζ).

(II) (ξ(t), s(t)), t ∈ [0, ζ), satisfies the equation (3.33) with bj , 1 ≤ j ≤ 3N , given by (3.27).
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We have freedom of choices of such a pair in two ways.

The first way is to take any deterministic real continuous function ξ(t), t ∈ [0,∞), substitute it

into the right hand side of (3.33) and get the unique solution s(t) on a maximal time interval [0, ζ)

of the resulting ODE by using Lemma 4.1.

The second way is to choose any solution path Wt = (ξ(t), s(t)), t ∈ [0, ζ), of the SDE (3.32)

and (3.33) obtained in Theorem 4.2 for a given homogeneous functions α and b on S with degree

0 and −1, respectively, both satisfying condition (L).

We write Dt = D(s(t)) ∈ D, t ∈ [0, ζ), and define

G =
⋃

t∈[0,ζ)

{t} ×Dt,

Ĝ =
⋃

t∈[0,ζ)

{t} × (Dt ∪ ∂pK(t) ∪ (∂H \ {ξ(t)})) ,

where K(t) = ∪Nj=1Cj(t) and Dt = H \K(t). For each 1 ≤ j ≤ N , let ∂pC
0
j (t) = C0,+

j (t) ∪ C0,−
j (t)

denote the set ∂pCj(t) with its two endpoints being removed, and ∂pK
0(t) := ∪Nj=1∂pC

0
j (t). Note

that G is a domain of [0, ζ)×H in R3 because t 7→ Dt is continuous.

We first study the unique existence of local solutions z(t) of the following equation

d

dt
z(t) = −2πΨs(t)(z(t), ξ(t)) (5.1)

with initial condition

z(τ) = z0 ∈ Dτ ∪ ∂pK0(τ) ∪ (∂H \ ξ(τ)) (5.2)

for τ ∈ [0, ζ).

Proposition 5.1 (i) Ψs(t)(z, ξ(t)) is jointly continuous in (t, z) ∈ Ĝ.

(ii) limz→∞Ψs(t)(z, ξ(t)) = 0 uniformly in t in every finite time interval I ⊂ [0, ζ).

(iii) Ψs(t)(z, ξ(t)) is locally Lipschitz continuous in z in the following sense: for any (τ, z0) ∈ G,

there exist t0 > 0, ρ > 0 and L > 0 such that

V = [(τ − t0)+, τ + t0]× {z : |z − z0| ≤ ρ} ⊂ G

and

|Ψs(t)(z1, ξ(t))−Ψs(t)(z2, ξ(t))| ≤ L |z1 − z2| for any (t, z1), (t, z2) ∈ V. (5.3)

(iv) Fix 1 ≤ j ≤ N. For any τ ∈ [0, ζ) and z0 ∈ C0,+
j (τ), there exist t0 > 0, L > 0 and an open

rectangle R ⊂ H with sides parallel to the axes centered at z0 such that

R ∩ C+
j (t) 6= ∅ and R ∩ C+

j (t) ⊂ C0,+
j (t) for every t ∈ [(τ − t0)+, τ + t0],

and the function Ψ+
s(t)(z, ξ(t)) satisfies (5.3) for any (t, z1), (t, z2) ∈ Vj , where Vj = [(τ −

t0)+, τ + t0] × R and Ψ+
s(t)(z, ξ(t)) is the extension of Ψs(t)(z, ξ(t)) from the upper side of

R \ C+
j (t) to R by the Schwarz reflection for each t ∈ [(τ − t0)+, τ + t0],

An analogous statement holds for z0 ∈ C0,−
j (τ).
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(v) For any τ ∈ [0, ζ) and z0 ∈ ∂H \ {ξ(τ)}, there exist t0 > 0, ρ > 0 and L > 0 such that

V0 = [(τ − t0)+, τ + t0]× {z ∈ H : |z − z0| ≤ ρ} ⊂
⋃

t∈[(τ−t0)+,τ+t0]

{t} × (Dt ∪ (∂H \ {ξ(t)})

and (5.3) holds for any (t, z1), (t, z2) ∈ V0.

(vi) For every τ ∈ [0, ζ) and z0 ∈ Dτ ∪ (∂H \ ξ(τ)), there exists a unique local solution {z(t); t ∈
(τ − t0, τ + t0) ∩ [0, ζ)} of (5.1) and (5.2) satisfying z(τ) = z0.

(vii) Fix 1 ≤ j ≤ N. For each initial time τ ∈ [0, ζ) and initial position z0 ∈ C0,+
j (τ), there exists a

unique local solution {z(t); t ∈ (τ − t0, τ + t0)∩ [0,∞)} of the equation (5.1) with Ψ+
s(t)(z, ξ(t))

in place of Ψs(t)(z, ξ(t)) and z(τ) = z0.

An analogous statement holds for z0 ∈ C0,−
j (τ).

Proof. (i) This can be shown in the same way as that for (P.5) in [CFR, §9] using the continuity

of t 7→ Dt = D(s(t)).

(ii) Take R > 0 sufficiently large a large so that the closure of the set ∪t∈I(∪Nj=1Cj(t)) ∪ ξ(t)
is contained in B(0, R) = {z ∈ C : |z| < R}. Extend the analytic function h(z, t) = Ψs(t)(z, ξ(t))

from H \B(0, R) to C \B(0, R) by the Schwarz reflection. By (i), M = supz∈∂B(0,R),t∈I |h(z, t)| is

finite. Define ĥ(z, t) = h(1/z, t), |z| > R. Since h(z, t) tends to zero as z → ∞, ĥ(z, t) is analytic

on B(0, 1/R) and, by [A, (28)-(29) in Chapter 4],

1

z
ĥ(z, t) =

1

2πi

∫
|ζ|=1/R

ĥ(ζ, t)

ζ(ζ − z)
dζ =

R

2π

∫ 2π

0

h(Reiθ, t)

(eiθ −R2z)
dθ.

Consequently,

sup
t∈I
|zΨs(t)(z, ξ(t))| ≤ 2RM if |z| ≥ 2R2. (5.4)

(iii) Ψs(t)(z, ξ(t)) is jointly continuous by virtue of (i) and analytic in z ∈ Dt, Therefore we readily

get (iii) from the Taylor expansion [A, (28)-(29) of Chapter 4] for n = 1 again.

For (iv) and (v), we extend Ψs(t)(z, ξ(t)) using Schwarz reflections.

(vi) and (vii) follow from (iii), (iv) and (v). 2

Lemma 5.2 (i) Fix 1 ≤ j ≤ N. For any τ ∈ [0, ζ) and z0 ∈ C0,+
j (τ), there exists a unique solution

z(t), t ∈ [(τ − t0)+, τ + t0], of (5.1) and (5.2) for some t0 > 0 such that

z(τ) = z0, z(t) ∈ C0,+
j (t) for every t ∈ [(τ − t0)+, τ + t0]. (5.5)

An analogous statement holds for z0 ∈ C0,−
j (τ).

(ii) For any τ ∈ [0, ζ) and z0 ∈ ∂H\{ξ(τ)}, there exists a unique solution z(t), t ∈ [(τ−t0)+, τ+t0],

of (5.1) and (5.2) for some t0 > 0 such that

z(τ) = z0, z(t) ∈ ∂H \ {ξ(t)} for every t ∈ [(τ − t0)+, τ + t0]. (5.6)
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Proof. (i) In view of the explicit expression (5.2) in [CFR], when z ∈ ∂pCj(t), =Ψs(t)(z, ξ(t)) is

a bounded function η(t) of t independent of z. Thus (5.1) under the requirement (5.5) becomes

=z(t) = z0 exp
(
−
∫ t
t0
η(s)ds

)
and

d

dt
<z(t) = −2π<Ψs(t)(<z(t) + i=z(t), ξ(t)). (5.7)

Equation (5.7) has a unique solution for <z(t) in view of Proposition 5.1.

(ii) By (5.2) in [CFR], we have =Ψs(t)(z, ξ(t)) = 0 for z ∈ ∂H \ {ξ(t)}. Hence the equation (5.1)

under the requirement (5.6) implies that =z(t) = 0 and

d

dt
<z(t) = −2π<Ψs(t)(<z(t), ξ(t)). (5.8)

The above equation uniquely determines <z(t) in view of Proposition 5.1. 2

Denote by zj(t) and zrj (t) the left and right endpoints of the jth slit Cj(t) of s(t). We know

from (3.27) and (3.33)
dzj(t)

dt
= −2πΨs(t)(zj(t), ξ(t)), t ∈ [0, ζ). (5.9)

A solution {z(t), t ∈ I} of the equation (5.1) for a time interval I ⊂ [0, ζ) is said to pass through

G ⊂ R3 if (t, z(t)) ∈ G for every t ∈ I.

Lemma 5.3 Fix 1 ≤ j ≤ N and let I = (α, β) be a finite open subinterval of [0, ζ). Let

(i) Suppose that {z(t); t ∈ I} is a solution of (5.1) passing through Ĝ with z(β) = zj(β) but

z(t) 6= zj(t) for t ∈ (α, β). Then there exists t0 ∈ (0, β − α) so that z(t) ∈ ∂pC
0
j (t) for

t ∈ [β − t0, β). The same conclusion holds if zj(β) and zj(t) are replaced by zrj (β) and zrj (t).

(ii) Suppose that {z(t); t ∈ I} is a solution of (5.1) passing through Ĝ with z(α) = zj(α) but

z(t) 6= zj(t) for t ∈ (α, β). Then there exists t0 ∈ (0, β − α) so that z(t) ∈ ∂pC
0
j (t) for

t ∈ [α, α+ t0). The same conclusion holds if zj(α) and zj(t) are replaced by zrj (α) and zrj (t).

Proof. We only prove (i) as the proof for (ii) is analogous. For ζ ∈ C and ε > 0, we use B(ζ, ε)

to denote the ball {z ∈ C : |z − ζ| < ε} centered at ζ with radius ε.

Suppose that {z(t), t ∈ [β−t1, β)} a solution of (5.1) passing through G and that z(β) = zj(β).

Taking t1 smaller if needed, we may assume that there is ε > 0 so that

B(zj(t), ε) ⊂ H and zrj (t) /∈ B(zj(t), ε) for every t ∈ [β − t1, β]. (5.10)

We can further choose t0 ∈ (0, t1] so that

z(t) ∈ B(zj(t), ε/2) ∩ (Dt ∪ ∂pCj(t)) for every t ∈ [β − t0, β]. (5.11)

For each t ∈ (β − t1, β], let

ψt(z) =
√
z − zj(t) : B(zj(t), ε) \ Cj(t)→ B(0,

√
ε) ∩H,
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and

ft(z) = Ψs(t)(ψ
−1
t (z), ξ(t)) = Ψs(t)(z

2 + zj(t), ξ(t)) : B(0,
√
ε) ∩H→ C.

Then ft is an analytic function on B(0,
√
ε)∩H, which can be extended to be an analytic function

on B(0,
√
ε) \ {0} by the Schwarz reflection because =ft(z) is constant on B(0,

√
ε) ∩ ∂H. On

account of [A, Chap. 4 (28),(29)], it holds for every a ∈ (
√
ε/2,
√
ε) and z ∈ B(0, a),

ft(z)− ft(0) = z ht(z) with ht(z) =
1

2πi

∫
∂B(0,a)

ft(ζ)

ζ(ζ − z)
dζ, z ∈ B(0, a), (5.12)

In particular, |h′t(z)| is uniformly bounded in (z, t) ∈ B(0,
√
ε/2)× [β− t0, β] in view of Proposition

6.1(i). Accordingly ht(z) is Lipschitz continuous on B(0,
√
ε/2) uniform in t ∈ [β − t0, β]:

|ht(z1)− ht(z2)| ≤ L|z1 − z2|, z1, z2 ∈ B(0,
√
ε/2), (5.13)

for a constant L > 0 independent of t ∈ [β − t0, β].

We now let ẑ(t) = ψt(z(t)) =
√
z(t)− zj(t) for t ∈ [β − t0, β). On account of (5.11), ẑ(β) = 0,

ẑ(t) ∈ B(0,
√
ε/2) ∩H for every t ∈ [β − t0, β), (5.14)

and
dz(t)

dt
= −2πΨs(t)(z(t), ξ(t)) = −2πft(ẑ(t)), t ∈ [β − t0, β). (5.15)

By (5.9),
dzj(t)
dt = −2πft(0). Therefore we have by (5.12), (5.14) and (5.15) that for any t ∈ [β−t0, β)

dẑ(t)

dt
=

1

2ẑ(t)

(
dz(t)

dt
− dzj(t)

dt

)
= − π

ẑ(t)
(ft(ẑ(t))− ft(0)) = −π ht(ẑ(t)).

Since ht(z) is Liptschitz on B(0,
√
ε/2) uniform in t ∈ [β − t0, β], the solution ẑ(t) to the above

equation with ẑ(β) = 0 exists and is unique. On the other hand, note that =(ft(z)− ft(0)) = 0 on

B(0,
√
ε) ∩ ∂H. Thus by (5.12)

=ht(z) = 0 on B(0,
√
ε) ∩ ∂H. (5.16)

It follows that the unique solution ẑ to dẑ(t)
dt = −π ht(ẑ(t)) with ẑ(β) = 0 is real-valued. It follows

then z(t) ∈ ∂pCj(t). A similar argument shows that the second part of (i) holds as well. 2

Due to (i) and (iii) of Proposition 5.1, and a general theorem in ODE (see e.g. [H]), there

exists, for each (τ, z0) ∈ G, a unique solution z(t) of the equation (5.1) satisfying the initial

condition z(τ) = z0 and passing through G with a maximal time interval Iτ,z0(⊂ [0, ζ)) of existence.

Such a solution of (5.1) will be designated by ϕ(t; τ, z0), t ∈ Iτ,z0 . Let α and β be the left and

right endpoints of Iτ,z0 , respectively, both depending on (τ, z0). Then (t, ϕ(t; τ, z0)) ∈ G for any

t ∈ Iτ,z0 \ {α, β}.

