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Stability of parabolic Harnack inequalities
for symmetric non-local Dirichlet forms

Zhen-Qing Chen, Takashi Kumagai∗ and Jian Wang†

Abstract

In this paper, we establish stability of parabolic Harnack inequalities for sym-
metric non-local Dirichlet forms on metric measure spaces under general volume
doubling condition. We obtain their stable equivalent characterizations in terms of
the jumping kernels, variants of cutoff Sobolev inequalities, and Poincaré inequali-
ties. In particular, we establish the connection between parabolic Harnack inequal-
ities and two-sided heat kernel estimates, as well as with the Hölder regularity of
parabolic functions for symmetric non-local Dirichlet forms.

1 Introduction and Main Results

Harnack inequalities are inequalities that control the growth of non-negative harmonic
functions and caloric functions (solutions of heat equations) on domains. The inequalities
were first proved for harmonic functions for Laplacian in the plane by Carl Gustav Axel
von Harnack, and later became fundamental in the theory of harmonic analysis, partial
differential equations and probability. One of the most significant implications of the
inequalities is that (at least for the cases of local operators/diffusions) they imply Hölder
continuity of harmonic/caloric functions. We refer readers to [K1] for the history and the
basic introduction of Harnack inequalities.

Because of their fundamental importance, there has been a long history of research on
Harnack inequalities. Harnack inequalities and Hölder regularities for harmonic functions
are important components of the celebrated De Giorgi-Nash-Moser theory in harmonic
analysis and partial differential equations. In early 90’s, equivalent characterizations for
parabolic Harnack inequalities (that is, Harnack inequalities for caloric functions) were
obtained by Grigor’yan [Gr] and Saloff-Coste [Sa1] for Brownian motions (or equiva-
lently, Laplace-Beltrami operators) on complete Riemannian manifolds. They showed
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that parabolic Harnack inequalities are equivalent to doubling condition of the volume
measures plus Poincaré inequalities, which are also equivalent to the two-sided Gaussian-
type heat kernel estimates. An important consequence of this equivalence is that the
parabolic Harnack inequalities are stable under transformations of the Riemannian man-
ifolds by quasi-isomorphisms. This result was later extended to symmetric diffusions on
metric measure spaces by Sturm [St] and to random walks on graphs by Delmotte [De]. It
has been further extended to symmetric anomalous diffusions on metric measure spaces
including fractals in [BBK1].

In this paper, we consider the stability of parabolic Harnack inequalities for symmetric
non-local Dirichlet forms (or equivalent, symmetric jump processes) on metric measure
spaces. Let (M, d, µ) be a metric measure space where d is a metric and µ is a Radon
measure (see Section 1.1 for a precise setting). We consider a symmetric regular Dirichlet
form (E ,F) on L2(M ;µ) of pure jump type; that is,

E(f, g) =
∫

M×M\diag
(f(x)− f(y)(g(x)− g(y)) J(dx, dy), f, g ∈ F , (1.1)

where diag denotes the diagonal set {(x, x) : x ∈ M} and J(·, ·) is a symmetric jumping
measure on M ×M \ diag. Let X be Hunt process corresponding to (E ,F). An impor-

tant example of the jumping kernel J is J(dx, dy) = c(x,y)
d(x,y)d+α µ(dx)µ(dy), where c(x, y)

is a symmetric function bounded between two positive constants and α > 0. The cor-
responding process is called a symmetric α-stable-like process. When M = Rd, or more
general, an Ahlfors d-regular space, µ is the Hausdorff measure on M and α ∈ (0, 2), var-
ious properties of the symmetric α-stable-like processes including two-sided heat kernel
estimates and parabolic Harnack inequalities have been studied in [CK1]. In particular,
when M = Rd, µ is the Lebesgue measure on Rd and c(x, y) is a constant function, this
corresponds simply to a rotationally symmetric α-stable Lévy process. However, on some
metric measure spaces M such as the Sierpinski gasket and the Sierpinski carpet, the
index α can be larger than 2.

Let φ be a strictly increasing continuous function on [0,∞) with φ(0) = 0.

