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Abstract

A stochastic Komatu-Loewner evolution SKLEα,b has been introduced in [CF] on a standard

slit domain determined by certain continuous homogeneous functions α and b. We show that

after a suitably reparametrization, SKLEα,b has the same distribution as the chordal Loewner

evolution on H driven by a continuous semimartingale. When α is constant, we show that

the distribution of SKLEα,b, after a suitably reparametrization and up to some random hitting

time, is equivalent to that of SLEα2 . Moreover, a reparametrized SKLE√6,−bBMD
has the same

distribution as SLE6 for BMD domain constant bBMD.
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1 Introduction

A subset A of the upper half-plane H is called an H-hull if A is bounded closed in H and H \ A is

simply connected. Given an H-hull A, there exists a unique conformal map f (one-to-one analytic

function) from H \A onto H satisfying a hydrodynamic normalization at infinity

f(z) = z +
a

z
+ o(1/|z|), z →∞.

Such a map will be called a canonical Riemann map from H \ A and the constant a is called the

half-plane capacity of A relative to f .

We consider a simple ODE called a chordal Loewner differential equation

dz(t)

dt
= −2πΨH(z(t), ξ(t)), z(0) = z ∈ H, (1.1)

where

ΨH(z, ξ) = − 1

π

1

z − ξ
, z ∈ H, ξ ∈ ∂H,

that is the so-called complex Poisson kernel for the absorbing Brownian motion on H because

=ΨH(z, ξ) =
1

π

y

(x− ξ)2 + y2
for z = x+ iy ∈ H and ξ ∈ ∂H,
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is the classical Poisson kernel in upper half space H.

Given a continuous function ξ(t) ∈ ∂H, 0 ≤ t < ∞, the Cauchy problem of the ODE (1.1)

admits a unique solution z(t), 0 ≤ t < tz, with the maximal interval of definition [0, tz). Define

Kt = {z ∈ H : tz ≤ t}, t ≥ 0. (1.2)

Then Kt is an H-hull and z(t) is the canonical Riemann map from H \Kt. The family {Kt : t ≥ 0}
of growing hulls is called the chordal Loewner evolution driven by ξ(t), 0 ≤ t <∞.

Let B(t) be a one-dimensional Brownian motion with a fixed initial point B(0) = ξ ∈ ∂H and

κ be a positive constant. The random Loewner evolution driven by the sample path of B(κt), 0 ≤
t < ∞, is called the stochastic Loewner evolution (starting at ξ) and is denoted by SLEκ. It was

introduced by Oded Schramm [S] in his consideration of critical two-dimensional lattice models in

statistical physics and their scaling limits. It is now also called the Schramm-Loewner evolution.

Remarkable features as the locality property of SLE6 and the restriction property of SLE8/3 were

then revealed ([LSW1, LSW2]). SLEκ was shown in [RS] to be generated by a continuous curve in

the sense that, there exists a continuous path γ : [0,∞) 7→ H such that H\Kt is identical with the

unbounded connected component of H \ γ[0, t] a.s. for each t > 0, and furthermore γ was shown to

be a simple curve when κ ≤ 4, self-intersecting when 4 < κ ≤ 8 and space-filling when κ > 8.

Several attempts have been made to extend both of the Loewner equation and the associ-

ated SLE from simply connected planar domains to multiply connected ones. Recently, motivated

by [BF1, BF2, L2], Chen-Fukushima-Rohde [CFR] and Chen-Fukushima [CF] studied Komatu-

Loewner equation and stochastic Komatu-Loewner evolution, respectively, in standard slit domains

of finite multiplicity. Stochastic Komatu-Loewner evolution, denoted by SKLEα,b, is a family of

conformal maps that are determined by two functions α and b on the slit space S to be described

below. They generate an increasing family of random growing H-hulls.

The main purpose of this paper is to study the geometry of SKLEα,b-hulls. We show that, after

a suitably reparametrization, SKLEα,b-hulls have the same disturbution as that of the Loewner

evolution on H driven by a continuous semi-martingale. In particular, we show that when function

α is a constant, after a reparametrization and under an equivalent martingale measure, SKLEα,b
has the same distribution as the chordal SLEα2 in H up to a stopping time. Hence when α is a

positive constant, we conclude that SKLEα,b-hulls are generated by continuous paths which are

simple if α ≤ 2, self-intersecting if 2 < α ≤ 2
√

2 and space-filling when α > 2
√

2.

Fix N ≥ 1. A standard slit domain (of N slits) is a domain of the type D = H \
⋃N
j=1Cj for

mutually disjoint line segments Cj ⊂ H parallel to ∂H. The collection of all labelled standard slit

domains (of N slits) is denoted by D. For D ∈ D, let zk = xk + iyk, z
r
k = xrk + iyk be the left and

right endpoints of the kth slit Ck of D. It is characterized by y := (y1, . . . , yN ), x := (x1, . . . , xN )

and xr := (xr1, . . . , x
r
N ) with the property that y > 0, x < xr, and either xrj < xk or xrk < xj

whenever yj = yk for j 6= k. Here for vectors x,y ∈ RN , y > 0 means each coordinate is strictly

larger than 0; and x < y means y−x > 0. With this characterization, the space D can be identified

with the following subset of R3N

S =
{

(y,x,x′) ∈ R3N : y > 0, x < x′, either x′j < xk or x′k < xj whenever yj = yk, j 6= k
}
.

For s ∈ S, denote by D(s) the corresponding element in D. For ξ ∈ R, we denote by ξ̂ ∈ R3N the

3N -vector whose first N -components are equal to 0 and the rest are equal to ξ.
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For s ∈ S, we denote by Ψs(z, ξ), z ∈ D(s), ξ ∈ ∂H, the BMD-complex Poisson kernel for

D = D(s), namely, the unique analytic function in z ∈ D vanishing at ∞ whose imaginary part is

the Poisson kernel for the Brownian motion with darning (BMD) for D (see [CFR]).

A function f on S is called homogeneous with degree 0 (resp. −1) if f(cs) = f(s) (resp.

f(cs) = c−1f(s)) for every positive constant c > 0. It is said to satisfy the local Lipschitz condition

if the following property holds:

(L) For any s ∈ S and any finite open interval J ⊂ R, there exist a neighborhood U(s) of s in S
and a constant L > 0 such that

|f(s(1) − ξ̂)− f(s(2) − ξ̂)| ≤ L |s(1) − s(2)| for s(1), s(2) ∈ U(s) and ξ ∈ J. (1.3)

We consider the strong solution (ξ(t), s(t)) ∈ ∂H × S of the following stochastic differential

equation (SDE) for a fixed initial point (ξ, s) ∈ ∂H× S{
ξ(t) = ξ +

∫ t
0 α(s(s)− ξ̂(s))dBs +

∫ t
0 b(s(s)− ξ̂(s))ds

sj(t) = sj +
∫ t

0 bj(s(s)− ξ̂(s))ds, t ≥ 0, 1 ≤ j ≤ 3N,
(1.4)

where {Bs; s ≥ 0} is a one-dimensional Brownian motion with B0 = 0, α(s) (resp. b(s)) is a

homogneous function on S of degree 0 (resp. −1) satisfying condition (L), and

bj(s) :=


−2π=Ψs(zj , 0), 1 ≤ j ≤ N,
−2π<Ψs(zj , 0), N + 1 ≤ j ≤ 2N,

−2π<Ψs(z
′
j , 0), 2N + 1 ≤ j ≤ 3N.