Proposition 5.4 For any (τ, z0) ∈ G, the maximal time interval Iτ,z0 of existence of the unique

solution ϕ(t; τ, z0) of (5.1) with ϕ(τ ; τ, z0) = z0 passing through G is [0, β) for some β > τ and

lim
t↑β
=ϕ(t; τ, z0) = 0, lim

t↑β
|ϕ(t; τ, z0)− ξ(β)| = 0 whenever β < ζ. (5.17)
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Proof. Fix β0 ∈ (0, ζ) and z0 ∈ Dβ0 . Let (α, β) be the largest subinterval of (0, ζ) so that

the equation (5.1) has a unique solution z(t) = ϕ(t;β0, z0) in t ∈ (α, β) satisfying z(β0) = z0

and passing through G. By (i) and (iii) of Proposition 5.1, such an interval (α, β) exists with

0 ≤ α < β0 < β ≤ ζ. For simplicity, we write ϕ(t; τ, z0) as ϕ(t). We claim that

α = 0 and ϕ(0+) := lim
t↓0

ϕ(t) ∈ D. (5.18)

Since the right hand side of the equation (5.1) is negative, =ϕ(t) is decreasing in t. By (i)

and (ii) of Proposition 5.1, ϕ(α+) := limt↓α ϕ(t) exists with =ϕ(α+) > 0. Set ϕ(α) = ϕ(α+),

which takes value in Dα ∪ ∪Nj=1∂pCj(α). By Proposition 5.1(vi), Lemma 5.2(i) and Lemma 5.3,

ϕ(α) /∈ ∪Nj=1∂pCj(α) as ϕ(t) ∈ Dt for t ∈ (α, β0). Thus ϕ(α) ∈ Dα. If α > 0, then the solution ϕ(t)

of (5.1) can be extended to (α − ε, β0] for some ε ∈ (0, α). This contradicts to the maximality of

(α, β). Thus α = 0 and the claim (5.18) is proved.

Since =ϕ(t) is decreasing in t, limt↑β =ϕ(t) exists. Assume β < ζ. Were limt↑β =ϕ(t) > 0,

it follows from (i) and (ii) of Proposition 5.1 that ϕ(β−) := limt↑β ϕ(t) exists and takes value

in Dβ ∪ ∪Nj=1∂pCj(β). By Proposition 5.1(vi), Lemma 5.2(i) and Lemma 5.3 again, ϕ(β−) /∈
∪Nj=1∂pCj(β) as ϕ(t) ∈ Dt for t ∈ (β0, β). Hence ϕ(β−) ∈ Dβ and thus the solution ϕ(t) of (5.1)

can be extended to [β0, β + ε) for some ε ∈ (0, ζ − β). This contradicts to the maximality of (α, β)

and so limt↑β =ϕ(t) = 0.

We now proceed to prove the second claim in (5.17). Suppose lim supt↑β |ϕ(t) − ξ(β)| > 0.

Then by the continuity of ξ, lim supt↑β |ϕ(t) − ξ(t)| > 0. Thus there is an ε > 0 and a sequence

{tn;n ≥ 1} ⊂ (β − ε, β) increasing to β so that infs∈[β−ε,β] |ϕ(tn) − ξ(s)| > ε for every n ≥ 1. By

(i) and (ii) of Proposition 5.1, Ψs(t)(z.ξ(t)) is bounded on

Ĝ0 :=
{

(s, z) ∈ Ĝ : s ∈ [β − ε, β], inf
s∈[β−ε,β]

|z − ξ(s)| ≥ ε/2
}
,

say, by M > 0. So as long as (t, ϕ(t)) ∈ Ĝ0, | ddtϕ(t)| ≤ 2πM . Let δ = ε/(4πM). This observation

implies that |ϕ(tn) − ϕ(t)| ≤ 2πM(t − tn) ≤ ε/2 for every t ∈ [tn, tn + δ] ∩ [t0, β). Consequently,

ϕ(β−) = limt↑β ϕ(t) exists and takes value in ∂H \ {ξ(β)}. But this contradicts to Proposition

5.1(vi) and Lemma 5.2(ii) as ϕ(t) ∈ Dt for t ∈ [t1, β). This implies that limt↑β |ϕ(t)− ξ(β)| = 0. 2

We write D0 = D(s(0)) ∈ D as D.

Theorem 5.5 (i) For each z ∈ D, there exists a unique solution gt(z), t ∈ [0, tz), of the equation

∂tgt(z) = −2πΨs(t)(gt(z), ξ(t)) with g0(z) = z ∈ D (5.19)

passing through G, where [0, tz), tz > 0, is the maximal time interval of its existence. It

further holds that

lim
t↑tz
=gt(z) = 0, lim

t↑tz
|gt(z)− ξ(tz)| = 0 whenever tz < ζ. (5.20)

(ii) Define

Ft = {z ∈ D : tz ≤ t}, t > 0. (5.21)

Then D \ Ft is open and gt is a conformal map from D \ Ft onto Dt for each t > 0.
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Proof. (i) This just follows from Proposition 5.4 with (τ, z0) = (0, z).

(ii) Since Ψs(t)(z, ξ(t)) is analytic in z and jointly continuous in (t, x) by Proposition 5.1, by a general

theorem on ODE (see e.g [CL]), gt(z) is continuous in (t, z) ∈ [0, tz)×D (and so D \ Ft = g−1
t (Dt)

is open) and gt(z) is analytic in D \Ft. It follows from Proposition 5.4 that gt is a one-to-one map

from D \ Ft onto Dt. 2

Note that the complex Poisson kernel of the absorbing Brownian motion (ABM) in H is

ΨH(z, ξ) = − 1

π

1

z − ξ
, z ∈ H, ξ ∈ ∂H, (5.22)

whose imaginary part P (z, ξ) := =ΨH(z, ξ) = 1
π

y
(x−ξ)2+y2

is the Poisson kernel of ABM in H.

Let I be a finite subinterval of [0, ζ), and R,M be the positive constants in the proof of

Proposition 5.1(ii).

Lemma 5.6 (i) Let M̃ := supt∈I |ξ(t)|. Then

sup
t∈I

∣∣∣∣Ψs(t)(z, ξ(t))

ΨH(z, ξ(t))

∣∣∣∣ ≤ 4πRM for |z| ≥ 2R2 ∨ M̃.

(ii) For any R1 ≥ R,

sup
t∈I

sup
z∈Dt, |z|≤R1

|Ψs(t)(z, ξ(t))−ΨH(z, ξ(t))| <∞.

Proof. (i) This follows from (5.4) as∣∣∣∣Ψs(t)(z, ξ(t))

ΨH(z, ξ(t))

∣∣∣∣ = π|z − ξ(t)| |Ψs(t)(z, ξ(t))| ≤ 2π|zΨs(t)(z, ξ(t)| for t ∈ I and |z| ≥ M̃.

(ii) For z ∈ Dt = D(s(t)) and ξ ∈ ∂H, let

Ht(z, ξ) = Ψs(t)(z, ξ)−ΨH(z, ξ), vt(z, ξ) = K∗t (z, ξ)− P (z, ξ),

where K∗t (z, ξ) = =Ψs(t)(z, ξ), which is the BMD-Poisson kernel on Dt. Since =Ht(z, ξ) = vt(z, ξ)

vanishes for z ∈ ∂H \ {ξ}, by the Schwarz reflection for each ξ ∈ ∂H, we extend z 7→ Ht(z, ξ)

analytically to Dt ∪ΠDt ∪ (∂H \ {ξ}) which is still denoted as Ht(z, ξ). Here Π denotes the mirror

reflection with respect to the x-axis in the plane. On the other hand, it follows from the explicit

expression of vt(z, ξ) given by (5.2) and (12.24) from [CFR] that z 7→ vt(z, ξ) = =Ht(z, ξ) is

bounded in a neighborhood of ξ. Hence ξ is a removable singularity of Ht(z, ξ) and so Ht(z, ξ) is

analytic for z ∈ Dt ∪ΠDt ∪ ∂H.
Choose ε > 0 and ` > 0 so that the set Λ = {w = u + iv : |u| < `, 0 ≤ v < ε} contains

J = {ξ(t) : t ∈ I} but does not intersect with the slits of Dt for any t ∈ I. On account of Proposition

5.1(i), we see that, for any R1 > `, supt∈I supz∈Dt\Λ, |z|≤R1
|Ht(z, ξ(t))| = M1 < ∞. Due to the

maximum principle for an analytic function, Ht(z, ξ(t)) has the same bound for z ∈ Λ. 2

We fix T ∈ (0, ζ) and set I = [0, T ]. By Lemma 5.6,

M1 := sup
t∈I

sup
z∈Dt

2π|z − ξ(t)||Ψs(t)(z, ξ(t))| <∞. (5.23)

The next lemma extends [L1, Lemma 4.13] from the simply connected domain H to multiply

connected domains.
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Lemma 5.7 For every t ∈ I, Ft ⊂ B(ξ(0), 4Rt), where Rt = sup0≤s≤t |ξ(s)− ξ(0)| ∨
√
M1t/2.

Proof. Fix t ∈ I. For z ∈ D with |z−ξ(0)| ≥ 4Rt, define σ = inf{s : |gs(z)−z| ≥ Rt}. If s ≤ t∧σ,
then |gs(z)− z| < Rt and

|ξ(s)− gs(z)| ≥ |(ξ(s)− ξ(0))− (z − ξ(0))| − |gs(z)− z| > 3Rt −Rt = 2Rt.

Hence we have by (5.23)

|∂sgs(z)| =
∣∣2πΨs(s)(gs(z), ξ(s))

∣∣ ≤ M1

|gs(z)− ξ(s)|
≤ M1

2Rt
.

Consequently, |z − gs(z)| = |
∫ s

0 ∂rgr(z)dr| ≤
M1
2Rt

s for s ∈ [0, t ∧ σ]. We claim that σ ≥ t. Suppose

otherwise, then by the definition of σ, we would have Rt = |z−gσ(z)| ≤ M1
2Rt

σ and so σ ≥ 2
M1
R2
t ≥ t.

This contradiction establishes that σ ≥ t. So for all s ∈ [0, t], we have |gs(z) − z| ≤ Rt and

|ξ(s)− gs(z)| ≥ 2Rt. Thus we have by (5.20) that t < tz and z ∈ H \ Ft. 2

Theorem 5.8 (i) The conformal map gt(z) in Theorem 5.5 satisfies the hydrodynamic normal-

ization (1.4) at infinity.

(ii) The set Ft defined by (5.21) is an H-hull; that is, Ft is relatively closed in H and bounded,

and moreover H \ Ft is simply connected.

(iii) {Ft} is strictly increasing in t. It has the property⋂
δ>0

gt(Ft+δ \ Ft) = {ξ(t)} for t ∈ [0, ζ). (5.24)

Proof. (i) From (5.19), we have

gt(z)− z = −2π

∫ t

0
Ψs(s)(gs(z), ξ(s))ds.

We let z →∞. Since the right hand side remains bounded by (5.23), gt(z)→∞ as z →∞. Then

we can use (5.23) again to see that right hand side converges to 0 as z → ∞, yielding the desired

conclusion.

(ii) It follows from Theorem 5.5 and Lemma 5.7 that Ft is relatively closed and bounded. Were

H \ Ft not simply connected, D \ Ft would be multiply connected of degree at least N + 2, which

is absurd as the conformal image of D \ Ft under gt is the (N + 1)-ply connected slit domain Dt.

(iii) Suppose Ft = Ft′ for some t′ > t ≥ 0. Then both gt and gt′ are conformal maps from D \ Ft
onto standard slit domains satisfying the hydrodynamic normalization. By the uniqueness, we get

gt(z) = gt′(z), z ∈ D \ Ft, which is absurd because =gt(z) is strictly decreasing as t increases.

By Lemma 5.7 and the fact that limt→0Rt = 0, we have ∩δ>0F δ = {ξ(0)}. So (5.24) holds for

t = 0. For every t0 ∈ (0, ζ), {F̂t0 := gt(Ft0+t \ Ft0); t ∈ [0, ζ − t0)} is the family of increasing closed

sets associated with associated with KL-equation (5.19) in Theorem 5.5 but with s(t), ξ(t) and D

being replaced by ŝ(t) := s(t0 + t), ξ̂(t) := ξ(t0 + t) and D̂ := D(t0), respectively. Thus the same

argument for t = 0 above applied to {F̂δ; δ > 0} yields that (5.24) holds for t = t0. 2
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In accordance with [L1, p 96], we call the property (5.24) the right continuity at t with limit

ξ(t).

We started this subsection by fixing a pair of functions (ξ(t), s(t)) satisfying properties (I),

(II). In the rest of this subsection, we shall make a special choice of it, namely, we fix a solution

path Wt = (ξ(t), s(t)), t ∈ [0, ζ), of the SDE (3.32), (3.33) in Theorem 4.2 for a given non-negative

homogeneous function α(s) of s ∈ S with degree 0 and a given homogeneous function b(s) of s ∈ S
with degree −1 both satisfying the condition (L).

We can now view the associated family {gt(z), t ∈ [0, tz)} of conformal maps and the associated

growing H-hulls {Ft, t ≥ 0} constructed in Theorem 5.5 and studied in Theorem 5.8 as random

processes. Indeed, Proposition 4.3 combined with Remark 3.12 implies the following scaling prop-

erties.

Proposition 5.9 Let s ∈ S, ξ ∈ R, r > 0 and c ∈ R.

(i) {rgt/r2(z/r), t ≥ 0} under P(ξ/r,s/r) has the same distribution as {gt(z), t ≥ 0} under P(ξ,s).

(ii) {rFt/r2 , t ≥ 0} under P(ξ/r,s/r) has the same distribution as {Ft, t ≥ 0} under P(ξ,s).

(iii) {gt(z − c) + c, t ≥ 0} and {Ft − c, t ≥ 0} under P(ξ+c,s+c) have the same distribution as

{gt(z), t ≥ 0} and {Ft, t ≥ 0} under P(ξ,s), respectively.