Definition 1.1. We say that the parabolic Harnack inequality PHI(φ) holds for the process
X , if there exist constants 0 < C1 < C2 < C3 < C4, 0 < C5 < 1 and C6 > 0 such that for
every x0 ∈ M , t0 ≥ 0, R > 0 and for every non-negative function u = u(t, x) on [0,∞)×M
that is parabolic on cylinder Q(t0, x0, C4φ(R), R) := (t0, t0 + C4φ(R))×B(x0, R),

ess sup Q−u ≤ C6 ess inf Q+u, (1.2)

where Q− := (t0 + C1φ(R), t0 + C2φ(R)) × B(x0, C5R) and Q+ := (t0 + C3φ(R), t0 +
C4φ(R))× B(x0, C5R).

We call the function φ the scale function for PHI(φ). The PHI(φ) results obtained in
[Gr, Sa2, St, De] are for φ(r) = r2. It is proved in [CK1] that symmetric α-stable-like
processes with α ∈ (0, 2) enjoy PHI(φ) for φ(r) = rα. In [CK2], PHI(φ) is obtained for
mixed stable processes on metric measure spaces with variable scale φ.

Here is the question we consider in this paper.
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(Q) Suppose (E ,F) and (Ê ,F) are regular Dirichlet forms on L2(M ;µ) of the form

(1.1), whose corresponding jumping measures and processes are J , Ĵ and X , X̂ ,
respectively. Suppose further there exist constants c1, c2 > 0 such that c1J(A,B) ≤
Ĵ(A,B) ≤ c2J(A,B) for all A,B ⊂ M with A∩B = ∅. If PHI(φ) holds for X , does

PHI(φ) also holds for the process X̂?

We will answer the question affirmatively in Theorem 1.17, the main result of this
paper, by giving an equivalent characterization of PHI(φ) that is stable under such per-
turbations:

PHI(φ) ⇐⇒ PI(φ) + Jφ,≤ + CSJ(φ) + UJS;

see (1.18), (1.9), (1.10) and (1.17) for related notations and definitions. Moreover, Theo-
rem 1.17 also gives the precise relation between the parabolic Harnack inequality PHI(φ),
the Hölder regularity PHR(φ) of caloric functions, and the elliptic Hölder regularity (EHR)
of harmonic functions:

PHI(φ) ⇐⇒ PHR(φ) + Eφ,≤ +UJS ⇐⇒ EHR + Eφ +UJS;

see (1.12), (1.14) and (1.15) for definitions.
To our knowledge, there has been no literature on the equivalence of parabolic Harnack

inequalities for non-local Dirichlet forms on general metric measure spaces despite of the
importance of parabolic Harnack inequalities. We note that when the underlying space is
a graph satisfying the Ahlfors regular condition, some equivalence conditions for PHI(φ)
with φ(r) = rα for α ∈ (0, 2) are obtained in Barlow, Bass and Kumagai [BBK2]. In some
general metric measure spaces including certain fractals mentioned above, it is known that
PHI(φ) may hold for φ(r) = rα with α ≥ 2 (see, for instance, [CKW, Section 6.1]). In this
paper, we establish the stability of PHI(φ) for a large class of scale functions φ including
those φ(r) = rα with α ≥ 2. We also emphasize that our metric measure spaces are
only assumed to satisfy general volume doubling and reverse volume doubling properties.
These make the study of stability of PHI(φ) extremely challenging.

Parabolic Harnack inequalities are closely related to heat kernel estimates. In the very
recent paper [CKW], we obtained stability of two-sided heat kernel estimates and upper
bound heat kernel estimates for symmetric jump processes of mixed type on general metric
measure spaces (see Section 1.2 for a brief survey of the results of [CKW]). In contrast
to the cases of local operators/diffusions, parabolic Harnack inequalities are no longer
equivalent to (in fact weaker than) the two-sided heat kernel estimates. In fact Corollary
1.18 of this paper asserts

HK(φ) ⇐⇒ PHI(φ) + Jφ,≥;

see (1.9) and (1.13) for definitions. This discrepancy is caused by the heavy tail of the
jumping kernel. This heavy tail phenomenon is also one of main sources of difficulties in
analyzing non-local operators/jump processes.

Due to the above difficulties and differences, obtaining the stability of PHI(φ) for non-
local operators/jump processes requires new ideas. Our approach contains the following
two key ingredients, and both of them are highly non-trivial:
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(i) We make full use of the probabilistic properties of jump process X (in particular the
Lévy system of X that describes how the process X jumps) to connect PHI(φ) with
the properties of the associated heat kernel and jumping kernel. See the equivalence
condition (3) in main result Theorem 1.17.