(1.5)

It is known (see [CF]) that bj(s) is a homogeneous function on S of degree −1 satisfying condition

(L).

Putting the solution (ξ(t), s(t)) of (1.4) into the Komatu-Loewner equation introduced in [CFR],

we consider the equation

d

dt
gt(z) = −2πΨs(t)(gt(z), ξ(t)) with g0(z) = z ∈ D. (1.6)

The above equation has a unique maximal solution gt(z), t ∈ [0, tz), passing throughG =
⋃
t∈[0,ζ){t}×

Dt, where Dt = D(s(t)) and D = D0. Define

Ft = {z ∈ D : tz ≤ t}, t ≥ 0. (1.7)

For D ∈ D and an H-hull A ⊂ D, the conformal map f from D \ A onto another set in D
satisfying the hydrodynamic normalization at infinity will be called the canonical map from D \A.

The set Ft defined by (1.7) is an H-hull and gt is the canonical map from D \ Ft. This family of

growing hulls {Ft} is denoted by SKLEα,b and will be called a stochastic Komatu-Loewner evolution.

SLEκ can be viewed as a special case of SKLEα,b where no slit is present, α is constant with α2 = κ

and b = 0.

For SKLEα,b-hull Ft defined by (1.7), we can consider the canonical Riemann map g0
t (z) from

H\Ft, the half-plane capacity a(t) of Ft relative to g0
t and a reparametrization {F̌t} of {Ft} defined

by F̌t = Fa−1(2t), 0 ≤ t < a(∞)/2. With SKLEα,b reparametrized in this way, it is shown in
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Theorem 4.1 of this paper that it has the same distribution as the Schramm-Loewner evolution in

H driven by a continuous semimartingale Ǔ(t). We then prove that, when α is a constant, SKLEα,b
up to some random hitting time and modulo a time change, has the same distribution as SLEα2 ,

under a suitable Girsanov transformation; see Theorem 4.3. Moreover, we show in Theorem 4.2

that SKLE√6,−bBMD
, after a reparametrization, has the same distribution as SLE6, where bBMD

is the BMD-domain constant defined by (2.14) that describes the discrepancy of a standard slit

domain from H relative to BMD.

In order to establish Theorem 4.1 with rigor, we need to show that

(C) g0
t (z) is jointly continuous in (t, z) ∈ [0, a]× (H \ Fa) for each a > 0.

A proof of this property will be carried out in Section 3 by combining the probabilistic representation

of =g0
t (z) and =gt(z) obtained in [CFR] in terms of the absorbing Brownian motion ZH on H and

BMD for D with the continuity of gt(z) in t that is the solution of the ODE (1.6). A key ingredient

of the proof is a hitting time analysis for ZH.

It is established in [CF, Theorem 6.11] that SKLE√6,−bBMD
enjoys a locality property. In

relation to this and the present Theorem 4.2, we will present in Section 5 a first rigorous proof of

the locality of the chordal SLE6 in the sense of [LSW3], and point out the missing pieces or gaps

in other locality proofs in literature.

In the final Section 6, we recall and examine Komatu-Loewner equations and stochastic Komatu-

Loewner evolutions for other canonical multiply connected domains than the standard slit one.

2 Riemann maps {g0
t } and a process U(t) associated with SKLE

Let α > 0 and b be homogeneous functions on S of degree 0 and −1, respectively, that are local

Lipschitz continuous. Let (ξ(t), s(t)), t < ζ, be the strong solution of the associated SDE (1.4) and

{Ft} be SKLEα,b, namely, the family of growing hulls (1.7) on D = D(s(0)) = H \K, K = ∪Nj=1Cj ,

driven by (ξ(t), s(t)).

Denote by gt the canonical map from D \ Ft onto Dt = D(s(t)), Φ the identity map from D

into H, and g0
t the canonical Riemann map from H \ Ft onto H. According to [CF, Theorem 5.8],

{Ft} is right continuous with limit ξ(t) in the sense that⋂
ε>0

gt(Ft+ε \ Ft) = ξ(t). (2.1)

Define

Φt(z) = g0
t ◦ Φ ◦ g−1

t (z) for z ∈ Dt = D(s(t)). (2.2)

Lemma 2.1 Φt admits an analytic extension to Dt ∪ ΠDt ∪ ∂H by the Schwarz reflection. Here

Πz = z, z ∈ H.

Proof. Take an arbitrary smooth Jordan arc Γ in H with two end points z1, z2 ∈ ∂H such that

the open region V enclosed by Γ and the line segment connecting z1, z2 contains the set Ft with

V ∩ K = ∅. Clearly, Vt := gt(V ) is the open region enclosed by gt(Γ) and the line segment `t
connecting gt(zi), i = 1, 2. In view of (2.1), ξ(t) is located in the interior of the line segment `t.

Furthermore, Φt is a Riemann map from the Jordan domain Vt onto the Jordan domain g0
t (V ),
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which is enclosed by g0
t (Γ) and the line segment `0t connecting g0

t (zi), i = 1, 2, and Φt maps `t onto

`0t homeomorphically. Thus Φt admits a Schwarz reflection. 2

Define

U(t) = Φt(ξ(t)). (2.3)

We then have ⋂
ε>0

g0
t (Ft+ε \ Ft) = U(t), (2.4)

because, by (2.1) and (2.2),⋂
ε>0

g0
t (Ft+ε \ Ft) =

⋂
ε>0

g0
t ◦ Φ(Ft+ε \ Ft) =

⋂
ε>0

Φt ◦ gt(Ft+ε \ Ft) = Φt(ξ(t)) = U(t).

For D ∈ D and for an H-hull A ⊂ D, we denote by CapH(A) (resp. CapD(A)) the half-plane

capacity of A relative to the canonical Riemann map gHA from H \ A (resp. the canonical map gDA
from D \A).

CapH(A) = lim
z→∞

z(gHA(z)− z), CapD(A) = lim
z→∞

z(gDA (z)− z).

Set a(t) := CapH(Ft) and b(t) := CapD(Ft).

Lemma 2.2 The right derivative of a(t)

d+a(t)

dt
:= lim

∂↓0

a(t+ ∂)− a(t)

∂
= 2Φ′t(ξ(t))

2. (2.5)

Proof. For a set A ⊂ H, we put rad(A) = supz∈A |z|. For a fixed t > 0, let Kε = gt(Ft+ε \ Ft),
ε > 0. By [CF, Theorem 5.8 (iii)], rad(Kε− ξ(t))→ 0 as ε→ 0. Hence by the capacity comparison

theorem [CF, Theorem 7.1], we have

CapH(Kε)− CapDt(Kε) = o(ε), ε→ 0. (2.6)

On the other hand, by [L1, (3.8)],

a(t+ ε)− a(t) = CapH(g0
t (Ft+ε \ Ft)). (2.7)

Since g0
t (Ft+ε \ Ft) = g0

t ◦ Φ(Ft+ε \ Ft) = Φt ◦ gt(Ft+ε \ Ft) = Φt(Kε), we obtain from [L1, (4.15)],

(2.6) and (2.7)

a(t+ ε)− a(t) = CapH(Φt(Kε)) = Φ′t(ξ(t))
2CapH(Kε) + o(ε) = Φ′t(ξ(t))

2CapDt(Kε) + o(ε),

which can be seen in an analogous manner to (2.7) to be equal to

Φ′t(ξ(t))
2(CapD(Ft+ε)− CapD(Ft)) + o(ε) = Φ′t(ξ(t))

2(b(t+ ε)− b(t)) + o(ε).