Proof. (i) Let W(s) = (ξ(s), s(s)) be the solution of the SDE (3.32)-(3.33) with initial value (ξ, s).

Note that by Brownian scaling, W̃(s) := r−1W(r2s) is a solution to SDE (3.32)-(3.33) driven by

Brownian motion B̃s = r−1Br2s with initial value (ξ/r, s/r). Let gt(z) be the unique solution of

the Komatu-Loewner equation (5.1) driven by W̃:

gt(z)− z = −2π

∫ t

0
Ψr−1s(r2s)(gs(z), r

−1ξ(r2s))ds, z ∈ D.

By Theorem 5.5(i) and Proposition 4.3(i), it suffices to show that ht(z) := rgt/r2(z/r) solves the

equation (5.1).

By the homogeneity (3.30) and (3.31),

Ψr−1s(r2s)(gs(z), r
−1ξ(r2s)) = Ψ

r−1(s(r2s)−ξ̂(r2s))(gs(z)− r
−1ξ(r2s), 0)

= rΨ
s(r2s)−ξ̂(r2s)(rgs(z)− ξ(r

2s), 0) = rΨs(r2s)(rgs(z), ξ(r
2s)).

and so gt(z)− z = −2πr
∫ t

0 Ψs(r2s)(rgs(z), ξ(r
2s))ds = −2π

r

∫ r2t
0 Ψs(s)(rgs/r2(z), ξ(s))ds.

Consequently, ht(z) − z = −2π
∫ t

0 Ψs(s)(hs(z), ξ(s))ds. That is, {ht(z); t ≥ 0} under P(ξ/r,s/r) has

the same distribution as {gt(z); t ≥ 0} under P(ξ,s).

(ii) By Theorem 5.5, we have Ft = {z ∈ D : tz ≤ t} = {z ∈ D : =gs−(z) = 0, for some s ≤ t}.
Hence the hulls {F̂t;≥ 0} associated with {ht(z); t ≥ 0} is given by

F̂t = {z ∈ D : =hs−(z) = 0, for some s ≤ t}
= {z ∈ D : =g(s/r2)−(z/r) = 0, for some s ≤ t} = rFt/r2 .

(ii) now follows from (i).
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(iii) Let W(s) = (ξ(s), s(s)) be the unique solution of the SDE (3.32)-(3.33) with initial value

(ξ, s), and gt(z) be the unique solution of the Komatu-Loewner equation (5.19) driven by W(t). As

bj(ξ, s) = bj(0, s− ξ̂), W(t) + c = (ξ(t) + c, s(t) + c) is the unique solution of the SDE (3.32)-(3.33)

with initial value (ξ + c, s + c). In view of second identity in (3.31), ht(z) := gt(z − c) + c is the

unique solution of the Komatu-Loewner equation (5.19) driven by W(s) + c with h0(z) = z for

x ∈ D + c := {w ∈ H : w − c ∈ D}. This implies the conclusion of (iii). 2

See [RS, Proposition 2.1] for corresponding statements for the case of the simply connected

domain H.
We call the family of random growing hulls {Ft; t ≥ 0} in Theorem 5.8 the stochastic Komatu-

Loewner evolution (SKLE) driven by the solution of the SDE (3.32)-(3.33) with coefficients α and

b. We designate it as SKLEα,b. Recall that the functions α and b are homogeneous functions on S
with degree 0 and −1 respectively, and satisfy the Lipschitz condition (L) in §4. In §6.1, we shall

give a typical example of such a function b.

Besides the scaling property of SKLEα,b demonstrated in Proposition 5.9, we now present its

domain Markov property. Since SKLEα,b depends on the initial value w = (ξ, s) ∈ R× S, we shall

denote it also as SKLEw,α,b or SKLEξ,s,α,b.

Let W = (W (t),Pw) be the diffusion process on R × S corresponding to the solution of the

SDE (3.32)-(3.33). W satisfies the Markov property with respect to the augmented filtration {Gt}
of the Brownian motion appearing in the SDE.

Let gt(z) be the unique solution of the ODE (5.19). Define g̃s(z̃) = gt+s ◦ g−1
t (z̃), z̃ ∈ Dt =

D(s(t)). Then {g̃s(z̃)}s≥0 is the solution of the KL-equation

∂tg̃s(z̃) = −2πΨs(t+s)(g̃s(z̃), ξ(t+ s)), g̃0(z̃) = z̃.

for the driving process {W (t+s) = (ξ(t+s), s(t+s)) : s ≥ 0} that is the solution of the SDE (3.32)-

(3.33) with initial value W(t). Consider the associated growing hulls {F̃s} in Dt for g̃s according

to (5.21). Thus {F̃s}s≥0 is the SKLEW (t),α,b.

Take an arbitrary z̃ ∈ Dt and set z = g−1
t (z̃) ∈ D \ Ft. Using the Markov property of W, we

have for s ≥ 0

PW(t)(z̃ ∈ F̃s) = PW(t)(life time of g̃·(z̃) ≤ s)
= Pw(life time of gt+·(z) ≤ s

∣∣ Gt) = Pw(z ∈ Ft+s \ Ft
∣∣ Gt)

= Pw(z̃ ∈ gt(Ft+s \ Ft)
∣∣ Gt), w ∈ R× S.

By Theorem 5.5, the set-valued random variable Ft is Gt-adapted. Denote by G0
t the sub-σ-field

of Gt generated by {Fu;u ≤ t}. In view of Theorem 5.5 and Theorem 5.8, W(t) = (ξ(t), s(t)) is

G0
t -adapted so that

Pw(z̃ ∈ gt(Ft+s \ Ft)
∣∣ G0

t ) = PW(t)(z̃ ∈ F̃s), w ∈ R× S. (5.25)

This can be rephrased as follows:

Proposition 5.10 For every w ∈ R× S, Pw-a.s. the conditional law of {gt(Ft+s \ Ft)}s≥0 given

G0
t has the same distribution as that of SKLEW (t),α,b.
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It will be shown in Theorem 5.12 below that the half-plane capacity of SKLEw,α,b is 2t.

For D̂ = D \ F ∈ D̂, where D ∈ D and F ⊂ D is an H-hull, let Ω(D̂) denote the collection of

families of increasing bounded closed subsets F = {F(t); t ≥ 0} of D̂ such that each F ∪F(t) is an

H-hull. For D ∈ D, we introduce a filtration {Gt(D); t ≥ 0} on Ω(D) by

Gt(D) := σ{F(s) : 0 ≤ s ≤ t}, G(D) := σ{F(s) : s ≥ 0}.

For D̂ ∈ D̂, we then introduce a σ-field G(D̂) on Ω(D̂) by G(D̂) = Φ−1G
(

Φ(D̂)
)
, using the canonical

map Φ from D̂ to Φ(D̂) ∈ D. For D ∈ D and t ≥ 0, define the shift operator θt : Ω(D) 7→ Ω(D\F(t))

by

(θtF)(s) = F(t+ s) \ F(t) for s ≥ 0. (5.26)

For D ∈ D and z ∈ ∂H, we use PD,z to denote the induced probability measure on Ω(D) by

Pw, where w = (z, s(D)). Observe that by Theorem 5.8, {gt(z); t ≥ 0} driven by the solution

Wt = (ξ(t), s(t)) of the SDE (3.32)-(3.33) with initial condition W0 = w is the unique conformal

map from D \ Ft to a standard slit domain for each fixed t ≥ 0 satisfying the hydrodynamic

normalization at infinity, where {Ft; t ≥ 0} are the associated SKLEw,a,b-hulls. Thus the probability

measures Pw and PD,z are in one-to-one correspondence.

Theorem 5.11 The probability measures {PD,z;D ∈ D, z ∈ ∂H} enjoy the following properties.

(i) For any D ∈ D and z ∈ ∂H,

PD,z (∩t>0F(t) = {z} and the half-plane capacity of F(t) is 2t for every t ≥ 0) = 1.

Let ĝt(z) be the canonical map on D \F(t) and s̃(t) := s(Dt), where Dt := ĝt(D \F(t)) ∈ D.

Then

PD,z

(⋂
δ>0

ĝt(F(t+ δ) \ F(t)) = {ξ̃(t)} ⊂ ∂H for every t ≥ 0

)
= 1.

Moreover, (ξ̃(t), s̃(t)) has the same distribution as the unique solution (ξ(t), s(t)) of (3.32)-

(3.33) with initial condition (ξ(0), s(0)) = (z, s(D)).

(ii) (Domain Markov property): For each t ≥ 0,

PD,z
(
θ−1
t Λ

∣∣Gt(D)
)

= P
Dt,ξ̃(t)

(ĝt(Λ)) for every Λ ∈ G(D \ F(t)). (5.27)

(iii) (Invariance under linear conformal map): for any D ∈ D and any linear conformal map f

from D onto f(D) ∈ D,

Pf(D),f(z) = PD,z ◦ f−1 for every z ∈ ∂H. (5.28)

Proof. (i) follows immediately from Theorem 5.8.

(ii) Consider a generic event Λ̃ = {F̃ ∈ Ω(Dt) : z̃ ∈ F̃(s)} ∈ G(Dt) for z̃ ∈ Dt, s ≥ 0. Such sets

generate the σ-field G(Dt). Define Λ = ĝ−1
t (Λ̃). Clearly, Λ ∈ G(D \ F(t)) and Λ̃ = ĝt(Λ). Observe

that

θ−1
t Λ = {F ∈ Ω(D) : {F(u+ t) \ F(t)}u≥0 ∈ Λ}

=
{
F ∈ Ω(D) : {ĝt(F(u+ t) \ F(t))}u≥0 ∈ ĝt(Λ) = Λ̃

}
= {F ∈ Ω(D) : z̃ ∈ ĝt(F(s+ t) \ F(t))}.
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Now (5.27) follows from Proposition (5.25) and thus (ii) is established as such Λ = ĝ−1
t (Λ̃) generates

G(D \ F(t)).

(iii) Let f(z) = c1z + c2, c1 > 0, c2 ∈ R, be a linear conformal map from D to f(D) ∈ D.

Clearly, f−1(z) = (z − c2)/c1. It follows from Proposition 5.9 that for ξ ∈ ∂H and s ∈ S,

{c−1
1 (gc21t(c1z − c2) + c2); t ≥ 0} under P(f(ξ),f(s)) has the same distribution as {gt(z); t ≥ 0} under

P(ξ,s). Consequently, {Ft, t ≥ 0} under Pf(D),f(ξ) has the same distribution as {c1Fc−2
1 t − c2; t ≥ 0}

under PD,ξ. That is, Pf(D),f(z) = PD,z ◦ f−1, under the 2t-half-plane capacity parametrization. 2

We remark that the shift operator θt in (5.26) is a natural extension of θ̇t in (3.4), and the

identity (5.27) is analogous to (3.11) in Section 3.2.

5.2 Half-plane capacity for SKLE

We return to the general setting made in the beginning of §5.1, and consider the conformal maps

{gt(z)} and H-hulls {Ft} in Theorem 5.5. Let at be the half-plane capacity of Ft; that is, at :=

limz→∞ z(gt(z)− z).

Theorem 5.12 It holds that at = 2t for every t ≥ 0.

This theorem follows immediately from the following proposition, which compared with the

equation (5.19) implies that at is differentiable and dat
dt = 2.

Proposition 5.13 a0 = 0, at is strictly increasing and right continuous. gt(z) is right differen-

tiable in at and

∂+gt(z)

dat
= −πΨs(t)(gt(z), ξ(t)), g0(z) = z ∈ D, t ∈ [0, tz). (5.29)

Here ∂+gt(z)
dat

is the right derivative of gt(z) with respect to at.

To prove this, we make arguments parallel to [CFR, §6.2, §6.3, §8]. Note however that, while

Ft is a portion of a given Jordan arc in [CFR], Ft is now defined by (5.21) for the solution gt(z) of

the equation (5.19) for a given continuous function (ξ(t), s(t)) satisfying the property (II).

Fix t0 > 0 and, for 0 ≤ s < t ≤ t0, set gt,s = gs ◦ g−1
t , which is a conformal map from Dt onto

Ds \ gs(Ft \ Fs). Its inverse map g−1
t,s is a conformal map from Ds \ gs(Ft \ Fs) onto the standard

slit domain Dt and satisfying a hydrodynamic normalization. Therefore, in view of the proof of

[CFR, Theorem 7.2], we can draw the following conclusion: let `t,s be the set of all limiting points

of g−1
t,s ◦ gs(z) = gt(z) as z approaches to Ft \Fs, then `t,s is a compact subset of ∂H and g−1

t,s sends

∂H \ gs(Ft \ Fs) into ∂H homeomorphically.

Let Λ = {x+ iy : a < x < b, 0 < y < c} be a finite rectangle so that `t,s ⊂ {x+ i0 : a < x < b}
and Λ ⊂ ∩0≤t≤t0Dt. Then =gt,s(z) is uniformly bounded in z ∈ Λ and, by the Fatou theorem (cf.

[GM]), it admits finite limit

=gt,s(x+ i0+) = lim
y↓0
=gt,s(x+ iy) for a.e. x ∈ (a, b). (5.30)

In exactly the same way as the proof of [CFR, Lemma 6.2, Theorem 6.4], we get the following.
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Lemma 5.14 For 0 ≤ s < t ≤ t0, at − as = π−1

∫
`t,s

=gt,s(x+ i0+)dx and

gs(z)− gt(z) =

∫
`t,s

Ψs(t)(gt(z), x)=gt,s(x+ i0+)dx, z ∈ D \ Ft.

By the Schwarz reflection, we can extend g−1
t,s to a conformal map on

Ds ∪ΠDs ∪ ∂H \ (gs(Ft \ Fs) ∪Πgs(Ft \ Fs)).

Lemma 5.15 (i) For any compact subset V of Ds ∪ ∂H \ {ξ(s)}, limt↓s g
−1
t,s (z) = z uniformly in

z ∈ V ∪ΠV.