(ii) We adopt some PDE’s techniques from the recent study of fractional p-Laplacian
operators in [CKP1] to derive some useful properties of the process X . We em-
phasis that, to get the stability of PHI(φ) in our general framework we should use
cutoff Sobolev inequalities CSJ(φ) for non-local Dirichlet forms, instead of the frac-
tional Poincaré inequalities or Sobolev inequalities in the existing literature (e.g.
see [CKP1, DK, K2]), since the latter two functional inequalities require some reg-
ularity of state space and non-local operators. See the equivalence condition (7) in
Theorem 1.17.

Finally, we should mention that, even though non-local operators appear naturally in
the study of stochastic processes with jumps, there are huge amount of interests among
analysts to study Harnack inequalities and related properties for non-local operators; see
[CS, CKP1, CKP2, DK, K1, K2, Sil] and the references therein. Combining probabilistic
methods with analytic methods in the study of heat kernel estimates and parabolic Har-
nack inequalities for non-local operators proves to be quite powerful and fruitful, as is the
case for this paper and for [CKW].

In the following, we give the framework of this paper in details and present the main
results of this paper. We also recall some theorems from [CKW] that will be used in this
paper.

1.1 Setting

Let (M, d) be a locally compact separable metric space, and µ a positive Radon measure
on M with full support. A triple (M, d, µ) is called a metric measure space, and we
denote by 〈·, ·〉 the inner product in L2(M ;µ). For simplicity, we assume that µ(M) = ∞
throughout the paper. Let us emphasize that we do not assume M to be connected nor
(M, d) to be geodesic.

Let (E ,F) be a regular Dirichlet form on L2(M ;µ) given in (1.1). We assume through-
out this paper that, for each x ∈ M , there is a kernel J(x, dy) so that

J(dx, dy) = J(x, dy)µ(dx).

In this paper, we will abuse notation and always take the quasi-continuous version for
an element of F (note that since (E ,F) is regular, each function in F admits a quasi-
continuous version). Denote by L the (negative definite) L2-generator of (E ,F). Let {Pt}
be the associated semigroup on L2(M ;µ). Associated with the regular Dirichlet form

(E ,F) on L2(M ;µ) is an µ-symmetric Hunt process X = {Xt, t ≥ 0,Px, x ∈ M\N}, where
N is a properly exceptional set for (E ,F) in that µ(N ) = 0 and Px(Xt ∈ N for some t >
0) = 0 for all x ∈ M \ N . This Hunt process is unique up to a properly exceptional
set (see [FOT, Theorem 4.2.8]). A more precise version of {Pt} with better regularity
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properties can be obtained as follows: for any bounded Borel measurable function f on
M ,

Ptf(x) = E
xf(Xt), x ∈ M0 := M \ N .

The heat kernel associated with {Pt} (if it exists) is a measurable function p(t, x, y) :
M0 ×M0 → (0,∞) for every t > 0, such that

Exf(Xt) = Ptf(x) =

∫
p(t, x, y)f(y)µ(dy), x ∈ M0, f ∈ L∞(M ;µ),

p(t, x, y) = p(t, y, x) for all t > 0, x, y ∈ M0,

p(s+ t, x, z) =

∫
p(s, x, y)p(t, y, z)µ(dy) for all s, t > 0 and x, z ∈ M0.

We call p(t, x, y) the heat kernel on (M, d, µ, E). Note that we can extend p(t, x, y) to all
x, y ∈ M by setting p(t, x, y) = 0 if x or y is outside M0.

The goal of this paper is to present stable characterizations of parabolic Harnack
inequality for the symmetric jump process X . To state our results precisely and show
the relations between heat kernel estimates and parabolic Harnack inequalities, we need
a number of definitions and also recall the stable characterizations of two-sided estimates
and upper bound estimates for heat kernels from [CKW].

Definition 1.2. Denote by B(x, r) the ball in (M, d) centered at x with radius r, and set

V (x, r) = µ(B(x, r)).