As b(t) = 2t by [CF, Theorem 5.12], we arrive at (2.5). 2
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Proposition 2.3 It holds that

d+g0
t (z)

dt
=

2Φ′t(ξ(t))
2

g0
t (z)− U(t)

, z ∈ H \ Ft. (2.8)

in the right derivative sense.

Proof. Denote by Q the family of all H-hulls. According to [L1, p69, Propositon 3.46],

gHA−x(z) = gHA(z + x)− x, CapH(A− x) = CapH(A) A ∈ Q, x ∈ R, (2.9)

and, there exists a constant c > 0 such that, for any A ∈ Q and any z with |z| ≥ 2rad(A),∣∣∣∣z − gHA(z) +
CapH(A)

z

∣∣∣∣ ≤ crad(A)CapH(A)

|z|2
. (2.10)

For z ∈ H \ Fs, we get from (2.7), (2.9) and (2.10)

g0
s+ε(z)− g0

s(z)

= gHg0s(Fs+ε\Fs)(g
0
s(z))− g0

s(z)

= gHg0s(Fs+ε\Fs)−U(s)(g
0
s(z)− U(s))− (g0

s(z)− U(s))

=
a(s+ ε)− a(s)

g0
s(z)− U(s)

+ rad(g0
s(Fs+ε \ Fs)− U(s))(a(s+ ε)− a(s))O(1/(g0

s(z)− U(s))2)).

The formula (2.8) now follows from (2.4) and (2.5). 2

To show that the right derivative in Proposition 2.3 can be strengthened to true derivative, we

need the following proposition, whose proof is postponed to next section.

Proposition 2.4 The Riemann maps {g0
t } enjoys the property (C) stated in Section 1.

In the rest of this section, we shall take the validity of this proposition for granted. The following

lemma can then be shown exactly in the same way as the proof of [CF, Proposition 6.7 (i)].

Lemma 2.5 Φt(z), Φ′t(z), Φ′′t (z) are jointly continuous in (t, z) ∈ [0, ζ)× (Dt ∪ ∂H).

By the property (C) and the above lemma, the right hand side of (2.8) becomes continuous in

t and so [L1, Lemma 4.3] applies in getting the following thoerem.

Theorem 2.6 g0
t (z) is continuously differentiable in t and (2.8) becomes a genuine ODE:

dg0
t (z)

dt
=

2Φ′t(ξ(t))
2

g0
t (z)− U(t)

, z ∈ H \ Ft. (2.11)

Remark 2.7 Strengthening from right time derivative in Proposition 2.3 to the genuine time

derivative in Theorem 2.6 is very important since (2.8) does not uniquely characterize the conformal

maps {g0
t (z)}. This is because while the solution to (2.11) is unique, equation (2.8) may have

numerous solutions. To see this, consider the case that K = ∅, that is, upper half space H with
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no slits. In this case, Φt(z) = z and (2.11) is the chordal Loewner equation with driving function

U(t). So for each z ∈ H,
dg0
t (z)

dt
=

2

g0
t (z)− U(t)

, z(t) = z, (2.12)

has a unique continuous solution g0
t (z) up to time tz when g0

t and U(t) collide. However, equation

d+z(t)

dt
=

2

z(t)− U(t)
, z(t) = z, (2.13)

has infinitely many solutions. For instance, take any ε ∈ (0, ζz) and define z(t) = g0
t (z) for t ∈ (0, ε].

Let z(ε) be any value in H. Let g̃0
t (z(ε)), 0 ≤ t < tz(ε) be the unique solution of

dg̃0
t (z(ε))

dt
=

2

g̃0
t (z(ε))− U(t+ ε)

, g̃0
0(z(ε)) = z(ε).

Define z(t) = g̃0
t−ε(z(ε)) for t ∈ [ε, ε+ tz(ε)). Then {z(t); 0 ≤ t < ε+ tz(ε)} is a solution to equation

(2.13). Indeed, we see by [L1, Lemma 4.3] that the solution z(t) of (2.13) coincides with the solution

g0
t (z) of (2.12) if and only if z(t) is (left) continuous. 2

For s ∈ S, let bBMD(s) be the BMD-domain constant for the slit domain D(s) introduced in

[CF, §6.1]:

bBMD(s) = 2π lim
z→0

(
Ψs(z, 0) +

1

πz

)
. (2.14)

Theorem 2.8 The process U(t) on ∂H admits a semi-martingale decomposition

dU(t) = Φ′t(ξ(t))α(s(t)− ξ̂(t))dBt + Φ′t(ξ(t))
(
bBMD(s(t)− ξ̂(t)) + b(s(t)− ξ̂(t))

)
dt

+Φ′′t (ξ(t))

(
−3 +

1

2
α(s(t)− ξ̂(t))2

)
dt. (2.15)

Proof. For a differentiable function ft(z) := f(t, z) defined on on open subset of R+ ×C, we will

use ḟ and f ′ to denote its partial derivative in t and in z ∈ C, respectively. Let ft(z) = g−1
t (z).

Then

ḟt(z) = 2πf ′t(z)Ψs(t)(z, ξ(t)), z ∈ Dt,

and Φt = g0
t ◦ Φ ◦ ft by (2.2). Thus by (1.6) and Theorem 2.6, for z ∈ Dt,

Φ̇t(z) = ġ0
t (ft(z)) + (g0

t )
′(ft(z))ḟt(z)

=
2Φ′t(ξ(t))

2

g0
t (ft(z))− U(t)

+ (g0
t )
′(ft(z)) · 2πf ′t(z)Ψs(t)(z, ξ(t))

=
2Φ′t(ξ(t))

2

Φt(z)− Φt(ξ(t))
+ 2πΦ′t(z)Ψs(t)(z, ξ(t)). (2.16)

In view of Lemma 2.5, by an argument similar to that in the paragraphs below (6.32) of [CF],

we can deduce from (2.16) that Φt(z) is differentiable in t for every z ∈ ∂H, and Φ̇t(z) is jointly

continuous in (t, z) ∈ (0,∞) × ∂H. Since ξ(t) is the solution of the SDE (1.4), the above joint
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continuity together with Lemma 2.5 allows us to apply a generalized Itô formula to Ut = Φt(ξ(t));

see Remark 2.9 below. We thus get

dU(t) = Φ̇t(ξ(t))dt+ Φ′t(ξ(t))
(
α(s(t)− ξ̂(t))dBt + b(s(t)− ξ̂(t))dt

)
+

1

2
Φ′′t (ξ(t))α(s(t)− ξ̂(t))2dt

An argument similar to that in the paragraphs below (6.32) of [CF] also yields the identity

Φ̇t(ξ(t)) = lim
z→ξ(t), z∈Dt

Φ̇t(z).

Rewriting the right hand side of (2.16) as(
2Φ′t(ξ(t))

2

Φt(z)− Φt(ξ(t))
− 2Φ′t(ξ(t))

z − ξ(t)

)
+ 2πΦ′t(ξ(t))

(
Ψs(t)(z, ξ(t)) +

1

π

1

z − ξ(t)

)
,

we obtain from (2.16) and [CF, Lemma 6.1]

Φ̇t(ξ(t)) = −3Φ′′t (ξ(t)) + Φ′t(ξ(t)) bBMD(s(t)− ξ̂(t)).