(ii) at is right continuous in t.

(iii) at is non-negative and strictly increasing in t.

Proof. (i) Without loss of generality, we may assume s = 0 and so g−1
t,s = gt. Let V be any

relatively compact open subset of D ∪ (∂H \ {ξ(0)}). In Theorem 5.5, we considered the family

of solution curves {(gt(z), 0 ≤ t < tz) : z ∈ D} of (5.19) parametrized by the initial position

z = g0(z) ∈ D. We add to this family the solution curve (gt(z), 0 ≤ t < tz) of (5.19) with initial

position z = g0(z) ∈ ∂H \ {ξ(0)} satisfying gt(z) ∈ ∂H, 0 ≤ t < tz, where

tz = sup{t ∈ [0, ζ) : inf
s∈[0,t]

|gs(z)− ξ(s)| > 0}.

By Proposition 5.1 (vi) and Lemma 5.2 (ii), such a solution exists uniquely and takes values in ∂H.

Define Ft(∂H) = {z ∈ ∂H\{ξ(0)} : tz ≤ t}, t > 0. By a general theorem on ODE cited in the proof

of Theorem 5.5 already, gt(z) is jointly continuous on G = {(t, z) : z ∈ D∪(∂H\{ξ(0)}), t ∈ [0, tz)}.
For the set V as above, Theorem 5.8 (iii) implies that there exists δ > 0 such that Fδ ∪

Fδ(∂H) is disjoint from V . So [0, δ]× V is a compact subset of G. Hence supt∈[0,δ],z∈V ∪ΠV |gt(z)| =
supt∈[0,δ],z∈V |gt(z)| is finite by the continuity of gt(z) mentioned above, and accordingly {gt(z) :

0 ≤ t ≤ δ} is a normal family of analytic functions on V ∪ ΠV . This implies that limt↓0 gt(z) = z

uniformly in z ∈ V ∪ΠV .

(ii) This follows from (i) as in the proof of [CFR, Theorem 8.4].

(iii) Choose R > 0 so large that Ft ∪K ⊂ {|z| < R}. By (7.20) below, we then have

at =
2R

π

∫ π

0
ht(Re

iθ) sin θdθ for ht(z) = E∗z
[
=Z∗σFt ;σFt <∞

]
.

Here Z∗ = (Z∗t , ζ
∗,P∗z) is BMD on D∪{c∗1, · · · , c∗N}. Since, by Theorem 5.8, Ft is strictly increasing

in t and H\Ft is simply connected, Ft is non-polar for the planar Brownian motion and consequently

for the absorbing Brownian motion on D. Hence the above expression implies that at > 0 for t > 0.

As {Ft} is strictly increasing, so is {at} by its additivity under the composite map. 2

Proof of Proposition 5.13. We now know from Lemma 5.15 that at is strictly increasing and

right continuous. For any ε0 > 0 with B(ξ(s), ε0) ∩H ⊂ Ds, there exists δ > 0 so that

gs(Ft \ Fs) ∪Πgs(Ft \ Fs) ⊂ B(ξ(s), ε0) for any t ∈ (s, s+ δ)
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by virtue of Theorem 5.8(iii). In particular, `t,s is in the interior of the region bounded by the

Jordan curve g−1
t,s (∂B(ξ(s), ε0)). By Lemma 5.15, we have for sufficiently small δ > 0,

|g−1
t,s (z)− z| < ε0, for any z ∈ ∂B(ξ(s), ε0) and for any t ∈ (s, s+ δ).

In particular, the diameter of g−1
t,s (∂B(ξ(s), ε0)) is less than 3ε0. Therefore, we get for any x ∈ `t,s

|ξ(s)− x| ≤ |ξ(s)− z|+ |z − g−1
t,s (z)|+ |g−1

t,s (z)− x| < 5ε0, (5.31)

by taking any z ∈ g−1
t,s (∂B(ξ(s), ε0)). On the other hand, from the Lipschitz continuity of Ψ and

the continuity of s(t), we can conclude that Ψs(t)(z, x) is jointly continuous in (t, z, x) as in the

proof of [CFR, Theorem 9.8]. Fix z ∈ D. Since gt(z) is continuous in t, Ψs(t)(gt(z), x) is continuous

in t > 0 and x ∈ H. Therefore, for any ε > 0, there exist δ > 0 and ε0 > 0 such that

|Ψs(t)(gt(z), x)−Ψs(s)(gs(z), ξ(s))| < ε (5.32)

for any t ∈ (s, s + δ) and for any x ∈ ∂H with |x − ξ(s)| < 5ε0. It now follows from Lemma 5.14,

(5.31) and (5.32) that, there exists δ > 0 such that, for any t ∈ (s, s+ δ),∣∣∣∣gt(z)− gs(z)at − as
+ πΨs(s)(gs(z), ξ(s))

∣∣∣∣ < ε.

This proves the Proposition. 2

6 Locality of SKLE

6.1 BMD domain constant bBMD

For each standard slit domain D ∈ D, let Ψ(z, ξ) = ΨD(z, ξ), z ∈ D, ξ ∈ ∂H, be the BMD-complex

Poisson kernel of D, and define

bBMD(ξ;D) = 2π lim
z→ξ

(
ΨD(z, ξ) +

1

π

1

z − ξ

)
, ξ ∈ R. (6.1)

Since ΨH(z, ξ) = − 1
π

1
z−ξ is the complex Poisson kernel for the ABM on H, bBMD(ξ;D) indicates

a discrepancy of the slit domain D from H relative to BMD. It follows from Lemma 5.6(ii) that

bBMD(ξ;D) is well-defined by (6.1) as a finite real number. Sometimes we also write bBMD(ξ;D) as

bBMD(ξ, s) in terms of the slits s = s(D) of D. We set bBMD(s) = bBMD(0, s) and call it the BMD

domain constant of D = D(s).

Lemma 6.1 (i) bBMD(s), s ∈ S, is a homogeneous function of degree −1 on S.

(ii) bBMD(ξ, s) = bBMD(s− ξ̂) for s ∈ S and ξ ∈ R.

(iii) bBMD(s) satisfies the Lipschitz continuity condition (L) (see (4.1)).
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Proof. (i) By (3.30) in Remark 3.12, for any s ∈ S and c > 0,

bBMD(cs) = 2π lim
z→0

(
Ψcs(cz,0) + (cπz)−1

)
=

2π

c
lim
z→0

(
Ψs(z,0) + (πz)−1

)
= c−1bBMD(s).

(ii) By (3.31), we have for any η ∈ R

2π

(
Ψs(z, ξ) +

1

π

1

z − ξ

)
= 2π

(
Ψs+η̂(z + η, , ξ + η) +

1

π

1

(z + η)− (ξ + η)

)
.

Taking z → 0 yields bBMD(ξ, s) = bBMD(ξ + η, s + η̂).

(iii) For s1, s2 ∈ S, bBMD(s1) − bBMD(s2) = 2π limz→0

(
ΨD(s1)(z,0)−ΨD(s2)(z,0)

)
. The Lipschitz

continuity of bBMD(s) in s ∈ S follows from the Lipschitz continuity of ΨD in D ∈ D established in

[CFR, Theorem 9.1]. 2

6.2 Generalized Komatu-Loewner equation for image hulls

In the rest of this paper, we make a special choice of the driving process (ξ(t), s(t)) as in the last

part of §5.1: let Wt = (ξ(t), s(t)) be the solution of the SDE (3.32)-(3.33) in Theorem 4.2 for a

given non-negative homogeneous function α(s) of s ∈ S with degree 0 and a given homogeneous

function b(s) of s ∈ S with degree −1, both satisfying the condition (L).

We shall use the term “canonical map” introduced in the second paragraph of §3.1. Let {gt(z)}
and {Ft} be the family of the random conformal maps and the random growing hulls in Theorem 5.5.

Recall that {Ft} is called the SKLE driven by the solution of the SDE (3.32)-(3.33) with coefficients

determined by α and b, and is designated as SKLEα,b. For each t > 0, gt is the canonical map from

D \ Ft onto Dt = D(s(t)) where D denotes D(s(0)).

To formulate a locality property of SKLE, take any H-hull A ⊂ D and define

τA = inf{t > 0 : F t ∩A 6= ∅}.

In what follows, we only consider those parameter t with τA.

Let ΦA be a canonical map from D \ A onto D̃ ∈ D and define F̃t = ΦA(Ft). Let g̃t be

the canonical map from D̃ \ F̃t onto D̃t ∈ D and ãt the half-plane capacity of g̃t, that is ãt =

limz→∞ z(g̃t(z)− z). ãt will be also denoted by ã(t). Along with the canonical maps gt, ΦA and g̃t,

we consider the canonical map ht from Dt \ gt(A). Then

g̃t ◦ ΦA = ht ◦ gt (6.2)

because both of them are canonical maps from D \ (Ft ∪ A). See Figure 3. The union of the slits

in domains D̃ and D̃s are denoted by K̃ =
⋃N
j=1 C̃j and K̃(s) =

⋃N
j=1 C̃j(s), respectively. Denote

by Ã the set of all limiting points of ΦA(z) as z approaches to A.

Define

ξ̃(t) = ht(ξ(t)). (6.3)

We further denote by Ψ̃t(z, x), z ∈ D̃t, x ∈ ∂H, the BMD-complex Poisson kernel of D̃t.

In this subsection, we aim at proving Proposition 6.6 for {F̃t} stated below that is analogous

to Proposition 5.13 formulated for {Ft}. To this end, we prepare three lemmas and a proposition.
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Figure 3: Conformal mappings ΦA and ht

Lemma 6.2 {F̃t} is strictly increasing in t. It is right continuous at t with limit ξ̃(t) in the

following sense: ⋂
δ>0

g̃t(F̃t+δ \ F̃t) = {ξ̃(t)}. (6.4)

Proof. The first statement follows from the corresponding statement in Theorem 5.8. The second

one follows from (5.24), (6.1) and (6.2) as⋂
t>s

g̃s(F̃t \ F̃s) =
⋂
t>s

hsgsΦ
−1
A (F̃t \ F̃s) =

⋂
t>s

hsgs(Ft \ Fs) = hs(ξ(s)) = ξ̃(s).

2

For 0 ≤ s < t < τA, set g̃t,s = g̃s ◦ g̃−1
t . Denote by ˜̀t,s the set of all limiting points of

g̃−1
t,s ◦ g̃s(z̃) = gt(z̃) as z̃ approaches to F̃t \ F̃s.

Lemma 6.3 (i) ˜̀t,s is a compact subset of ∂H and

ãt − ãs =
1

π

∫
˜̀
t,s

=g̃t,s(x+ i0+)dx, (6.5)

g̃s(z)− g̃t(z) =

∫
˜̀
t,s

Ψ̃t(g̃t(z), x)=g̃t,s(x+ i0+)dx, z ∈ D̃ ∪ ∂pK̃ \ F̃t, (6.6)

where =g̃t,s(x+ i0) is the Fatou boundary limit existing a.e. on ˜̀t,s.
(ii) ãt > 0 and ãt is strictly increasing.

(iii) For each t > 0 and z ∈ D̃ \ F̃t, sup0≤s≤t |g̃s(z)| <∞.
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Proof. (i) This can be shown in the same way as that for Lemma 5.14. The identity (6.6) can

be obtained first for z ∈ D̃ \ F̃t and then extended to z ∈ D̃ ∪ ∂pK̃ \ F̃t.
(ii) This can be proved exactly in the same way as that for Lemma 5.15 (iii) by the probabilistic

expression (7.20) for ãt.

(iii) For 0 ≤ s ≤ t, (6.5) and (6.6) imply that |g̃s(z)| ≤ |g̃t(z)|+ π sup
x∈˜̀t,0 |Ψ̃t(g̃t(z), x)| ãt. 2

We next present a probabilistic representation of =g̃t(z) which enables us to derive the joint

continuity of =g̃t(z) with a uniform bound from those of =gt(z).
For D = H \

⋃N
j=1Cj , we consider Jordan curves ηj surrounding Cj that are mutually disjoint

and disjoint from Ft ∪ A ∪ ∂H. Denote by ZD,∗ = (ZD,∗· ,PD,∗z ) the BMD on D ∪ {c∗1, · · · , c∗N}
obtained from the absorbing Brownian motion (ABM) ZH = (ZH

· ,PH
z ) on H by rendering each slit

Cj into a single point c∗j , and set K =
⋃N
j=1Cj . Notice that ZD,∗ was denoted as ZH,∗ in [CFR].

The notation ZD,∗ is more convenient for later discussions. Define a measure νj on ηj by

νj(B) = PD,∗c∗j
(ZD,∗σηj

∈ Γ), Γ ∈ B(ηj), 1 ≤ j ≤ N. (6.7)

Proposition 6.4 (i) Define for z ∈ D \ (Ft ∪A),

qt(z) = =gt(z)−
N∑
j=1

κj(t) PH
z

(
ZH
σK
∈ Cj ; σK < σA

)
− EH

z

[
=gt(ZH

σA
); σA < σK

]
, (6.8)

where κj(t) is the y-coordinate of the jth slit of Dt. It holds for z ∈ D̃ \ F̃t that

=g̃t(z) = qt(Φ
−1
A z) +

N∑
i=1

PH
Φ−1
A z

(
ZH
σK
∈ Ci; σK < σA

) N∑
j=1

γij

∫
ηj

qt(z)νj(dz), (6.9)

for some positive constants γij, 1 ≤ i, j ≤ N , independent of t.