(i) We say that (M, d, µ) satisfies the volume doubling property (VD) if there exists a
constant Cµ ≥ 1 such that for all x ∈ M and r > 0,

V (x, 2r) ≤ CµV (x, r). (1.3)

(ii) We say that (M, d, µ) satisfies the reverse volume doubling property (RVD) if there
exist positive constants d1 and cµ such that for all x ∈ M and 0 < r ≤ R,

V (x,R)

V (x, r)
≥ cµ

(R
r

)d1
. (1.4)

VD condition (1.3) is equivalent to the following: there exist d2, C̃µ > 0 so that

V (x,R)

V (x, r)
≤ C̃µ

(R
r

)d2
for all x ∈ M and 0 < r ≤ R. (1.5)

RVD condition (1.4) is equivalent to the existence of positive constants lµ and c̃µ > 1 so
that

V (x, lµr) ≥ c̃µV (x, r) for all x ∈ M and r > 0. (1.6)

It is known that VD implies RVD if M is connected and unbounded (see, for example
[GH, Proposition 5.1 and Corollary 5.3]).
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Let R+ := [0,∞) and φ : R+ → R+ be a strictly increasing continuous function with
φ(0) = 0, φ(1) = 1 that satisfies the following: there exist c1, c2 > 0 and β2 ≥ β1 > 0 such
that

c1

(R
r

)β1

≤ φ(R)

φ(r)
≤ c2

(R
r

)β2

for all 0 < r ≤ R. (1.7)

Definition 1.3. We say Jφ holds if for any x, y ∈ M there exists a non-negative symmetric
function J(x, y) so that for µ× µ-almost all x, y ∈ M ,

J(dx, dy) = J(x, y)µ(dx)µ(dy), (1.8)

and
c1

V (x, d(x, y))φ(d(x, y))
≤ J(x, y) ≤ c2

V (x, d(x, y))φ(d(x, y))
(1.9)

for some constants c2 ≥ c1 > 0. We say that Jφ,≤ (resp. Jφ,≥) if (1.8) holds and the upper
bound (resp. lower bound) in (1.9) holds.

For the non-local Dirichlet form (E ,F), we define the carré du-Champ operator Γ(f, g)
for f, g ∈ F by

Γ(f, g)(dx) =

∫

y∈M
(f(x)− f(y))(g(x)− g(y)) J(dx, dy).

1.2 Heat kernel estimates

The following CSJ(φ) and SCSJ(φ) conditions that control the energy of cutoff functions
are first introduced in [CKW]. See [CKW, Remark 1.6] for background on these condi-
tions. Recall that φ is a strictly increasing continuous function on R+ satisfying φ(0) = 0,
φ(1) = 1 and (1.7).

Definition 1.4. (i) Let U ⊂ V be open sets in M with U ⊂ U ⊂ V . We say a non-
negative bounded measurable function ϕ is a cutoff function for U ⊂ V , if ϕ = 1
on U , ϕ = 0 on V c and 0 ≤ ϕ ≤ 1 on M .

(ii) We say that CSJ(φ) holds if there exist constants C0 ∈ (0, 1] and C1, C2 > 0 such
that for every 0 < r ≤ R, almost all x ∈ M and any f ∈ F , there exists a cutoff
function ϕ ∈ Fb := F ∩ L∞(M,µ) for B(x,R) ⊂ B(x,R + r) so that

∫

B(x,R+(1+C0)r)

f 2 dΓ(ϕ, ϕ) ≤C1

∫

U×U∗
(f(x)− f(y))2 J(dx, dy)

+
C2

φ(r)

∫

B(x,R+(1+C0)r)

f 2 dµ,

(1.10)

where U = B(x,R + r) \B(x,R) and U∗ = B(x,R + (1 + C0)r) \B(x,R− C0r).

(iii) We say that SCSJ(φ) holds if there exist constants C0 ∈ (0, 1] and C1, C2 > 0 such
that for every 0 < r ≤ R and almost all x ∈ M , there exists a cutoff function ϕ ∈ Fb

for B(x,R) ⊂ B(x,R + r) so that (1.10) holds for any f ∈ F .
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Clearly SCSJ(φ) =⇒ CSJ(φ).

Remark 1.5. As is pointed out in [CKW, Rermark 1.7], under VD, (1.7) and Jφ,≤,
SCSJ(φ) always holds if β2 < 2, where β2 is the exponent in (1.7). In particular, SCSJ(φ)
holds for φ(r) = rα always when 0 < α < 2.