Therefore

dU(t) =
(
−3Φ′′t (ξ(t)) + Φ′t(ξ(t))bBMD(ξ(t)− ξ̂(t))

)
dt

+Φ′t(ξ(t))
(
α(s(t)− ξ̂(t))dBt + b(s(t)− ξ̂(t))dt

)
+

1

2
Φ′′t (ξ(t))α(s(t)− ξ̂(t))2dt,

which is (2.15). 2

Remark 2.9 (A generalized Itô formula) Exercise (IV.3.12) in the book [RY] formulates a

generalized Itô formula for g(Xt, ω, t), the composition of an adapted random function g(x, ω, t),

x ∈ R, t ≥ 0, and a continuous semimartingale X:

dg(Xt, t) = gx(Xt, t)dXt + gt(Xt, t)dt+
1

2
gxx(Xt, t)d〈X〉t. (2.17)

We like to point out that in addition to the conditions i), ii), iii) and iv) stated in [RY, Exercise

IV.3.12], the following condition

v) gx(x, ω, t), gxx(x, ω, t) and gt(x, ω, t) are locally bounded in (x, t)

should also be required for the validity of (2.17) (a private communication by Masanori Hino). Of

course, if these partial derivatives are jointly continuous in (x, t), then condition v) is satisfied. This

type of generalized Itô formula has been frequently utilized in the literatures on SLE by referring

to [RY, (IV.3.12)] but without verifying condition v) which is by no means trivial. This is part of

the reasons why we spent considerable efforts in [CF] to establish the joint continuity of certain

functions such as those summarized in Lemma 2.5 and of the function Φ̇t(z), z ∈ ∂H, derived from

the identity (2.16). 2
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3 Proof of property (C)

In this section, we present a proof of Proposition 2.4, using the probabilistic representation of

=gt(z) in [CFR, Theorem 7.2] as well as that of =g0
t (z) obtained from [CFR, Theorem 7.2] by

taking D = H.

Recall that gt(z), t ∈ [0, tz), is the unique solution of (1.6) with the maximal interval [0, tz) of

existence, and Ft = {z ∈ D : tz ≤ t}. We know that gt(z) is continuous in t, and gt is the canonical

map from D \ Ft. Let Gt = {z ∈ D : tz < t}. Then⋂
s>t

Fs = Ft,
⋃
s<t

Fs = Gt. (3.1)

Let g0
t be the canonical Riemann map from H \ Ft. By virtue of Theorem 7.2 of [CFR] with

D = H (see also [L1, (3.5)]), =g0
t (z) admits the expression

=g0
t (z) = =z − EH

z

[
=ZH

σFt
: σFt <∞

]
, z ∈ H \ Ft, (3.2)

where ZH = (ZH
t , ζ

H,PH
z ) is the absorbing Brownian motion (ABM) on H, and σFt := inf{s > 0 :

ZH
s ∈ Ft}.

Lemma 3.1 Fix a > 0. =g0
t (z) is continuous in t ∈ [0, a] for each z ∈ H \ Fa if and only if

EH
z

[
=ZH

σGt
;σGt <∞

]
= EH

z

[
=ZH

σFt
;σFt <∞

]
, (3.3)

for t ∈ (0, a] and z ∈ H \ Fa.

Proof. Since σFs ↓ σGt as s ↑ t by (3.1) (cf. [BG, Chapter 1, (10.4)]), we see from (3.2) that (3.3)

is equivalent to the left continuoity of =g0
t (z) in t. On the other hand, =g0

t (z) is right continuous

in t because g0
t (z) is right differentiable in t by Proposition 2.3. 2

Let K =
⋃N
j=1Cj and v∗t (z) = =gt(z). Denote by ZH,∗ = (ZH,∗

t ,PH,∗
z ) the BMD on D∗ = D∪K∗

with K∗ = {c∗1, . . . , c∗N} obtained from the ABM ZH by shorting each slit Ci as a single point c∗i .

According to [CFR, Theorem 7.2], v∗t (z) can be expressed in terms of the ABM ZH and BMD ZH,∗

as follows:

v∗t (z) = vt(z) +
N∑
j=1

PH
z

(
σK < σFt , Z

H
σK
∈ Cj

)
v∗t (c

∗
j ), z ∈ D \ Ft, (3.4)

where

vt(z) = =z − EH
z

[
=ZH

σFt∪K
;σFt∪K <∞

]
, (3.5)

v∗t (c
∗
i ) =

N∑
j=1

Mij(t)

1−R∗i (t)

∫
ηj

vt(z)νj(dz), 1 ≤ i ≤ N. (3.6)

Here η1, · · · , ηN are mutually disjoint smooth Jordan curves surrounding C1, · · · , CN , respectively,

νi(dz) = PH,∗
c∗i

(
ZH,∗
σηi
∈ dz

)
, 1 ≤ i ≤ N, (3.7)

R∗i (t) =

∫
ηi

PH
z

(
σK < σFt , Z

H
σK
∈ Ci

)
νi(dz), 1 ≤ i ≤ N, (3.8)
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and Mij(t) is the (i, j)-entry of the matrix M(t) =
∑∞

n=0(Q∗(t))n for a matrix Q∗(t) with entries

q∗ij(t) =

PH,∗
c∗i

(
σK∗ < σFt , Z

H,∗
σK∗ = c∗j

)
/(1−R∗i (t)) if i 6= j,

0 if i = j,
1 ≤ i, j ≤ N. (3.9)

Lemma 3.2 For every 1 ≤ j ≤ N ,

sup
0≤t≤a

v∗t (c
∗
j ) <∞ for each a > 0, (3.10)

and

v∗t (c
∗
j ) > 0 for every t > 0 and 1 ≤ j ≤ N. (3.11)

Proof. For 0 ≤ t ≤ a and 1 ≤ i ≤ N , let

λi(t) =
N∑
j=1

q∗ij(t) and γi(t) = PH,∗
c∗i

(
σK∗ < σFt , Z

H,∗
σK∗
6= c∗i

)
, 1 ≤ i ≤ N.

Note that λi(t) = γi(t)/(1−R∗i (t)) and

1−R∗i (t) = γi(t) +

∫
ηi

PH
z (σFt < σK) νi(dz) +

∫
ηi

PH
z (σFt∪K =∞) νi(dz). (3.12)

Therefore

1− λi(t) =
1−R∗i (t)− γi(t)

1−R∗i (t)
≥
∫
ηi

PH
z (σFt∪K =∞)νi(dz)

≥ inf
1≤j≤N

∫
ηj

PH
z (σFt∪K =∞)νj(dz) =: δ0 > 0.

Hence λi(t) ≤ 1− δ0. Consequently, (Q∗(t))n1 ≤ (1− δ0)n1 and so M1 ≤ δ−1
0 1. Therefore we have

by (3.6) and (3.12) that v∗t (c
∗
i ) ≤

∑N
j=1 δ

−2
0 mj for all t ∈ [0, a], where mj is the maximum of the

y-coordinate of points in ηj .

On the other hand, (3.6) implies v∗t (c
∗
i ) ≥

∫
ηi
vt(z)νi(dz). In view of (3.5), vt(z) is a non-negative

harmonic function on H \ (Ft ∪K) that is strictly positive when =z is large. Hence vt(z) > 0 for

any z ∈ H \ (Ft ∪K) and t > 0, yielding (3.11). 2

Proposition 3.3 The identity (3.3) holds, and so =g0
t (z) is continuous in t ∈ [0, a] for every

z ∈ H \ Fa and a > 0.