(ii) For each T ∈ (0, τA), the function =g̃t(z) is extended to be jointly continuous in (t, z) ∈
[0, T ]×H \ F̃T \ Ã and has a bound, for some constant γ > 0,

0 ≤ =g̃t(z) ≤ =Φ−1
A z + γ for t ∈ [0, T ], z ∈ H \ F̃T \ Ã. (6.10)

Proof. (i) For Dt = H \ K(t), K(t) =
⋃N
j=1Cj(t), gt(ηj) are Jordan curves surrounding Cj(t)

that are mutually disjoint and disjoint from gt(A)∪ ∂H. Let ZDt,∗ = (ZDt,∗· ,PDt,∗z ) be the BMD on

Dt ∪ {c∗1(t), · · · , c∗N (t)} obtained from the ABM ZH = (ZH
· ,PH

z ) on H by rendering each slit Cj(t)

into a single point c∗j (t). Analogously to (6.7), define a measure νtj on gt(ηj) by

νtj(Γ) = PDt,∗c∗j (t)

(
ZDt,∗σgt(ηj)

∈ Γ
)
, Γ ∈ B(gt(ηj)), 1 ≤ j ≤ N. (6.11)

Owing to the conformal invariance of the BMD (see [CF1, Remark 7.8.2]), we have

νtj(gt(Γ)) = νj(Γ) for any Γ ∈ B(ηj). (6.12)
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Applying [CFR, Theorem 7.1] to the canonical map ht from Dt \ gt(A) with gt(ηj) in place of

ηj , 1 ≤ j ≤ N , we get 
=ht(z) = vt(z) +

∑N
j=1 fj(t, z)v

∗
t (c
∗
j (t))

vt(z) = =z − EH
z

[
=ZH

σKt∪gt(A)
;σKt∪gt(A) <∞

]
v∗t (c

∗
j (t)) =

∑N
k=1

Mjk(t)
1−R∗k(t)

∫
gt(ηk) vt(z)ν

t
k(dz).

(6.13)

Here

fj(t, z) = PH
z

(
ZH
σKt
∈ Cj(t);σKt < σgt(A)

)
, R∗k(t) =

∫
gt(ηk)

fk(t, z)ν
t
j(dz), (6.14)

and Mjk(t) is the entry of
∑∞

n=0Q
∗(t)n for the matrix Q∗(t) with zero diagonal entry and off-

diagonal entry given by

q∗ij(t) = PDt,∗c∗i (t)(Z
Dt,∗
σK∗(t)

= c∗j (t), σK∗(t) < σgt(A))/(1−R∗i (t)), i 6= j. (6.15)

By the conformal invariance of the ABM ZH under the map gt (see [CF1, Theorem 5.3.1]),

fj(t, gt(z)) = PH
z

(
ZH
σK
∈ Cj , σK < σA

)
(6.16)

and

vt(gt(z)) = =gt(z)− EH
z

[
=gt(ZH

σK∪A); σK∪A <∞
]

=: qt(z). (6.17)

Thus by (6.12), {
R∗k(t) =

∫
ηk

PH
z (ZH

σK
∈ Ck;σK < σA)νk(dz) =: R∗k,∫

gt(ηk) vt(z)ν
t
k(dz) =

∫
ηk
qt(z)νk(dz).

(6.18)

Finally we use again the conformal invariance of the BMD ZD,∗ under the map gt to get from (6.15)

q∗ij(t) = PD,∗c∗i
(ZD,∗σK∗

= c∗j , σK∗ < σA)/(1−R∗i ) =: q∗ij , i 6= j. (6.19)

Denote by Mij is the entry of
∑∞

n=0(Q∗)n for the matrix Q∗ with zero diagonal entry and off-

diagonal entry q∗ij . It follows from (6.13) and (6.16)-(6.19) that

=ht ◦ gt(z) = qt(z) +

N∑
i=1

PH
z

(
ZH
σK
∈ Ci; σK < σA

) N∑
j=1

γij

∫
ηj

qt(z)νj(dz), (6.20)

for z ∈ D \ Ft \A, where γij =
Mij

1−R∗j
. This together with (6.2) establishes (6.9).

(ii) As gt(z) is a solution of the K-L equation (5.19), =gt(z) is jointly continuous and satisfies

0 ≤ =gt(z) ≤ =z. The functions {κj(t); 1 ≤ j ≤ N} are continuous due to the continuity of s(t).

Therefore by (6.8), qt(z) is jointly continuous. Since the function u(z) = =z is excessive with respect

to ZH, vt(z) defined by (6.13) is non-negative. Hence 0 ≤ qt(z) = vt(gt(z)) ≤ =gt(z) ≤ =z. It

follows from (6.9) that =g̃t(z) is jointly continuous in (t, z) ∈ [0, T ]×(D̃\F̃T ) and qt(Φ
−1
A z) ≤ =Φ−1

A z.

Thus we readily obtain the stated joint continuity with a bound (6.10). 2

Lemma 6.5 (i) For each T ∈ (0, τA), the functions {g̃t(z), t ∈ [0, T ]} are extended to be locally

equi-continuous and locally uniformly bounded in z ∈ (D̃ ∪ ∂pK̃ ∪ ∂H) \ F̃T \ Ã.
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(ii) For s ≥ 0, limt↓s g̃
−1
t,s (z) = z uniformly on each compact subset of D̃s ∪∂pK̃(s)∪ (∂H \ {ξ̃(s)} \

g̃s(Ã)).

(iii) For T ∈ [0, τA), g̃t(z̃) is jointly continuous in (t, z̃) ∈ [0, T ]× [(D̃ ∪ ∂pK̃ ∪ ∂H) \ F̃T \ Ã].

(iv) ãt is right continuous in t and D̃t is continuous in t.

(v) Ψ̃t(z, x) is jointly continuous in (t, z, x) ∈
⋃
t∈[0,τA){t} × [D̃t ∪ ∂pK̃(t) ∪ (∂H \ {x})]× ∂H.

Proof. (i) follows from Proposition 6.4 (ii) together with Lemma 6.3 (iii) exactly in the same way

as the proof of [CFR, Theorem 7.4]. (ii) follows from (i) and Proposition 6.4 (ii) as the proof of

[CFR, Theorem 8.2]. (iii) can be shown in a quite similar way to (ii). The right continuity of ãt
follows from (ii) as the proof of [CFR, Theorem 8.4]. The continuity of D̃t is a consequence of (iii).

(v) follows from the continuity of D̃t in (iv) and the Lipschitz continuity of Ψ̃ as the proof of [CFR,

Theorem 9.8]. 2

Proposition 6.6 ã0 = 0, ãt is strictly increasing and right continuous. For each T ∈ (0, τA) and

z ∈ D̃ ∪ ∂pK̃ \ F̃T , g̃t(z) is right differentiable in ãt and

∂+g̃t(z)

∂ãt
= −πΨ̃t(g̃t(z), ξ̃(t)), g̃0(z) = z, for t ∈ [0, T ]. (6.21)

Here the left hand side indicates the right derivative.

Proof. This follows from Lemma 6.2, Lemma 6.3 and Lemma 6.5 just as in the proof of Proposition

5.13. 2

Note that equation (6.21) does not characterize the conformal map g̃t since its left hand side

involves only the right derivative. To characterize g̃t uniquely, we need to show that g̃t is differen-

tiable in t; see [CFS, Remark 2.7]. The first assertion of the next proposition is crucial not only

for this purpose but also in legitimating the stochastic calculus in the next subsection.

The conformal map ht(z) (resp. ΦA(z)) from Dt \ gt(A) (resp. D \ A) onto D̃t (resp. D̃) is

extended to a conformal map on

(Dt ∪ΠDt ∪ ∂H) \
(
gt(A) ∪Πgt(A)

)
(resp. (D ∪ΠD ∪ ∂H) \

(
A ∪ΠA

)
) (6.22)

by the Schwarz reflection. Note that h0(z) = ΦA(z).

Proposition 6.7 (i) For any t ∈ (0, τA) and z ∈ Dt ∪ ∂H \ gt(A), ht(z), h
′
t(z), h

′′
t (z) are jointly

continuous in (t, z).

(ii) Locally uniformly in z ∈ (D ∪ ∂H) \A,

lim
t↓0

ht(z) = ΦA(z), lim
t↓0

h′t(z) = Φ′A(z), lim
t↓0

h′′t (z) = Φ′′A(z). (6.23)
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Proof. (i) It follows from (6.2) that for t ∈ [0, τA), 0 ≤ s < t and z ∈ Dt \ gt(A),

ht(z) = g̃−1
t,s ◦ hs ◦ gt,s(z) where gt,s = gs ◦ g−1

t and g̃t,s = g̃s ◦ g̃−1
t . (6.24)

For t > 0 and z ∈ Dt ∪ (∂H \ {ξ(t)}), let ϕ(u; t, z), u ∈ It,z, be the unique solution of the ODE

(5.1) in variable u with initial condition ϕ(t; t, z) = z and with the maximal time interval It,z of

existence. If z ∈ Dt, then It,z = [0, tz) by Proposition 5.4 and it holds that ϕ(u; t, z) = gt,u(z)

for u ∈ [0, t]. But, if z ∈ ∂H \ {ξ(t)}, then ϕ(·; t, z) is a continuous motion on ∂H and it could

be that It,z = (αt,z, βt,z) with 0 ≤ αt,z < t < βt,z. Our strategy for the proof of (i) is to use

the identity (6.24) for some fixed s ∈ (0, t) along with the joint continuity of ϕ(s; t, z) and that of

g̃−1
t,s (z̃) = g̃t ◦ g̃−1

s (z̃) basically shown in Lemma 6.5.

Recall that τA = inf{u > 0 : F u∩A 6= ∅}) and define Πz = z̄, z ∈ H.. Fix T ∈ (0, τA). Take any

smooth Jordan curve Γ ⊂ C with ΠΓ = Γ such that Γ surrounds F T , the sets A and K = ∪Nj=1Cj
are located outside Γ, and Γ intersects ∂H at only two points. For t ∈ (0, T ), we extend gt by the

Schwarz reflection and let Γt = gt(Γ). Then Γt surrounds gt(FT \ Ft) and the sets gt(A) and K(t)

are located outside Γt. In particular, ξ(t) /∈ Γt in view of (5.24).

From now we fix an arbitrary t ∈ (0, T ) and let Γt ∩ ∂H = {z1, z2}. The ODE (5.1) and

its solution ϕ(u; t, z), u ∈ It,z, are extended to ΠDt by mirror reflection. We then choose any

s ∈ (αt,z1 ∨ αt,z2 , t) so that ϕ(s; t, z) is well defined for all z ∈ Γt. According to a general theorem

[H, Theorem V.2.1] on ODE, (t, z) 7→ ϕ(s; t, z) is joint continuous in the following sense: for any

ε > 0, there exists δ = δ(ε, t, z) > 0 with s < t − δ < t + δ < T such that, for any u > 0, w ∈ C
with |u − t| < δ, |w − z| < δ, we have αu,w < s and |ϕ(s;u,w) − ϕ(s; t, z)| < ε for any z ∈ Γt. A

covering argument then yields the existence of δ ∈ (0, t− s) such that

αu,z < s and |ϕ(s;u, z)− ϕ(s; t, z)| < ε for any u ∈ [t− δ, t+ δ] and for any z ∈ Γt. (6.25)

Observe that ϕ(s; t, z) = gt,s(z) for z ∈ Dt. Hence, by the continuity of ϕ(s; t, z) in z, we get the

identity {w = ϕ(s; t, z) : z ∈ Γt} = Γs. We can choose ε > 0 so that the ε−neighborhood Γs,ε of Γs
is disjoint from gs(FT \ Fs) ∪ gs(A). On account of the relation hs(w) = g̃s ◦ΦA ◦ g−1

s (w), w ∈ Ds,

we have

hs(Γs,ε) ⊂ D̃s ∪ΠD̃s ∪ ∂H \
(
g̃s(F̃T \ F̃s) ∪ Π̃g̃s(F̃T \ F̃s)) ∪ g̃s(Ã) ∪Πg̃s(Ã)

)
. (6.26)

On the other hand, we have the following variant of Lemma 6.5 (iii):

For T ∈ (0, τA) and s ∈ [0, T ), g̃−1
u,s(z̃) = g̃u(g̃−1

s (z̃)) is jointly continuous in

(u, z̃) ∈ [s, T ]× [(D̃s ∪ ∂H) \ g̃s(F̃T \ F̃s) \ g̃s(Ã)]. (6.27)

This can be proved as follows. By using the relation (6.24), we first express =g̃−1
u,s, u ≥ s, in terms

of the BMD on D̃s and the ABM on H in analogy to (6.9), which yields the joint continuity of

=g̃−1
u,s(z̃) in (u, z̃) ∈ [s, T ]× [H \ g̃s(F̃T \ F̃s) \ g̃s(Ã)]. This combined with Lemma 6.3 (iii) (replacing

(s, t) by (u, T )) implies, in the same way as the proof of [CFR, Theorem 7.4], the local uniform

boundedness of the family {g̃−1
u,s(z̃);u ∈ [s, T ]} in z̃ ∈ D̃s ∪ ∂H \ g̃s(F̃T \ F̃s) \ g̃s(Ã)]. Thus we can

get (6.27) as the proof of [CFR, Theorem 8.2].

By [H, Theorem V.2.1] again, ϕ(s;u, z) is jointly continuous in (u, z) ∈ [t− δ, t+ δ]× Γt. Since

hs(ϕ(s;u, z)) ∈ hs(Γs,ε) by (6.25), we conclude from (6.26) and (6.27) that the relation (6.24)
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extends to hu(z) = g̃−1
u,s(hs(ϕ(s;u, z)) to be jointly continuous at each (u, z) ∈ [t− δ, t+ δ]× Γt. In

particular supu∈[t−δ,t+δ], z∈Γt |hu(z)| is finite. Moreover, by the joint continuity of the solution of

(5.1), we may assume that Γt ⊂
⋂
u∈[t−δ,t+δ](Du \ gu(A)).

As hu is analytic, the Cauchy integral formula yields that hu(z), h′u(z), h′′u(z) are jointly

continuous in (u, z) ∈ [t− δ, t+ δ]× U(t), where U(t) is an open set enclosed by Γt.

(ii) We continue to work with the function ϕ(u; t, z), u ∈ It,z, as above and claim the following:

for any ε > 0, there exists δ > 0 such that, for any t ∈ (0, δ] and any z ∈ ∂H \ [ξ(0)− ε, ξ(0) + ε],

It,z = [0, β) for some β > t.