We next introduce the Faber-Krahn inequality. For any open set D ⊂ M , FD is
defined to be the ‖ · ‖E1-closure in F of F ∩ Cc(D), where ‖ · ‖2E1 = ‖ · ‖2E + ‖ · ‖22. Here
Cc(D) is the space of continuous functions on M with compact support in D. Define

λ1(D) = inf {E(f, f) : f ∈ FD with ‖f‖2 = 1} ,

the bottom of the Dirichlet spectrum of −L on D.

Definition 1.6. (M, d, µ, E) satisfies the Faber-Krahn inequality FK(φ), if there exist
positive constants C and ν such that for any ball B(x, r) and any open set D ⊂ B(x, r),

λ1(D) ≥ C

φ(r)
(V (x, r)/µ(D))ν. (1.11)

For a set A ⊂ M , define the exit time τA = inf{t > 0 : Xt ∈ Ac}.
Definition 1.7. We say that Eφ holds if there is a constant c1 > 1 such that for all r > 0
and all x ∈ M0,

c−1
1 φ(r) ≤ Ex[τB(x,r)] ≤ c1φ(r). (1.12)

We say that Eφ,≤ (resp. Eφ,≥) holds if the upper bound (resp. lower bound) in the
inequality above holds.

Definition 1.8. (i) We say that HK(φ) holds if there exists a transition density function
p(t, x, y) of the semigroup {Pt} for (E ,F), which has the following estimates for all
t > 0 and all x, y ∈ M0,

c1

( 1

V (x, φ−1(t))
∧ t

V (x, d(x, y))φ(d(x, y))

)

≤ p(t, x, y)

≤ c2

( 1

V (x, φ−1(t))
∧ t

V (x, d(x, y))φ(d(x, y))

)
,

(1.13)

where c1, c2 > 0 are constants independent of x, y ∈ M0 and t > 0. Here φ−1(t) is
the inverse function of the strictly increasing function t 7→ φ(t).

(ii) We say UHK(φ) (resp. LHK(φ)) holds if the upper bound (resp. the lower bound)
in (1.13) holds.

(iii) We say UHKD(φ) holds if there is a constant c > 0 such that

p(t, x, x) ≤ c

V (x, φ−1(t))
for all t > 0 and x ∈ M0.
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It is pointed out in [CKW, Remark 1.12] that

1

V (y, φ−1(t))
∧ t

V (y, d(x, y))φ(d(x, y))
≍ 1

V (x, φ−1(t))
∧ t

V (x, d(x, y))φ(d(x, y))
.

We may thus replace V (x, φ−1(t)) and V (x, d(x, y)) by V (y, φ−1(t)) and V (y, d(x, y)) in
(1.13) by modifying the values of c1 and c2. On the other hand, it follows from [CKW,
Theorem 1.13 and Lemma 5.6] that if HK(φ) holds, then the heat kernel p(t, x, y) is Hölder
continuous on (x, y) for every t > 0, and so (1.13) holds for all x, y ∈ M .

We say (E ,F) is conservative if its associated Hunt process X has infinite lifetime.
This is equivalent to Pt1 = 1 a.e. on M0 for every t > 0.

The following are the main results of [CKW], which will be used later in this paper.

Theorem 1.9. ([CKW, Theorem 1.13]) Assume that the metric measure space (M, d, µ)
satisfies VD and RVD, and φ satisfies (1.7). Then the following are equivalent:

(1) HK(φ).
(2) Jφ and Eφ.

(3) Jφ and SCSJ(φ).
(4) Jφ and CSJ(φ).

Theorem 1.10. ([CKW, Theorem 1.15]) Assume that the metric measure space (M, d, µ)
satisfies VD and RVD, and φ satisfies (1.7). Then the following are equivalent:

(1) UHK(φ) and (E ,F) is conservative.

(2) UHKD(φ), Jφ,≤ and Eφ.

(3) FK(φ), Jφ,≤ and SCSJ(φ).
(4) FK(φ), Jφ,≤ and CSJ(φ).

As a consequence of [CKW, Proposition 3.1(ii)] (recalled in Proposition 2.4 of this
paper), LHK(φ) implies that X has infinite lifetime. As is remarked in [CKW], UHK(φ)
alone does not imply the conservativeness of the associated Dirichlet form (E ,F).