Proof. Note that v∗t (z) = =gt(z) is continuous in t since so is gt(z). By (3.4)-(3.5), for z ∈ D \Ft,

v∗t (z) = =z − EH
z

[
=ZH

σFt∪K
;σFt∪K <∞

]
+

N∑
j=1

PH
z

(
σK < σFt , Z

H
σK
∈ Cj

)
v∗t (c

∗
j ). (3.13)

For each fixed t ∈ (0, a] and any sequence tn increasing to t, by (3.10), there is a subsequence tnk
such that limk→∞ v

∗
tnk

(c∗j ) = aj ∈ [0,∞). Since Ftn ↑ Gt, we have

v∗t (z) = lim
k→∞

v∗tnk
(z) = =z−EH

z

[
=ZH

σGt∪K
;σGt∪K <∞

]
+

N∑
j=1

PH
z

(
σK < σGt , Z

H
σK
∈ Cj

)
aj . (3.14)
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Taking z → Cj in (3.13) and (3.14) yields aj = v∗t (c
∗
j ) for each 1 ≤ j ≤ N . Thus we have from

(3.13) and (3.14) that

EH
z

[
=ZH

σGt∪K
;σGt∪K <∞

]
− EH

z

[
=ZH

σFt∪K
;σFt∪K <∞

]
=

N∑
j=1

(
PH
z

(
σK < σGt , Z

H
σK
∈ Cj

)
− PH

z

(
σK < σFt , Z

H
σK
∈ Cj

))
v∗t (c

∗
j ). (3.15)

Each term on the right hand side of (3.15) is non-negative since Gt = Ft− ⊂ Ft. On the other

hand, =z is a positive harmonic in H and so =ZH
t is a non-negative supermartingale. By the

optional sampling theorem, we have for every z ∈ H and any stopping time T , we have

=z ≥ EH
z [=ZH

T ;T <∞]. (3.16)

Since σGt∪K ≥ σFt∪K , we have

=z ≥ EH
z

[
=ZH

σFt∪K
;σFt∪K <∞

]
≥ EH

z

[
=ZH

σGt∪K
;σGt∪K <∞

]
≥ 0,

where in the second inequality we used the strong Markov property of ZH at stopping time σFt∪K
and (3.16). Thus both sides of (3.15) have to be identically zero. As v∗t (c

∗
j ) > 0 for each 1 ≤ j ≤ N

by (3.11), we must have for z ∈ D \ Ft,

EH
z

[
=ZH

σFt∪K
;σFt∪K <∞

]
= EH

z

[
=ZH

σGt∪K
;σGt∪K <∞

]
, (3.17)

and

PH
z

(
σK < σGt , Z

H
σK
∈ Cj

)
= PH

z

(
σK < σFt , Z

H
σK
∈ Cj

)
for every 1 ≤ j ≤ N. (3.18)

It follows from the above two displays that for z ∈ H \ (K ∪ Ft),

PH
z (σK < σFt) = PH

z (σK < σGt) and EH
z

[
=ZH

σFt
;σFt < σK

]
= EH

z

[
=ZH

σGt
;σGt < σK

]
. (3.19)

Take a bounded smooth domain V ⊂ H such that K ⊂ V and V ∩ Ft = ∅. Let Γ = ∂V. Define

σ1 = σK , τ1 = inf{t ≥ σ1 : ZH
t ∈ Γ}, and for n ≥ 1,

σn+1 = inf{t > τn : ZH
t ∈ K}, τn+1 = inf{t > σn+1 : ZH

t ∈ Γ}.

We claim that the following holds for every n ≥ 1 and z ∈ H \ (K ∪ Ft),

PH
z (σn < σFt) = PH

z (σn < σGt) and PH
z (τn < σFt) = PH

z (τn < σGt). (3.20)

We prove this by induction. Clearly the first identity in (3.20) holds for n = 1 by (3.19), while by

the continuity of the sample paths of ZH,

PH
z (τ1 < σFt) = PH

z (σK < σFt) = PH
z (σK < σGt) = PH

z (τ1 < σGt).

So (3.20) holds for n = 1. Assume that (3.20) holds for n ≥ 1. Then by the strong Markov property

of ZH and (3.19),

PH
z (σn+1 < σFt) = PH

z (τn + σK ◦ θτn < σFt , τn < σFt)

= EH
z

[
PH
Zτn

(σK < σFt); τn < σFt

]
= EH

z

[
PH
Zτn

(σK < σGt); τn < σGt

]
= PH

z (τn+1 < σGt),
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and by the continuity of ZH,

PH
z (τn+1 < σFt) = PH

z

(
σn+1 + τΓ ◦ θσn+1 < σFt

)
= PH

z (σn+1 < σFt)

= PH
z (σn+1 < σGt) = PH

z (τn+1 < σGt).

Hence (3.20) holds for n+ 1 and so for all n ≥ 1 by induction.

Now, by the strong Markov property of ZH, (3.20) and (3.19), we have for z ∈ H \ (K ∪ Ft)

EH
z

[
=ZH

σFt
;σFt <∞

]
= EH

z

[
=ZH

σFt
;σFt < σK

]
+
∞∑
n=1

EH
z

[
=ZH

σFt
;σn < σFt < σn+1

]
= EH

z

[
=ZH

σFt
;σFt < σK

]
+
∞∑
n=1

EH
z

[
EH
Zτn

[=ZH
σFt

;σFt < σK ]; τn < σFt

]
= EH

z

[
=ZH

σGt
;σGt < σK

]
+

∞∑
n=1

EH
z

[
EH
Zτn

[=ZH
σGt

;σGt < σK ]; τn < σGt

]
= EH

z

[
=ZH

σGt
;σGt < σK

]
+
∞∑
n=1

EH
z

[
=ZH

σGt
;σn < σGt < σn+1

]
= EH

z

[
=ZH

σGt
;σGt <∞

]
.

This establishes (3.3). The rest of the claim follows from Lemma 3.1. 2

For 0 ≤ s < t ≤ a, define g0
t,s = g0

s ◦(g0
t )
−1, which is a conformal map from H onto H\g0

s(Ft\Fs).
Its inverse (g0

t,s)
−1 is the canonical Riemann map from H \ g0

s(Ft \ Fs). Let `t,s be the set of all

limitting points of (g0
t,s)
−1 ◦ g0

s(z) = g0
t (z) as z approaches to Ft \Fs. Then `t,s is a compact subset

of ∂H and (g0
t,s)
−1 sends ∂H ∪ g0

s(Ft \ Fs) into ∂H homeomorphically.

Let Λ = {x + iy : a < x < b, 0 < y < c} be a finite rectangle such that `t,s ⊂ {x + i0+ : a <

x < b}. Then =g0
t,s(z) ≤ =(g0

t )
−1(z) by (3.2) that is uniformly bounded in z ∈ Λ so that it admits

finite limit

=g0
t,s(x+ i0+) = lim

y↓0
=g0

t,s(x+ iy) for a.e. x ∈ (a, b). (3.21)

The following lemma can be established in a similar way as that of [CF, Lemma 6.3]. We omit

its proof here.