To see this, we fix ε1 ∈ (0, ε) and take t0 > 0 with {ξ(u) : u ∈ [0, t0]} ⊂ (ξ(0)−ε1, ξ(0)+ε1). Since

the solution ϕ(t, u, ξ(0)±ε1) of (5.1) with ϕ(u, u, ξ(0)±ε1) = ξ(0)±ε1 is jointly continuous in (t, u),

there is δ ∈ (0, t0] with ξ(0)−ε < inf0≤u≤t≤δ ϕ(t, u, ξ(0)−ε1), sup0≤u≤t≤δ ϕ(t, u, ξ(0)+ε1) < ξ(0)+ε.

Take any t ∈ (0, δ] and any z ∈ ∂H with z > ξ(0) + ε. Suppose It,z = (α, β) for some α ∈ (0, t).

As lim infu↓α |ϕ(u, t, z) − ξ(u)| = 0, we find u1 ∈ (α, t) with ϕ(u1, t, z) = ξ(0) + ε1, arriving at a

contradiction z = ϕ(t, u1, ξ(0) + ε1) < ξ(0) + ε. Hence It,z = [0, β). The same is true for z ∈ ∂H
with z < ξ(0)− ε.

Observe that g−1
t (z) = ϕ(0, t, z) for (t, z) ∈ [0, δ] × (D ∪ [(∂H \ [ξ(0) − ε, ξ(0) + ε])], and it

is jointly continuous in (t, z) there by the theorem cited above. Let V be a compact subset of

D∪ (∂H \ [ξ(0)− ε, ξ(0) + ε]) \A. We may assume that δ < τA and V is disjoint from
⋃
s∈[0,δ] gs(A).

Combining this with the identity ht = g̃t ◦ΦA ◦g−1
t from (6.2) and with Lemma 6.5 (ii), (iii), we

see that ht(z) is jointly continuous at each (t, z) ∈ [0, δ]× V and consequently supt∈[0,δ] z∈V |ht(z)|
is finite and limt↓0 ht(z) = ΦA(z) for each z ∈ V. By taking appropriate circles as V , we get the

local uniform convergence (6.23) in a similar way as in the proof of (i). 2

In the remaining part of this paper, the derivative of a function f in the time parameter will

be designated by ḟ .

Theorem 6.8 For s ∈ (0, τA) and z ∈ D̃∪∂pK̃∪F̃t, g̃s(z) is continuously differentiable in s ∈ [0.t]

and
dg̃s(z)

ds
= −2π|h′s(ξ(s))|2 Ψ̃s(g̃s(z), ξ̃(s)), g0(z) = z. (6.28)

Proof. It suffices to prove
˙̃as = 2|h′s(ξ(s))|2. (6.29)

This is because (6.29) together with (6.21) implies that (6.28) holds with the right derivative ∂+g̃s(z)
ds

in place of ∂g̃s(z)
ds . But since the right hand side of (6.28) is continuous in s in view of Lemma 6.5

and Proposition 6.7, g̃s(z̃) is actually continuously differentiable in s.

For D ∈ D and an H-hull K ⊂ D, we denote by CapD(K) (resp. CapH(K)) the half-plane

capacity of K for the canonical map from D \ K (resp. the Riemann map from H \ K onto

H). For a set A ⊂ H, we put rad(A) = supz∈A |z|. Fix s ≥ 0 and let Kε = gs(Fs+ε \ Fs) and

K̃ε = g̃s(F̃s+ε \ F̃s). Then rad(Kε \ {ξ(s)}) = o(ε) and rad(K̃ε \ {ξ̃(s)}) = o(ε) by (5.24) and (6.4),

respectively. Consequently we have by Theorem 7.1 of Appendix

CapDs(Kε)− CapH(Kε) = o(ε), CapD̃s(K̃ε)− CapH(K̃ε) = o(ε). (6.30)
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Since K̃ε = hs(Kε), we get from (6.30) and [L1, (4.15)] that

ãs+ε − ãs = CapD̃s(K̃ε) = CapH(hs(Kε)) + o(ε)

= Φ′s(ξ(s))
2CapH(Kε) + o(ε) = Φ′s(ξ(s))

2CapDs(Kε) + o(ε) = Φ′s(ξ(s))
2(as+ε − as) + o(ε),

which yields (6.29) as as+ε − as = 2ε by Theorem 5.12. 2

6.3 Characterization of locality of SKLEα,−bBMD

We continue to operate under the setting in the preceding subsection. To investigate the locality,

we need to compute the driving processes for {F̃t; t < τA}. It follows from (5.19) that the inverse

map g−1
t of gt satisfies

ġ−1
t (z) = 2π(g−1

t )′(z)Ψs(t)(z, ξ(t)), g−1
0 (z) = z. (6.31)

From (6.2), we have

ḣt(z) = ˙̃gt(ΦA ◦ g−1
t (z)) + (g̃t ◦ ΦA)′(g−1

t (z))ġ−1
t (z), z ∈ Dt \ gt(A).

This together with (6.31), Theorem 6.8, and then by (6.2) again yields that for z ∈ Dt \ gt(A),

ḣt(z) = −2π|h′t(ξ(t))|2Ψ̃t(g̃t ◦ ΦA ◦ g−1
t (z), ξ̃(t)) + (g̃t ◦ ΦA)′(g−1

t (z))2π(g−1
t )′(z)Ψs(t)(z, ξ(t))

= −2π|h′t(ξ(t))|2Ψ̃t(ht(z), ht(ξ(t))) + 2πh′t(z)Ψs(t)(z, ξ(t)). (6.32)

Functions ht(z) and h′t(z) are extended to the region (6.22), call it Gt, by the Schwarz reflection.

Fix t0 > 0 and take a disk B centered at ξ(t0) with B ⊂ ∩|t−t0|≤δGt and {ξ(t) : |t − t0| ≤ δ} ⊂ B

for some δ > 0. Denote the right hand side of (6.32) by f(t, z). By virtue of Proposition 6.7(i),

Lemma 6.5(v) and Proposition 5.1(i), f(t, z) is jointly continuous and hence uniformly bounded in

(t, z) ∈ [t0− δ, t0 + δ]× (∂B ∩H). By taking Schwarz reflections of Ψ̃t(z, ht(ξ(t))) and Ψs(t)(z, ξ(t))

in z, f(t, z) admits an extension to [t0 − δ, t0 + δ] × ∂B to be jointly continuous and uniformly

bounded there, and the identity ḣt(z) = f(t, z) extends to (t, z) ∈ (t0 − δ, t0 + δ)× (∂B \ ∂H).

Expressing (hu(z)− ht(z))/(u− t), z ∈ B, t ∈ (t0 − δ, t0 + δ), by the Cauchy integral formula

and letting u→ t, we see that ht(z) is differentiable in t for any z ∈ B with ḣt(z) being analytic in

z ∈ B and jointly continuous in (t, z) ∈ (t0− δ, t0 + δ)×B. In particular, ḣt(ξ(t)) can be computed

by limz→ξ(t), z∈H ḣt(z) explicitly. Indeed, by the definition (6.1) of bBMD(s, ξ), we get from (6.32)

ḣt(ξ(t)) = h′t(ξ(t)) bBMD(ξ(t), s(t))− |h′t(ξ(t))|2 bBMD(ht(ξ(t)), ht(s(t)))

+ lim
z→ξ(t)

(
2|h′t(ξ(t))|2

ht(z)− ht(ξ(t))
− 2h′t(z)

z − ξ(t)

)
= h′t(ξ(t)) bBMD(ξ(t), s(t))− |h′t(ξ(t))|2 bBMD(ht(ξ(t)), ht(s(t)))− 3h′′t (ξ(t)). (6.33)

Thus ht(z) is differentiable in t for each z ∈ ∂H ∩ Gt with ḣt(z) being jointly continuous in

t > 0, z ∈ ∂H ∩ Gt. Moreover, h′t(z) and h′′t (z) are jointly continuous by Proposition 6.7. Since

ξ̃(t) = ht(ξ(t)) and ξ(t) is the solution of the SDE (3.32), we can readily apply a generalized Itô

formula (see [CFS, Remark 2.9] and [RY, (IV.3.12)]) to get

dξ̃(t) =

(
ḣt(ξ(t)) + h′t(ξ(t))b(s(t)− ξ̂(t)) +

1

2
h′′t (ξ(t))α(s(t)− ξ̂(t))2

)
dt+h′t(ξ(t))α(s(t)− ξ̂(t))dBt.

This combined with (6.33) gives the following.
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Theorem 6.9 It holds that

dξ̃(t) = h′t(ξ(t))
(
b(s(t)− ξ̂(t)) + bBMD(ξ(t), s(t))

)
dt+

1

2
h′′t (ξ(t))

(
α(s(t)− ξ̂(t))2 − 6

)
dt

−|h′t(ξ(t))|2bBMD(ξ̃(t), ht(s(t)))dt+ h′t(ξ(t))α(s(t)− ξ̂(t))dBt. (6.34)

Let {F̌t}t<τ̌A be the half-plane capacity reparametrization of the image hulls {F̃t}t<τA , namely,

F̌t = F̃ã−1(2t), τ̌A = ã(τA)/2. (6.35)

where ã(t) is the half-plane capacity of F̃t and ã−1 is its inverse function. Accordingly, the processes

ξ̃(t) = ht(ξ(t)) = g̃t ◦ ΦA(ξ) and s̃j(t) = ht(sj(t)) = g̃t ◦ ΦA(sj) are time-changed into

ξ̌(t) = ξ̃(ã−1(2t)) and šj(t) = s̃j(ã
−1(2t)), 1 ≤ j ≤ 3N, t < τ̌A, (6.36)

respectively.

Set ǧt = g̃ã−1(2t) and Ψ̌t = Ψ̃ã−1(2t). It follows from (6.28), (6.29), Lemma 6.5 (v) and Proposi-

tion 6.7(i) that, for T ∈ (0, τ̌A), ǧt(z) is continuously differentiable in t ∈ [0, T ] and

dǧt(z)

dt
= −2πΨ̌t(ǧt(z), ξ̌(t)), ǧ0(z) = z ∈ D̃ ∪ ∂pK̃ \ F̌t. (6.37)

Lemma 6.10 It holds under P(ξ,s) that

šj(t) = ΦA(sj) +

∫ t

0
b̌j(ξ̌(s), š(s))ds, t ∈ [0, τ̌A), 1 ≤ j ≤ 3N, (6.38)

where b̌j(w) = b̌j(ξ, s) is defined by (3.27) with Ψs being replaced by Ψ̌s.

Proof. We can get (6.38) from the K-L equation (6.37) exactly in the same way as the proof of

Theorem 2.3, if Lemma 2.1 for ǧt, τ̌A, Ψ̌t in place of gt, tγ , Ψt is once established. Let us call

Lemma 2.1’ such a counterpart of Lemma 2.1.

The first and second assertions of Lemma 2.1’ follow from Lemma 6.5 (v), Proposition 6.7(i),

(6.29) and (6.37) as in the proof of those of Lemma 2.1. The third assertion of Lemma 2.1’ can be

obtained by proving an analogue to (2.7) using a similar method to the proof of (6.21) combined

with (6.29). The rest of assertions of Lemma 2.1’ can be proved quite similarly. 2

Let Mt =
∫ t

0 h
′
s(ξ(s))dBs. Clearly by (6.29), 〈M〉t =

∫ t
0 h
′
s(ξ(s))

2ds = ã(t)/2. Hence B̌t :=

Mã−1(2t) is a Brownian motion. The formula (6.34) can be rewritten as

ξ̌(t) = ΦA(ξ(0)) +

∫ t

0
ȟ′s(
◦
ξ (s))−1

(
b(
◦
s (s)−

◦̂
ξ(s)) + bBMD(

◦
ξ (s),

◦
s (s))

)
ds

+
1

2

∫ t

0
ȟ′′s(
◦
ξ (s)) · ȟ′s(

◦
ξ (s))−2

(
α(
◦
s (s)−

◦̂
ξ(s))2 − 6

)
ds

−
∫ t

0
bBMD(ξ̌(s), š(s))ds+

∫ t

0
α(
◦
s (s)−

◦̂
ξ(s))dB̌s, t ∈ [0, τ̌A), (6.39)

where ȟ′s(z) := h′ã−1(2s)(z), ȟ
′′
s(z) := h′′ã−1(2s)(z),

◦
ξ (t) := ξ(ã−1(2t)) and

◦
sj (t) = sj(ã

−1(2t)) for

1 ≤ j ≤ 3N . Note that since ht(z) is univalent in z on the region (6.22), h′t(z) never vanishes there.
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Let {Ft} be a SKLEα,b. Since {Ft} depends also on the initial value (ξ, s) for SDE (3.32)-(3.33),

we shall write SKLEα,b occasionally as SKLEξ,s,α,b for emphasis on its dependence on the initial

position (ξ, s). Recall that, for an H-hull A ⊂ D(s), τA = inf{t > 0 : F t ∩ A 6= ∅}. Let {F̌t}{t<τ̌A}
be the half-plane capacity reparametrization of the image hulls {F̃t = ΦA(Ft)}{t<τA} specified by

(6.35).

SKLEα,b is said to have the locality property if, for the SKLEξ,s,α,b {Ft} with an arbitrarily

fixed (ξ, s) ∈ R × S and for any H-hull A ⊂ D(s), {F̌t, t < τ̌A} has the same distribution as

SKLEΦA(ξ),ΦA(s),α,b restricted to {t < τΦA(A)}. Here SKLEα,b and SKLEΦA(ξ),ΦA(s),α,b can live on

two different probability spaces.

Theorem 6.11 SKLEα,−bBMD
for a constant α > 0 enjoys the locality if and only if α =

√
6.