1.3 Parabolic Harnack inequalities

We first give probabilistic definitions of harmonic and parabolic functions in the general
context of metric measure spaces.

Let Z := {Vs, Xs}s≥0 be the space-time process corresponding to X where Vs = V0−s.

The filtration generated by Z satisfying the usual conditions will be denoted by {F̃s; s ≥
0}. The law of the space-time process s 7→ Zs starting from (t, x) will be denoted by
P(t,x). For every open subset D of [0,∞)×M , define τD = inf{s > 0 : Zs /∈ D}.

Recall that a set A ⊂ [0,∞) × M is said to be nearly Borel measurable if for any
probability measure µ on [0,∞) × M , there are Borel measurable subsets A1, A2 of
[0,∞) × M so that A1 ⊂ A ⊂ A2 and that Pµ(Zt ∈ A2 \ A1 for some t ≥ 0) = 0. The
collection of all nearly Borel measurable subsets of [0,∞)×M forms a σ-field, which is
called nearly Borel measurable σ-field.
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Definition 1.11. (i) We say that a nearly Borel measurable function u(t, x) on [0,∞)×
M is parabolic (or caloric) on D = (a, b) × B(x0, r) for the Markov process X if
there is a properly exceptional set Nu of the Markov process X so that for every
relatively compact open subset U of D, u(t, x) = E(t,x)u(ZτU ) for every (t, x) ∈
U ∩ ([0,∞)× (M\Nu)).

(ii) A nearly Borel measurable function u on M is said to be subharmonic (resp. har-

monic, superharmonic) in D (with respect to the process X) if for any relatively
compact subset U ⊂ D, t 7→ u(Xt∧τU ) is a uniformly integrable submartingale (resp.
martingale, supermartingale) under Px for q.e. x ∈ U .

Definition 1.12. (i) We say that the parabolic Harnack inequality PHI+(φ) holds for
Markov the process X if Definition 1.1 holds for some constants C1 > 0, Ck = kC1

for k = 2, 3, 4, 0 < C5 < 1 and C6 > 0.

(ii) We say that the elliptic Harnack inequality (EHI) holds for the Markov process X if
there exist constants c > 0 and δ ∈ (0, 1) such that for every x0 ∈ M , r > 0 and for
every non-negative function u on M that is harmonic in B(x0, r),

ess sup B(x0,δr)h ≤ c ess inf B(x0,δr)h.

(iii) We say that the parabolic Hölder regularity PHR(φ) holds for the Markov process X
if there exist constants c > 0, θ ∈ (0, 1] and ε ∈ (0, 1) such that for every x0 ∈ M ,
t0 ≥ 0, r > 0 and for every bounded measurable function u = u(t, x) that is caloric
in Q(t0, x0, φ(r), r), there is a properly exceptional set Nu ⊃ N so that

|u(s, x)− u(t, y)| ≤ c

(
φ−1(|s− t|) + d(x, y)

r

)θ

ess sup [t0,t0+φ(r)]×M |u| (1.14)

for every s, t ∈ (t0, t0 + φ(εr)) and x, y ∈ B(x0, εr) \ Nu.

(vi) We say that the elliptic Hölder regularity (EHR) holds for the process X , if there
exist constants c > 0, θ ∈ (0, 1] and ε ∈ (0, 1) such that for every x0 ∈ M , r > 0
and for every bounded measurable function u on M that is harmonic in B(x0, r),
there is a properly exceptional set Nu ⊃ N so that

|u(x)− u(y)| ≤ c

(
d(x, y)

r

)θ

ess supM |u| (1.15)

for any x, y ∈ B(x0, εr) \ Nu.

Clearly PHI+(φ) =⇒ PHI(φ) =⇒ EHI and PHR(φ) =⇒ EHR. We point out that
PHR(φ) implies Eφ,≥; see Proposition 3.9.

Remark 1.13. (i) PHI(φ) in Definition 1.1 is called a weak parabolic Harnack in-
equality in [BGK], in the sense that (1.2) holds for some C1, · · · , C5. It is called a
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parabolic Harnack inequality in [BGK] if (1.2) holds for any choice of positive con-
stants C4 > C3 > C2 > C1 > 0, 0 < C5 < 1 with C6 = C6(C1, . . . , C5) < ∞. Since
our underlying metric measure space may not be geodesic, one can not expect to
deduce parabolic Harnack inequality from weak parabolic Harnack inequality. See
[BGK] for related discussion on diffusions.