Lemma 3.4 For 0 ≤ s < t ≤ a, it holds that

a(t)− a(s) =
1

π

∫
`t,s

=g0
t,s(x+ i0+) dx, (3.22)

g0
t (z)− g0

s(z) = − 1

π

∫
`t,s

1

g0
t (z)− x

=g0
t,s(x+ i0+) dx, z ∈ H \ Ft. (3.23)

Proof of Proposition 2.4. We know from Proposition 3.3 that =g0
t (z) is continuous in

t ∈ [0, a] for each z ∈ H \ Fa. As =g0
t (z) is harmonic in z ∈ H \ Fa, it is jointly continuous in

(t, z) ∈ [0, a]× (H \ Fa). By Lemma 3.4, we have

|g0
s(z)| ≤ |g0

t (z)|+ sup
x∈`t,s

a(t)

|g0
t (z)− x|

, s ∈ [0, t].
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Therefore we can show as in the proof of [CFR, Theorem 7.4] that g0
t (z) is locally equi-continuous

and locally uniformly bounded. The joint continuity of g0
t (z) then follows as in the proof of [CF,

Lemma 6.5]. 2

4 Basic relations between SKLEα,b and SLE

In view of [CF, (7.20)] applied to the case D = H (see also [L1, (3.7)]), the half-plane capacity a(t)

of the hull Ft relative to g0
t admits the expression

a(t) =
2R

π

∫ π

0
EH
Reiθ

[
=ZH

σFt
: σFt <∞

]
dθ,

in terms of the ABM ZH on H for R > 0 with Ft ⊂ {z ∈ H : |z| < R}. Since the SKLE {Ft} is

strictly increasing in t by virtue of [CF, Theorem 5.8], we can see as in the proof of [CF, Lemma

5.15] that a(t) is strictly increasing in t.

By Lemma 2.2 and Lemma 2.5,

a(t) = 2

∫ t

0
|Φ′s(ξ(s))|2ds. (4.1)

We reparametrize the SKLE hulls {Ft} by the inverse function a−1 of a and define

F̌t = Fa−1(2t), 0 ≤ t < τ0 := a(∞)/2. (4.2)

Accordingly, the associated Riemann maps {g0
t } and the process U(t) are time changed into

ǧ0
t = g0

a−1(2t), Ǔ(t) = U(a−1(2t)), 0 ≤ t < τ0. (4.3)

It then follows from (2.11) that z(t) = ǧ0
t (z) is a solution of the Loewner equation

d

dt
z(t) =

2

z(t)− Ǔ(t)
, z(0) = z ∈ H. (4.4)

Theorem 4.1 {F̌t; t ∈ [0, τ0)} has the same law as the Loewner evolution driven by the path of the

continuous process Ǔ(t) up to the random time τ0; namely, for the unique solution z(t), 0 ≤ t < tz,

of (4.4),

{F̌t; t ∈ [0, τ0)} has the same distribution as {{z ∈ H : tz ≤ t}; t ∈ [0, τ0)}. (4.5)

Let Mt =
∫ t

0 Φ′s(ξ(s))dBs. By (4.1), 〈M〉t =
∫ t

0 Φ′s(ξ(s))
2ds = a(t)/2 so that B̌t = Ma−1(2t) is a

Browninan motion. The formula (2.15) can be rewritten as

Ǔ(t) = ξ +

∫ t

0
Φ̃′s(ξ̃(s))

−1

(
b(s̃(s)− ̂̃ξ(s)) + bBMD(s̃(s)− ̂̃ξ(s))) ds

+
1

2

∫ t

0
Φ̃′′s(ξ̃(s)) · Φ̃′s(ξ̃(s))−2

(
α(s̃(s)− ̂̃ξ(s))2 − 6

)
ds

+

∫ t

0
α(s̃(s)− ̂̃ξ(s))dB̌s, (4.6)
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where Φ̃′s(z) := Φ′a−1(2s)(z), Φ̃′′s(z) := Φ′′a−1(2s)(z), ξ̃(t) := ξ(a−1(2t)) and s̃j(t) = sj(a
−1(2t)) for

1 ≤ j ≤ 3N . Note that since Φt(z) is univalent in z on the region Dt ∪ ΠDt ∪ ∂H, Φ′t(z) never

vanishes there. (4.6) particularly means that Ǔ(t) is a continuous semimartingale.

From Theorem 4.1 and the identity (4.6), we can obtain immediately the following two theorems.

Theorem 4.2 SKLE√6,−bBMD
being reparametrized as (4.2) has the same distribution as SLE6

over the time interval [0, τ0).

Theorem 4.3 For a positive constant α, there exists a sequence of hitting times {σn} increasing to

τ0 such that SKLEα,b being reparametrized as (4.2) has the same distribution as SLEα2 over each

time interval [0, σn] under a suitable Girsanov transform.

When α is a positive constant, it follows from Theorem 4.3 and [RS] that SKLEα,b is generated

by a continuous curve γ and that γ is simple when α ≤ 2, self-intersecting when 2 < α ≤ 2
√

2 and

space-filling when α > 2
√

2.

5 Locality property of SLE6 in canonical domains

It has been demonstrated in [CF, Theorem 6.11] that SKLEα,−bBMD
enjoys the locality property

for a positive constant α if and only if α =
√

6. The proof is being carried out independently of the

locality of SLE6. The next subsection will concern the question:

(Q) Is there any alternative proof of the locality of SKLE√6,−bBMD
based on Theorem 4.2 ?

5.1 Locality of chordal SLE6 and SKLE√6,−bBMD

Let Φ be a locally real conformal transformation from an H-neighborhood N of a subset of ∂H
into H in the sense of [L1, §4.6]. Theorem 6.13 of [L1] claimed a locality of SLE6 relative to Φ in

the following sense: the SLE6-hulls {Kt} have the same law as {Φ(Kt)} until the exit time from

Φ(N ∪ ∂H) up to a time change. The proof was based on a generalized Loewner equaiton

dg∗t (z)

dt
=

2Φ′t(ξ(t))
2

g∗t (z)− U∗(t)
, g∗0(z) = z, U∗(t) = Φt(ξ(t)), (5.1)

for the canonical Riemann map g∗t (z) from H \ Φ(Kt). Here ξ(t) = ξ +
√

6Bt, ξ ∈ ∂H, and

Φt := g∗t ◦ Φ ◦ g−1
t , (5.2)

where gt(z) is the solution of the Loewner equation (1.1).

But the equation (5.1) was rigorously proved in [L1] only in the right derivative sense just as

the proof of Proposition 2.3 of this paper. In order to make it a genuine ODE, we need to verify

the joint continuity of g∗t (z) in (t, z), which can be shown when Φ is the canonical Riemann map

ϕA from H \ A for any H-hull A ⊂ H by using the probabilistic representation of =Φt(z). Indeed,

in this case, we have

Φt(z) = ϕgt(A)(z), z ∈ H \ gt(A), (5.3)

for the canonical Riemann map ϕgt(A) from H\gt(A) and so =Φt(z) admits a probabilistic expression

=Φt(z) = =z − EH
z

[
=ZH

σgt(A)
;σgt(A) <∞

]
(5.4)
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in terms of the ABM (ZH
t ,PH

z ) on H in view of [L1, (3.5)]. Define

qt(z) = =gt(z)− EH
z

[
=gt(ZH

σA
);σA <∞

]
, z ∈ H \ (Ft ∪A). (5.5)

Due to the invariance of the ABM under the conformal map gt, we have =Φt(gt(z)) = qt(z). Since

g∗t = Φt ◦ gt ◦ ϕ−1
A by (5.2), we obtain for each T < TA := inf{t : Kt ∩A 6= ∅}

=g∗t (z) = qt(ϕ
−1
A (z)), t ∈ [0, T ], z ∈ H \ ϕA(KT ). (5.6)

As gt(z) is the solution of the Loewner equation (1.1), =gt(z) is jointly continuous and bounded

by =z. Hence qt(z) is continuous in t for each z ∈ H \ (Kt ∪ A) by (5.5) and so is =g∗t (z) for each

z ∈ H\ϕA(KT ). This continuity implies the joint continuity of g∗t (z) just as in the last part of Section

3 and so (5.1) becomes a genuine ODE. Using a generalized Itô formula as the proof of Theorem

2.8, we can then obtain U∗(t) = ϕA(ξ) +
√

6
∫ t

0 Φ′s(ξ(s))dBs, t < T . Define a(t) = 2
∫ t

0 Φ′s(ξ(s))
2ds.