Proof. “If” part. Assume that α =
√

6 and b(ξ, s) := b(s − ξ̂) = −bBMD(ξ, s). Then (6.39) is

reduced to

dξ̌(t) = −bBMD(ξ̌(t), š(t))dt+
√

6 dB̌t. (6.40)

Thus {F̌t} is an increasing sequence of H-hulls associated with the unique solution ǧt of the Komatu-

Loewner equation (6.37), driven by (ξ̌(t), š(t)), which is the unique solution of (6.40) and (6.38).

Therefore {F̌t}{t<τ̌A} is SKLEΦA(ξ),ΦA(s),
√

6,−bBMD
restricted to {t < τΦA(A)}, yielding the ‘if’ part

of the theorem.

“Only if” part. Assume that α is a positive constant and b(ξ, s) = −bBMD(ξ, s). Then (6.39) is

reduced to

ξ̌(t) = ΦA(ξ) +
α2 − 6

2

∫ t

0
ȟ′′s(
◦
ξ (s)) · ȟ′s(

◦
ξ (s))−2ds−

∫ t

0
bBMD(ξ̌(s), š(s))ds+ αB̌t, t > 0, (6.41)

Let {Ft} be a SKLEξ,s,α,−bBMD
, A ⊂ D(s) an H-hull, and {F̌t} be defined by (6.35). The equations

(6.41) for ξ̌ and (6.38) for š describe the evolution of {F̌t} through (6.37).

Assume now the locality of SKLEα,−bBMD
. Then {(ξ̌(t)), š(t); t ∈ (0, τ̌A)} has the same distribu-

tion as the solution {(ξ̄(t), s̄(t)); t ∈ [0, τ̄ΦA(A))} of the equation

ξ̄(t) = ΦA(ξ)−
∫ t

0
bBMD(s̄(s)− ̂̄ξ(s))ds+ αB̄t (6.42)

for some Brownian motion B̄t coupled with the equation (6.38) with (ξ̄(t), s̄(t)) in place of (ξ̌(t), š(t)).

On the other hand, if we let

η(t) :=
α2 − 6

2

∫ t

0
ȟ′′s(
◦
ξ (s)) · ȟ′s(

◦
ξ (s))−2ds,

then we see from (6.41) that ξ̌(t) is, under the Girsanov transform generated by the local martingale

−α−1η(t) dB̌t, locally equivalent in law to ξ̄(t). It follows that η(t) = 0, t < τ̌A, almost surely, and

accordingly

(α2 − 6)

∫ ã−1(2t)∧τA

0
h′′s(ξ(s))ds = 0, t > 0. (6.43)

Dividing (6.43) by ã−1(2t) and then letting t ↓ 0, we get (α2−6)Φ′′A(ξ) = 0 for every ξ ∈ ∂H\A
by virtue of Proposition 6.7. If α2 6= 6, then Φ′′A(ξ) = 0 for every ξ ∈ ∂H \ A, This would imply

that ΦA is an identity map, which is impossible unless A = ∅. 2
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Remark 6.12 (An effect of the second order BMD domain constant)

Along with the BMD domain constant bBMD introduced in Section 6.1, we define for D ∈ D

cBMD(ξ;D) = 2π lim
z→ξ

(
Ψ′D(z, ξ)− 1

π

1

(z − ξ)2

)
, ξ ∈ ∂H, (6.44)

which is a well defined real number by Lemma 5.6 (ii). We also denote it by cBMD(ξ; s) for

s = s(D). We set cBMD(s) = cBMD(0, s), s ∈ S, and call it the second order BMD domain constant.

On account of (3.31), we then have cBMD(ξ; s) = cBMD(s− ξ̂) for s ∈ S and ξ ∈ R.

For a constant α ∈ (0, 2), SKLEα,b is generated by a simple curve just as SLEα2 ([CFS]). As is

well known, SLE8/3 enjoys the so called restriction property that was established by showing that

h′t(ξt)
5/8 is a local martingale in [LSW2]. Here h and ξ were defined for the SLE in exactly the

same manner as above for the SKLE. But we can hardly expect a straightforward generalization

of this martingale property to SKLE√
8/3,−bBMD

due to the effect of the second order BMD domain

constant cBMD as will be seen below. See [CFS, §6] for some related literatures.

It follows from the identity (6.32) that

ḣ′t(z) = −2π|h′t(ξ(t))|2Ψ̃′t(ht(z), ht(ξ(t)))h
′
t(z) + 2πh′t(z)Ψ

′
s(t)(z, ξ(t)) + 2πh′′t (z)Ψs(t)(z, ξ(t)).

We then have analogously to (6.33)

ḣ′t(ξ(t)) = −|h′t(ξ(t))|2cBMD(ht(ξ(t)), ht(s(t)))h′t(ξ(t))

+h′t(ξ(t))cBMD(ξ(t), s(t)) + h′′t (ξ(t))bBMD(ξ(t), s(t)) + lim
z→ξ(t)

II(z, t),

where

II(z, t) = −2|h′t(ξ(t))|2
1

(ht(z)− ht(ξ(t))2
ht(z) + h′t(z)

2

(z − ξ(t))2
− h′′t (z)

2

z − ξ(t)
.

It holds as in [LSW2, §5] that lim
z→ξ(t)

II(z, t) =
h′′t (ξ(t))

2

2h′t(ξ(t))
− 4

3
h′′′t (ξ(t)).

Consider the process η(t) = h′t(ξ(t))
δ for δ > 0. Using a generalized Itô formula, we have

1

δ

dη(t)

η(t)
= −|h′t(ξ(t))|2cBMD(ht(ξ(t)), ht(s(t))dt+ cBMD(ξ(t), s(t))dt

+
h′′t (ξ(t))

h′t(ξ(t))
{b(ξ(t), s(t)) + bBMD(ξ(t), s(t))} dt

+
1

2
{(δ − 1)α(ξ(t), s(t))2 + 1}h

′′
t (ξ(t))

2

h′t(ξ(t))
2
dt

+

(
1

2
α(ξ(t), s(t))2 − 4

3

)
h′′′t (ξ(t))

h′t(ξ(t))
dt+

h′′t (ξ(t))

h′t(ξ(t))
α(ξ(t), s(t))dBt.

When α =
√

8/3, b = −bBMD and δ = 5/8, we get from the above identity

dη(t)

η(t)
=

√
8

3

5

8

h′′t (ξ(t))

h′t(ξ(t))
dBt +

5

8

(
cBMD(ξ(t), s(t))− |h′t(ξ(t))|2cBMD(ht(ξ(t)), ht(s(t)))

)
dt.

(6.45)

The drift term of the right hand side does not vanish unless either ht is the identity map or cBMD

is vanishing.
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Remark 6.13 ERBM and BMD As is explained in Introduction, the derivation of the Komatu-

Loewner equation and its fundamental properties in [CFR] is partly based on the probabilistic

considerations in terms of the Brownian motion with darning (BMD). We had constructed and

characterized the darning of a general symmetric Markov process ([CF1, §7.7]) when we encoun-

tered an article of G. Lawler [L2] where the Komatu-Loewner equation on a standard slit domain

previously obtained analytically by Bauer-Friedrich [BF3, Theorem 3.1] was investigated in terms

of the excursion reflected Brownian motion (ERBM). We were strongly motivated by these pa-

pers. In the present paper, the BMD is also used crucially in Section 6.2 to derive the generalized

Komatu-Loewner equation (6.28) for the image hulls and in Appendix (§7) to extend Drenning’s

result [D] on the comparison of half-plane capacities.

[CF2, §6] gives a detailed proof of the identification of ERBM with BMD (especially in the

doubly connected case). Some comprehensive account on BMD and BMD-harmonic functions can

be found in [C, CFR, FK].

7 Appendix: Comparison of half-plane capacities

We fix a standard slit domain D = H \K, K = ∪Nj=1Cj . For r > 0, define Br = {z ∈ C : |z| < r}.
Let T > 0. We consider an increasing family {Ft; t ∈ (0, T ]} of H-hulls such that there is an

increasing sequence of positive numbers rt so that

lim
t→0

rt = 0 and Ft ⊂ Brt for t ∈ (0, T ]. (7.1)

Let at be the half-plane capacity of the hull Ft. Let g0
t be the unique Riemann map from H \ Ft

onto H satisfying the hydrodynamic normalization g0
t (z) = z +

a0t
z + o (1/|z|) at infinity. Clearly,

a0
t = limz→∞ z(g

0
t (z)− z).

Theorem 7.1 limt↓0 at/t exists if and only if limt↓0 a
0
t /t exists. If both limits exist, they have the

same value.

When {Ft} are Jordan subarcs, such a statement of comparison has appeared in S. Drenning

[D, Lemma 6.24]. Its proof uses a probabilistic expression of at in terms of the excursion reflected

Brownian motion (ERBM) for D. A key step of its proof is [D, Proposition 4.5], where an estimate

of the ERBM-Poisson kernel under a small perturbation of the standard slit domain D is obtained

using an expression of the ERBM-Poisson kernel that involves the boundary Poisson kernel, excur-

sion measures and an induced finite Markov chain among the holes. But BMD counterpart of [D,

Proposition 4.5] to be formulated in Proposition 7.2 below admits a more straightforward proof

due to a simpler expression of the BMD-Poisson kernel in [CFR].

Denote by D∗ = D ∪ {c∗1, · · · , c∗N} the space obtained from H by rendering each hole Ci into a

single point c∗i . Fix ε0 > 0 with Bε0 ∩H ⊂ D. For any ε ∈ (0, ε0), we consider perturbed domains

Dε = D \Bε, D∗ε = D∗ \Bε = Dε ∪ {c∗1, · · · , c∗N}.

Let K∗D(z, ζ), z ∈ D∗, ζ ∈ ∂H, (resp. K∗Dε(z, ζ), z ∈ D∗ε , ζ ∈ ∂(H \Bε),) be the Poisson kernel of

BMD on D∗ (resp. D∗ε).
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Proposition 7.2 It holds that

K∗Dε(z, εe
iθ) = 2K∗D(z, 0) sin θ (1 +O(ε)) , (7.2)

where O(ε) is a function whose absolute value is bounded by c(z, θ)ε with c(z, θ) being uniformly

bounded in 0 ≤ θ ≤ π and |z| > ε0.

Proof. (i) Put Hε = H \ Bε, ε > 0, and consider the Poisson kernel KH(z, ζ) = 1
π
=z
|z−ζ|2 (resp.

KHε(z, ζ)) of H (resp. Hε). Then

KHε(z, εe
iθ) = 2KH(z, 0) sin θ(1 +O(ε)), uniformly in 0 ≤ θ ≤ π, and |z| > ε0. (7.3)

In fact, if we denote by ZH = (Zt, ζ,PH
z ) (resp. ZHε = (Zt, ζ,PHε

z )) the absorbing Brownian motion

(ABM) on H (resp. Hε), then according to [L1, p 50],

PH
z (Zσ∂BR∩H ∈ Re

iθdθ) =
2R

π

=z
|z|2

sin θ (1 +O(R/|z|)) dθ, R > 0, (7.4)

O(R/|z|) being uniform in R > 0, z ∈ H \BR, which yields (7.3). We note that, for z ∈ Hε,

EH
z [f(Zσ∂Bε∩H); σ∂Bε∩H <∞] = ε

∫ π

0
KHε(z, εe

iθ)f(εeiθ)dθ. (7.5)

Let GD(z, z′) be the Green function of D, namely, 0-order resolvent density of ABM on D

(see §4 of [CFR]), and KD(z, ζ), z ∈ D, ζ ∈ ∂H, be the Poisson kernel of D. The corresponding

quantities for Dε are designated by GDε(z, z
′) and KDε(z, ζ), z ∈ D, ζ ∈ ∂(H \ Bε). In view of

[CFR, §4], we have, for the outer normal nζ at ζ.

KD(z, ζ) = −1

2

∂

∂nζ
GD(z, ζ), KDε(z, ζ) = −1

2

∂

∂nζ
GDε(z, ζ). (7.6)

(ii) We next show

KDε(z, εe
iθ) = 2KD(z, 0) sin θ (1 +O(ε)), (7.7)

O(ε) being uniformly in θ ∈ [0, π] and |z| > ε0. By the strong Markov property of ZH

KD(z, 0) = KH(z, 0)− EH
z [KH(ZσK , 0);σK <∞]. (7.8)

By the strong Markov property of ZHε and then by (7.3) and (7.8),

KDε(z, εe
iθ) = KHε(z, εe

iθ)− EHε
z

[
KHε(ZσK , εe

iθ);σK <∞
]

=
(

2KH(z, 0)− 2EHε
z [KH(ZσK , 0);σK <∞]

)
sin θ(1 +O(ε))

= (2KD(z, 0) + 2A) sin θ(1 +O(ε)),

where

A = EH
z [KH(ZσK , 0), σK <∞]− EHε

z [KH(ZσK , 0), σK <∞]

= EH
z [KH(ZσK , 0), σK <∞]− EH

z [KH(ZσK , 0), σK < σ∂Bε∩H]

= EH
z [KH(ZσK , 0), σ∂Bε∩H < σK ]

= EH
z

[
EH
Zσ∂Bε∩H

[KH(ZσK , 0), σK <∞];σ∂Bε∩H <∞
]
.
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Since KH(ZσK , 0) ≤ C for some constant C > 0, 0 ≤ A ≤ CPH
z (σ∂Bε∩H < ∞). It then follows

from (7.3), (7.5) and (7.8) that A ≤ 4εCKH(z, 0)(1 +O(ε)) = O(ε)KD(z, 0) uniformly for |z| > ε0,

proving (7.7).

(iii) Define {
ϕi(z) = PH

z (σK <∞, ZσK ∈ Ci) , z ∈ D, 1 ≤ i ≤ N,
ϕεi (z) = PHε

z (σK <∞, ZσK ∈ Ci) , z ∈ Dε, 1 ≤ i ≤ N.