(ii) We will show in Proposition 4.4 that under VD, RVD and (1.7), PHI+(φ) and
PHI(φ) are equivalent.

(iii) Clearly, PHI(φ) holds if and only if the desired property holds for every bounded
parabolic function on cylinder Q(t0, x0, C4φ(R), R). Same for PHI+(φ) and EHI.

(iv) Note that in the definition of PHR(φ) (resp. EHR) if the inequality (1.14) (resp.
(1.15)) holds for some ε ∈ (0, 1), then it holds for all ε ∈ (0, 1) (with possibly
different constant c). We take EHR for example. For every x0 ∈ M and r > 0, let
u be a bounded function on M such that it is harmonic in B(x0, r). Then, for any
ε′ ∈ (0, 1) and x ∈ B(x0, ε

′r)\Nu, u is harmonic on B(x, (1−ε′)r). Applying (1.15)
for u on B(x, (1 − ε′r)), we find that for any y ∈ B(x0, ε

′r) \ Nu with d(x, y) ≤
(1− ε′)εr,

|u(x)− u(y)| ≤ c

(
d(x, y)

r

)θ

ess sup z∈M |u(z)|.

This implies that for any x, y ∈ B(x0, ε
′r) \ Nu, (1.15) holds with c′ = c ∨ 2

[(1−ε′)ε]θ .

Below we discuss stability of parabolic Harnack inequalities. This requires further
definitions.

Definition 1.14. We say that a lower bound near diagonal estimate for Dirichlet heat

kernel NDL(φ) holds, i.e. there exist ε ∈ (0, 1) and c1 > 0 such that for any x0 ∈ M ,
r > 0, 0 < t ≤ φ(εr) and B = B(x0, r),

pB(t, x, y) ≥ c1
V (x0, φ−1(t))

, x, y ∈ B(x0, εφ
−1(t)) ∩M0. (1.16)

Under VD, we may replace V (x0, φ
−1(t)) in the definition by either V (x, φ−1(t)) or

V (y, φ−1(t)). Under (1.7), we also may replace φ(εr) and εφ−1(t) in the definition above
by εφ(r) and φ−1(εt), respectively.

The following inequality was introduced in [BBK2] in the setting of graphs. See
[CKK1] for the general setting of metric measure spaces.

Definition 1.15. We say that UJS holds if there is a symmetric function J(x, y) so that
J(x, dy) = J(x, y)µ(dy), and there is a constant c > 0 such that for µ-a.e. x, y ∈ M with
x 6= y,

J(x, y) ≤ c

V (x, r)

∫

B(x,r)

J(z, y)µ(dz) for every 0 < r ≤ d(x, y)/2. (1.17)
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Note that UJS is implied by the following pointwise comparability condition of the
jump kernel J(x, y): there is a constant c > 0 such that J(x, y) ≤ cJ(z, y) for µ-a.e.
x, y, z ∈ M with x 6= y and 0 < d(x, z) ≤ d(x, y)/2.

Definition 1.16. We say that (weak) Poincaré inequality (PI(φ)) holds if there exist
constants C > 0 and κ ≥ 1 such that for any ball Br = B(x, r) with x ∈ M and for any
f ∈ Fb, ∫

Br

(f − fBr
)2 dµ ≤ Cφ(r)

∫

Bκr×Bκr

(f(y)− f(x))2 J(dx, dy), (1.18)

where fBr
= 1

µ(Br)

∫
Br

f dµ is the average value of f on Br.

If the integral on the right hand side of (1.18) is over Br × Br (i.e. κ = 1), then
it is called strong Poincaré inequality. If the metric is geodesic, it is known that (weak)
Poincaré inequality implies strong Poincaré inequality (see for instance [Sa2, Section 5.3]),
but in general they are not the same. In this paper, we only use weak Poincaré inequality.
Note also that the left hand side of (1.18) is equal to infa∈R

∫
Br
(f − a)2 dµ.

The following is the main result of this paper.