We have thus given a first rigorous proof of the locality of SLE6 relative to ϕA.

Proposition 5.1 (Locality of chordal SLE6 in the sense of [LSW3]). For any H-hull A with

ξ /∈ A,, let ϕA be the canonical Riemann map from H \A and {Kt; t ≥ 0} an SLE6 starting from ξ.

Then the reparametrized family of image hulls {ϕA(Ka−1(2t)); 0 ≤ t < a(TA)/2} has the same law

as an SLE6 {K̃t; 0 ≤ t < T̃} starting from ϕA(ξ), where T̃ := inf{t > 0 : K̃t ∩ ϕA(∂A) 6= ∅}.

Notice that, in view of [RS], SLE6-hulls {Kt} are generated by continuous self-interesecting

curves, thus so are the image hulls {ϕA(Kt)}. Accordingly, the classical argument for a Jordan

arc yielding the left continuity in t of g∗t (z) (see [CFR, §6]) cannot be applied and no proof of the

continuity of g∗t in t seems to be available other than the probabilistic method we employed above.

Now, for any standard slit domain D and any H-hull A ⊂ D, consider the canonical conformal

map ΦA from D\A. Note that ΦA is a specific locally real conformal map from the H-neighborhood

D \ A of ∂H \ A. If we could verify the locality of SLE6 relative to ΦA, then the locality of

SKLE√6,−bBMD
could be readily deduced from Theorem 4.2. But Φt defined by (5.2) for Φ = ΦA

does not satisfy (5.3) unless D = H so that the above probabilistic method does not work for

proving the locality of SLE6 relative to ΦA.

So the answer to question (Q) remains negative at present. However it may be still possible

to show the locality of SLE6 relative to ΦA, for example, from the point of view that SLE6 is the

scaling limit of the critical percolation exploration process on triangular lattices, although we feel

that its rigorous proof would get lengthy.

In this connection, we emphasize that the locality of SLE6 in the sense of Proposition 5.1 is

enough to derive the splitting property and the restriction property of SLE6 that were formulated

in [LSW1, Corollaries 2.3 and 2.4] and utilized in [LSW1, LSW2] in order to identify the values of

various Brownian intersection exponents. See [W, p 139] for a proof of this deduction where Φε(z)
Φ′ε(0)

should be replaced by Φε(z)−φε(0)
Φ′ε(0) however. Analogously we may study BMD intersection exponents

in relation to [CF, Theorem 6.11].

5.2 Locality of radial SLE6 relative to modified canonical maps

So far, only chordal SLEs and chordal SKLEs have been considered.
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Consider a linear transformation ψ(z) = i
1 + z

1− z
from the unit disk D = {z ∈ C : |z| < 1} onto

H, that sends 1 to ∞. Its inverse ψ−1 sends ∂H onto ∂D \ {1}. Let {Kt} and {K̂t} be the radial

SLEκ on D starting at ξ ∈ ∂D\{1} and the chordal SLEκ on H starting at ψ(ξ) ∈ ∂H, respectively.

A Basic relation of their distributions was investigated in [LSW2] by using the map ψ.

More specifically, define K̃t = ψ−1(K̂t). {K̃t} is then a family of random growing hulls on D
starting at ξ ∈ ∂D \ {1}. In §4.1 of [LSW2], the following statement was established by a right

application of a generalized Itô formula mentioned in Remark 2.9 (et = gt(1) in its proof is a random

variable). The hitting time of a point a ∈ D of the closure of a growing hull in D is denoted by σa.

Proposition 5.2 (Theorem 4.1 of [LSW2]) The radial SLE6 {Kt} restricted on [0, σ1) has

under a reparametrization the same law as the ψ−1-image {K̃t} of the chordal SLE6 restricted on

[0, σ0).

For a hull A on D with 0 /∈ A, the unique Riemann map ΦA from D \ A onto D satisfying

ΦA(0) = 0, Φ′A(0) > 0, is called the canonical map from D \A. We also define a modified canonical

map Φ̃A from D \A (onto D) by

Φ̃A = ψ−1 ◦ ϕψ(A) ◦ ψ, when 1 /∈ A,

where ϕψ(A) is the canonical Riemann map from H \ψ(A) (onto H). A modified canonical map Φ̃A

is different from the canonical map ΦA in general.

The radial SLEκ {Kt} starting at ξ ∈ ∂D is said to enjoy the locality property if, for any hull

A ⊂ D with 0 /∈ A and ξ /∈ A, {ΦA(Kt)} has under a reparametrization the same law as {Kt}
starting at ΦA(ξ) until the hitting time τA = inf{t : Kt ∩ A 6= ∅} for the canonical map ΦA from

D\A. It readily follows from Proposition 5.1 and Proposition 5.2 that the radial SLE6 {Kt} starting

at ξ ∈ ∂D enjoys the locality but relative to the modified canonical map Φ̃A:

Corollary 5.3 For any hull A ⊂ D with 0 /∈ A and ξ, 1 /∈ A. {Φ̃A(Kt)} has under a reparametriza-

tion the same law as the radial SLE6 {Kt} until a hitting time not greater than τA for the modified

canonical map Φ̃A from D \A.

In order to show the locality of the radial SLE6 (relative to canonical maps), one may need

to make analogous considerations to the proof of Proposition 5.1 first by deriving a generalized

Loewner equation in the right derivative sense and then using the absorbing Brownian motion on

D. We leave its proof to interested readers.

6 K-L equations and SKLEs for other canonical domains

In this section, we recall and examine Komatu-Loewner equations and stochastic Komatu-Loewner

evolutions studied in literature for other canonical multiply connected planar domains (cf. [C, G]).

6.1 Annulus

The annulus Aq = {z ∈ C : q < |z| < 1} for q ∈ (0, 1) occupies a special place among multiply

connected planar domains. The first extension of the Loewner equation from simply connected
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domains to annuli goes back to Y. Komatu [K1]. Fix an annulus AQ for 0 < Q < 1, and a Jordan

arc γ = {γ(t) : 0 ≤ t ≤ tγ} with γ(0) ∈ ∂D and γ(0, tγ ] ⊂ AQ. There exists a strictly increasing

function α : [0, tγ ] 7→ [Q,Qγ ] with α(tγ) = Qγ < 1 and the following property: if α(t) = q, then

there is a unique conformal map gq from AQ \ γ[0, t] onto Aq such that gq(Q) = q. A differential

equation for gq in the left derivative in q was derived in [K1] in terms of the Weierstrass as well

as Jacobi elliptic functions. But the continuity of α and right differentiability of gq in q were not

rigorously established although an annulus variant of the Carathéodory convergence theorem was

indicated in [K1] to cover these points.