By the strong Markov property of ZH,

ϕεi (z) = ϕi(z)− EH
z

[
ϕi(Zσ∂Bε∩H);σ∂Bε∩H <∞

]
. (7.9)

Since ϕ can be extended to be a differentiable function up to ∂H, we get from (7.3),(7.5) and (7.9)

ϕεi (z) = ϕi(z) +O(ε2) uniformly for |z| > ε0. (7.10)

(iv) By virtue of [CFR, (5.2)], the BMD-Poisson kernels K∗D and K∗Dε admit the expressionsK∗D(z, ζ) = KD(z, ζ)−
∑N

i,j=1 bij ϕi(z)
∂
∂nζ

ϕj(ζ),

K∗Dε(z, ζ) = KDε(z, ζ)−
∑N

i,j=1 b
ε
ij ϕ

ε
i (z)

∂
∂nζ

ϕεj(ζ).
(7.11)

Here (bij)1≤i,j≤N (resp. B = (bεij)1≤i,j≤N ) is the inverse matrix of (aij)1≤i,j≤N (resp. (aεij)1≤i,j≤N )

whose entry is the period of ϕi(z) (resp. ϕεi (z)) around Cj , namely,

aij =

∫
γ

∂ϕi(ζ)

∂nζ
ds(ζ), aεij =

∫
γ

∂ϕεi (ζ)

∂nζ
ds(ζ), (7.12)

for any smooth Jordan curve γ surrounding Cj so that ins γ ⊃ Cj and ins γ ∩ Ck = ∅ for k 6= j.

We claim that

bεij = bij +O(ε2), 1 ≤ i, j ≤ N. (7.13)

It suffices to show

aεij = aij +O(ε2), 1 ≤ i, j ≤ N. (7.14)

By (7.9), ϕεi (z) = ϕi(z) − h(z) for h(z) = EH
z

[
ϕi(Zσ∂Bε∩H);σ∂Bε∩H <∞

]
, For γ in (7.12), take

γ̃ surrounding γ with γ̃ ∩ Bε0 = ∅ and let G = insγ̃. Since h is harmonic on G, h(z) =∫
γ̃ pG(z, ξ)h(ξ)s(dξ), z ∈ G, for the Poisson kernel pG of G. Then ∂h(ζ)

∂nζ
=
∫
γ̃
∂pG(ζ,ξ)

∂ζ h(ξ)s(dξ), ζ ∈

γ. As supζ∈γ, ξ∈γ̃

∣∣∣∂pG(ζ,ξ)
∂ζ

∣∣∣ is finite and h(ξ) = O(ε2), ξ ∈ γ̃, we have
∫
γ
∂h(ζ)
∂nζ

ds(ζ) = O(ε2), and

hence (7.14) follows from (7.12).

(v) We finally show that

−1

2

∂

∂nζ
ϕεj(ζ)

∣∣
ζ=εeiθ

= − ∂

∂nζ
ϕj(ζ)

∣∣
ζ=0

sin θ (1 +O(ε)). (7.15)

We put Dj = D ∪ Cj and let ZD
j

= {Zt,PD
j

z , z ∈ Dj} be the ABM on Dj . ZD
j

is obtained from

ZH by killing upon hitting
⋃
k 6=j Ck. Then ϕj(z) = PDjz (σCj < ∞) for z ∈ Dj . Let GDj (z, z

′) be
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the Green function (0-order resolvent density) of ZD
j
. By Corollary 3.4.3 and the 0-order version

of Lemma 2.3.10 of [FOT], there exists a finite measure ν concentrated on Cj such that

ϕj(z) =

∫
Cj

GDj (z, z
′)ν(dz′), z ∈ Dj . (7.16)

Analogously we put Dj
ε = Dε ∪ Cj and let ZD

j
ε = {Zt,PD

j
ε

z , z ∈ Dj} be the ABM on Dj
ε. Then

ϕεj(z) = PD
j
ε

z (σCj <∞), z ∈ Dj
ε. By the strong Markov property of ZD

j
, we have

ϕεj(z) = ϕj(z)− ED
j

z

[
ϕi(Zσ∂Bε∩H);σ∂Bε∩H <∞

]
for z ∈ Dj

ε,

and also, for the Green function G
Djε

(z, z′) of ZD
j
ε ,

G
Djε

(z, z′) = GDj (z, z
′)− ED

j

z

[
GDj (Zσ∂Bε∩H , z

′);σ∂Bε∩H <∞
]
.

Therefore we can deduce from (7.16) that

ϕεj(z) =

∫
Cj

G
Djε

(z, z′)ν(dz′), z ∈ Dj
ε. (7.17)

Thus we have by (7.6), (7.16) and (7.17) with Dj and Dj
ε in place of D, respectively, that

−1

2

∂

∂nζ
ϕj(ζ) =

∫
Cj

KDj (z
′, ζ)ν(dz′), ζ ∈ ∂H, (7.18)

−1

2

∂

∂nζ
ϕεj(ζ) =

∫
Cj

K
Djε

(z′, ζ)ν(dz′), ζ ∈ ∂(H \Bε). (7.19)

Consequently we get (7.15) from (7.18), (7.19) and (7.7) with Dj
ε and Dj in place of Dε and D,

respectively. We arrive at (7.2) by combining (7.7), (7.10), (7.13) and (7.15) with (7.11). 2

Proof of Theorem 7.1. The proof is essentially along the line of the proof in [D, Lemma 6.24],

but with some simplifications by using BMD instead of ERBM.

Without loss of generality, we may assume that B1 ∩ H ⊂ D. We write S = ∂B1 ∩ H and

take t so small that Ft ⊂ B1 ∩ H. Along with the ABM ZH = (Zt, ζ,PH
z ) on H, we consider BMD

Z∗ = (Z∗t , ζ
∗,P∗z) on D∗ = D ∪ {c∗1, · · · , c∗N} and defineM1(t) =
∫ π

0 Erteiθ
[
=ZσFt ;σFt <∞

]
sin θ dθ, M∗1 (t) =

∫ π
0 E∗

rteiθ

[
=Z∗σFt ;σFt <∞

]
sin θ dθ

M2(t) =
∫ π

0 Erteiθ
[
=ZσFt ;σFt < σS

]
sin θ dθ, M∗2 (t) =

∫ π
0 E∗

rteiθ

[
=Z∗σFt ;σFt < σS

]
sin θ dθ.

It is known (see [C, Theorem 1.6.6]) that, if a real valued function u(z) defined on a planar

domain E with K ⊂ E ⊂ H is continuous on E, constant on each slit Cj , harmonic on E \K and its

period around each slit vanishes, then u is harmonic with respect to BMD on (E\K)∪{c∗1, · · · , c∗N}.
Let gt(z) be the canonical map from D \Ft. Since the function ht(z) = =(z− gt(z)) enjoys all these

properties, it is BMD-harmonic on (D \ Ft) ∪ {c∗1, · · · , c∗N}. As ht(z) = =z on Ft and ht vanishes

on ∂H and at ∞, we have by the maximum principle

ht(z) = E∗z
[
=Z∗σFt ;σFt <∞

]
.

49



We fix R > 0 so large that H\BR ⊂ D. By (3.2), at = limy→∞ iy(gt(iy)− iy) = limy→∞ yht(iy).

By the strong Markov property of Z∗ and (7.4), we have for y ≥ R,

yht(iy) = yE∗iy
[
ht(Z

∗
σ∂BR∩H

)
]

=
2R

π

∫ π

0
ht(Re

iθ) sin θdθ · (1 +O(R/y)),

yielding an expression

at =
2R

π

∫ π

0
ht(Re

iθ) sin θ dθ. (7.20)

Define K∗D(∞, 0) = limy↑∞ yK
∗
D(iy, 0). Since K∗D(z, 0) is ZH-harmonic on H\BR, we have from

(7.4)

K∗D(z, 0) =
2R

π

=z
|z|2

[∫ π

0
K∗D(Reiθ, 0) sin θdθ

]
(1 +O(R/|z|),

which implies that

K∗D(∞, 0) =
2R

π

∫ π

0
K∗D(Reiθ, 0) sin θdθ, K∗D(z, 0) =

=z
|z|2

K∗D(∞, 0) +O(1/|z|2). (7.21)

Notice that (7.21) holds not only for a standard slit domain D but also for a more general domain

D = H \
⋃N
j=1Aj where {Aj} are mutually disjoint compact continua contained in H.

It follows from (7.20), the strong Markov property of Z∗, and Proposition 7.2 for ε = rt that

at =
2R

π

∫ π

0

∫ π

0
E∗
Reiθ1

[
ht(Z

∗
σ∂Brt∩H

);σ∂Brt∩H <∞
]

sin θ1dθ1

=
2Rrt
π

∫ π

0

∫ π

0
K∗Drt (Re

iθ1 , rte
iθ2)ht(rte

iθ2)dθ2 sin θ1dθ1

=
2R

π

∫ π

0
K∗D(Reiθ1 , 0) sin θ1dθ1 · 2rt

∫ π

0
ht(rte

iθ2) sin θ2dθ2(1 +O(rt)),

which combined with (7.21) gives

at = 2rtK
∗
D(∞, 0)M∗1 (t)(1 +O(rt)). (7.22)

We claim that

K∗D(∞, 0) =
1

π
. (7.23)

To this end, consider the conformal map f(z) = −1
z from H onto H and the image domain D̂ =

f(D) = H \
⋃N
j=1 f(Cj) of D. Let K∗

D̂
(z, ξ) be the BMD-Poisson kernel of D̂.

We first show for K∗
D̂

(∞, 0) = limy→∞ yK
∗
D̂

(iy, 0) that

K∗
D̂

(∞, 0) =
1

π
. (7.24)

Let Ψ̂(z, ξ) be the BMD-complex Poisson kernel of D̂: =Ψ̂(z, ξ) = K∗
D̂

(z, ξ), limz→∞ Ψ̂(z, ξ) = 0.

Let b be a half of the BMD-domain constant defined by (6.1) for D̂: b = limz→0(πΨ̂(z, 0) + 1
z ).

Define ϕD(z) = πΨ̂(−1
z , 0) − b. Then =ϕD(z) = πK∗

D̂
(f(z), 0) is constant on each slit Cj and

limz→∞(ϕD(z)−z) = limw→0(πΨ̂(w, 0)+ 1
w )−b = 0. Therefore ϕD is a canonical map from D, and

consequently z = ϕD(z), z ∈ D so that y = πK∗
D̂

(i/y, 0). On the other hand, we see from (7.21) for
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D̂∗ and z = i/y that K∗
D̂

(i/y, 0) = yK∗
D̂

(∞, 0) +O(y2), and accordingly y = πyK∗
D̂

(∞, 0) +O(y2),

yielding (7.24).

We next prove

K∗D(∞, 0) = K∗
D̂

(∞, 0), (7.25)

which together with (7.24) gives (7.23). Let G∗D(z, z′) (resp. G∗
D̂

(w,w′)) be the Green function

(0-order resolvent density) of BMD on D∗ (resp. D̂∗). Then we have K∗D(z, 0) = limε↓0
1
2εG

∗
D(z, iε)

and K∗
D̂

(z, 0) = limε↓0
1
2εG

∗
D̂

(z, iε). The conformal invariance of BMD ([CF1, remark 7.8.2]) readily

implies the identity G∗
D̂

(w,w′) = G∗D(f−1(w), f−1(w′)) of BMD-Green functions for f(z) = −1
z .

Accordingly, using the symmetry of G∗D, we get

K∗
D̂

(∞, 0) = lim
y→∞

yK∗
D̂

(iy, 0) = lim
y→∞

lim
ε↓0

yG∗
D̂

(iy, iε)

2ε
= lim

y→∞
lim
ε↓0

yG∗D(f−1(iy), f−1(iε))

2ε

= lim
y→∞

lim
ε↓0

yG∗D(i/y, i/ε)

2ε
= lim

ε↓0
lim
y→∞

yG∗D(i/ε, i/y)

2ε
= lim

ε↓0

1

ε
K∗D(i/ε, 0) = K∗D(∞, 0).

From (7.22) and (7.23), we finally arrive at

at =
2

π
rtM

∗
1 (t)[1 +O(rt)], rt → 0. (7.26)

An analogous formula holds for a0
t ([L1, p 70]):

a0
t =

2

π
rtM1(t). (7.27)

We now use Proposition 7.2 again to verify that

lim
t↓0

rtM
∗
1 (t)

t
exists if and only if lim

t↓0

rtM
∗
2 (t)

t
exists, (7.28)

and, in this case, they are equal. In fact, we have for ht(z) = E∗z
[
=Z∗σFt ;σFt <∞

]
,

ht(rte
iθ) = E∗rteiθ

[
=Z∗σFt ;σFt < σS

]
+ EH

rteiθ
[ht(ZσS );σS <∞]

and so

M∗1 (t) = M∗2 (t) +

∫ π

0
EH
rteiθ

[ht(ZσS );σS <∞] sin θdθ. (7.29)

By substituting (7.2) into ht(z) =
∫ π

0 K∗Drt
(z, rte

iη)ht(rte
iη)rtdη, z ∈ S, we obtain

ht(z) = 2rtK
∗
D(z, 0)M∗1 (t) (1 +O(rt)) , z ∈ S. (7.30)

If limt↓0
rtM∗1 (t)

t = γ exists, then ht(z)
t is uniformly bounded in t > 0 and z ∈ S by (7.30), and

we conclude that limt↓0
rtM∗2 (t)

t = γ by (7.29). Conversely, suppose limt↓0
rtM∗2 (t)

t = γ′ exists. Since

M∗1 (t)−M∗2 (t) ≤ CrtM∗1 (t) for some constant C > 0 from (7.29) and (7.30), we get M∗1 (t) ≤ 2M∗2 (t)

for sufficiently small t > 0. Hence lim supt↓0
rtM∗1 (t)

t < ∞ and we conclude that limt↓0
rtM∗1 (t)

t = γ′

just as above.

In the same way, we can use (7.7) to verify that

lim
t↓0

rtM1(t)

t
exists if and only if lim

t↓0

rtM2(t)

t
exists, (7.31)
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and, in this case, they are equal. As M∗2 (t) = M2(t), the desired statement of Theorem 7.1 follows

from (7.26), (7.27), (7.28) and (7.31). 2
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