Recently [FK] utilizes this variant of the Carathéodory theorem to show that α is indeed con-

tinuous and that gq(z), Q ≤ q ≤ Qγ , satisfies a genuine ODE

∂ log gq(z)

∂ log q
= Kq(gq(z), λ(q))− i=Kq(q, λ(q)), gQ(z) = z, (6.1)

where Kq(z, ζ), z ∈ Aq, ζ ∈ ∂D, is Villat’s kernel defined by Kq(z, ζ) = Kq(z/ζ). Here

Kq(z) := lim
N→∞

N∑
n=−N

1 + q2nz

1− q2nz
,

and λ(q) := gq(γ(t)) (where t > 0 is such that α(t) = q) is a continuous function of q taking

values on the outer boundary ∂D. Since α is continuous, the curve γ can be parametrized as {γ(q) :

Q ≤ q ≤ Qγ} so that gq(z) is a conformal map from AQ \ γ[0, q] onto Aq with the normalization

gq(Q) = q. We may further let P = − logQ, Pγ = − logQγ , Sp(z, ζ) = Ke−p(z, ζ) and change the

parameter q into s by q = es−P for 0 ≤ s ≤ sγ = P − Pγ . Then (6.1) becomes, for z ∈ AQ \ γ[0, s]

and s ∈ [0, sγ ],

∂ log gs(z)

∂s
= SP−s(gs(z), λ(s))− i=SP−s(es−P , λ(s)), g0(z) = z, (6.2)

where λ(s) := gs(γ(s)). Note that gs is the conformal mapping from AQ \ γ[0, s] onto AQes with

gs(Q) = Qes. By using the stated variant of the Carathéodory convergence theorem, it is also

shown in [FK] that, the equation (6.1) in the right derivative sense is still valid if we take, in place

of the Jordan curve γ, a family {Fq} of growing hulls in AQ that is right continuous with limit λ(q)

in a sense similar to (5.24) of [CF].

In [Z1], D. Zhan defined the annulus SLEκ to be the growing hulls {Ks} in AQ driven by

λ(s) = eiB(κs) for the one-dimensional Brownian motion B(s) based on the equation

∂ log gs(z)

∂s
= SP−s(gs(z), λ(s)), g0(z) = z. (6.3)

As was noted in the proof of [Z1, Proposition 2.1], for any pair (gq(z), λ(s)) satisfying equation

(6.2), its rotation eiθ(s)(gq(z), λ(s)) satisfies (6.3) where θ(s) =
∫ s

0 =SP−r(e
r−P , λ(r))dr, and so the

growing hulls based on (6.2) driven by λ(s) are the same as those based on (6.3) driven by eiθ(s)λ(s).

For each κ > 0, it was shown in [Z1] that the distribution of the annulus SLEκ defined by (6.3)

is related to that of the radial SLEκ stopped upon hitting a compact set containing the origin.

When κ = 6, they were further identified up to a time change. In this connection, we point out a

gap in the proof of the differentiability of the function ft(w) in t for each w ∈ C0 in [Z1, page 350].

See Remark 2.9. The proof of [L1, Prop. 4.40, Th. 6.13] involves a similar gap.
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For a given continuous function λ(q), Q ≤ q < 1, taking value in ∂D, the ODE (6.1) admits a

unique solution gq(z) that can be verified to satisfy the normalization condition gq(Q) = q, due to

the fact that <Kq(q, eiθ) = 1 for every q ∈ (0, 1) and θ ∈ [0, 2π). It may be worthwhile to consider

an SKLE on the annulus based directly on the equation (6.1) or on its modified version driven by

a general diffusion process on ∂D along the lines of [CF] and this paper.

D. Zhan further extended the notion of annulus SLEκ, κ ≤ 4, in a certain way to specify the end

points of the curves and investigated its properties such as reversibility and restriction property

(see [Z2] and references therein). Recently, G. Lawler [L2] defined SLEκ for κ ≤ 4 in more general

multiply connected domains using the Brownian loop measure and compared it with Zhan’s one

in the annulus case. As is noted in Remark 6.12 of [CF], we can hardly expect a straightforward

generalization of the restriction property of SLE8/3 to the chordal SKLE√
8/3,−bBMD

due to an effect

of the second order BMD-domain constant cBMD. It would be interesting to find connections of the

conditional laws induced by SKLE√κ,b with Lawler’s measures.

6.2 Circularly slit annulus

Parallel to the BMD complex Poisson kernel, the notion of the BMD Schwarz kernel S(z, ζ) is

introduced in [FK] for a general multiply connected planar domain D as an analytic function in

z ∈ D whose real part is the BMD-Poisson kernel. In particular, it is shown in [FK] that the

Villat’s kernel multiplied by 1/(2π) is a BMD Schwarz kernel for the annulus.

A domain D of the form D = Aq \
⋃N−1
j=1 Cj is called a circularly slit annulus if Cj are mutually

disjoint concentric circular slits contained in Aq. We denote by D the collection of all circularly slit

annuli. We fix D = AQ \
⋃N−1
j=1 Cj ∈ D and consider a Jordan arc γ : [0, tγ ] 7→ D with γ(0) = ∂D.

We can then find a strictly increasing function α : [0, tγ ] 7→ [Q,Qγ ], (α(tγ) = Qγ < 1) such that,

for q = α(t), there exists a unique conformal map gq : D \ γ[0, t] 7→ Dq = Aq \
⋃N−1
j=1 Cj(q) ∈

D, with gq(Q) = q.

The first extension of the Loewner equation to a circularly slit annulus goes back to Y. Komatu

[K2] and the resulting Komatu-Loewner equation for gq is rewritten by [BF2] and then by [FK] as

∂− log gq(z)

∂ log q
= 2πŜq(gq(z), λ(q)), q ∈ α(0, tγ ] ⊂ (Q,Qγ ], gQ(z) = z, (6.4)

where the left hand side denotes the left derivative and Ŝq(z, ζ) = Sq(z, ζ) − i=Sq(q, ζ) is the

normalized BMD Schwarz kernel for Dq ∈ D. When N = 1, 2πŜq is just the normalized Villat’s

kernel with the stated explicit expression and (6.4) is reduced to (6.1). When N > 1, the problem

of the continuity of α and right differentiability of gq remains open. Recently C. Boehm and W.

Lauf [BL] establish a Komatu-Loewner equation for a circularly slit disk as a genuine ODE by

using an extended version of the Carathéodory convergence theorem. A method similar to [BL] or

to [CFR] might work to make (6.4) a genuine ODE and we may then conceive an SKLE for it in

analogue to [CF].

6.3 Circularly slit disk

A domain D of the form D = D \
⋃N−1
j=1 Cj is called a circularly slit disk if Cj are mutually disjoint

concentric circular slits contained in D = {z ∈ C : |z| < 1}. For a circularly slit disk D, Bauer
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and Friedrich have obtained a radial Komatu-Loewner equation [BF1, (44)] with a kernel explicitly

expressed in terms of the Green function and harmonic measures, which could be identical with

a BMD Schwarz kernel for the image domain Dt. The differntiability problem for gt(z) in this

equation seems to have been settled by the aforementioned approach of [BL].

Moreover, an SKLE√κ,b on D is formulated in [BF1] for any constant κ > 0 in a quite analogous

manner to [CF] and it is claimed that SKLE√6,b enjoys the locality property relative to canonical

maps for a specific choice (Ansatz) of the drift coefficient b of the driving process on ∂D. Our

natural guess is that b = −bBMD. However the establishment of a generalized Komatu-Loewner

equation [BF1, (63)] for image hulls by a canonical map as a genuine ODE requires the continuity

of g∗t (which corresponds to g̃t in [CF]). But this has been left unconfirmed even in the radial SLE

case with no circular slit.

Acknowledgement. We thank the referee for a careful reading of the paper.
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