Theorem 1.17. Suppose that the metric measure space (M, d, µ) satisfies VD and RVD,

and φ satisfies (1.7). Then the following are equivalent:

(1) PHI(φ).
(2) PHI+(φ).
(3) UHK(φ), NDL(φ) and UJS.
(4) NDL(φ) and UJS.
(5) PHR(φ), Eφ,≤ and UJS.
(6) EHR, Eφ and UJS.
(7) PI(φ), Jφ,≤, CSJ(φ) and UJS.

We note that any of the conditions above implies the conservativeness of the process
{Xt}; see Proposition 2.4 and [CKW, Lemma 4.22], Proposition 3.2 and Proposition 4.9.

As a corollary of Theorem 1.9 and Theorem 1.17 (noting that Jφ implies UJS), we
have the following.

Corollary 1.18. Suppose that the metric measure space (M, d, µ) satisfies VD and RVD,

and φ satisfies (1.7). Then

HK(φ) ⇐⇒ PHI(φ) + Jφ,≥.

In addition to the papers mentioned above, for other related work on Harnack inequal-
ities and Hölder regularities for harmonic functions of non-local operators, we mention
[BL, ChZ, LS, Kom, MK, SU, SV] and the references therein. We emphasize this is only
a partial list of the vast literature on the subject.

The rest of the paper is organized as follows. The proof of Theorem 1.17 is given
in Section 4. In Section 2, we present some preliminary results. Various consequences
of parabolic Harnack inequalities are given in Section 3. The proof of (1) ⇐⇒ (2) ⇐⇒

11



PHI( φ)
Prop 3.3 Prop 3.1

UHKD(φ)UJS

Jφ,≤

Cor 3.4

FK(φ)

+J  +E φ,≤
[CKW]

Prop 2.9

Eφ,≤

Lem 2.8

NDL(φ)
Cor 3.4

Prop 3.2

PI( φ)
Prop 3.5

E φFK(φ)
UHK(φ)

Prop 4.4

Prop 2.9
Prop 3.5

PHR(φ) EHR

Lem 4.6
+E 

Thm 4.5

PHI( φ)

Thm 4.5
 E +UJS φ

+UJS

 J  +CSJ( φ) φ,≤

  Prop 4.13

Prop 3.8

+conserv.
 [CKW]

φ

+J  +E φ,≤φ,≤

+

PHI( φ)
Prop 4.4

Thm 4.10

+

φ

PHI( φ)

E ≤φ,

Prop 3.9

Prop 4.4

Figure 1: diagram

(3) ⇐⇒ (4) is given in Subsection 4.1, the proof of (1) ⇐⇒ (5) ⇐⇒ (6) is given in Sub-
section 4.2, while (1) ⇐⇒ (7) is shown in Subsection 4.3. Figure 1 illustrates implications
of various conditions and flow of our proofs.

Throughout this paper, we will use c, with or without subscripts, to denote strictly
positive finite constants whose values are insignificant and may change from line to line.
For functions f and g defined on a set D, we write f ≍ g if there exists a constant c ≥ 1
such that c−1f(x) ≤ g(x) ≤ c f(x) for all x ∈ D. For p ∈ [1,∞], we will use ‖f‖p to
denote the Lp-norm in Lp(M ;µ). For any D ⊂ M , denote by C(D) (resp. Cc(D)) the set
of continuous functions (resp. continuous functions with compact support) on D.

2 Preliminaries

In this section we present some preliminary results that will be used in the sequel.
We first recall the analytic characterization of harmonic and subharmonic functions.

Let D be an open subset of M . Recall that a function f is said to be locally in FD,
denoted as f ∈ F loc

D , if for every relatively compact subset U of D, there is a function
g ∈ FD such that f = g m-a.e. on U . The following is established in [C].

Lemma 2.1. ([C, Lemma 2.6]) Let D be an open subset of M . Suppose u is a function

in F loc
D that is locally bounded on D and satisfies that

∫

U×V c

|u(y)| J(dx, dy) < ∞ (2.1)
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for any relatively compact open sets U and V of M with Ū ⊂ V ⊂ V̄ ⊂ D. Then for

every v ∈ Cc(D) ∩ F , the expression

∫
(u(x)− u(y))(v(x)− v(y)) J(dx, dy)

is well defined and finite; it will still be denoted as E(u, v).

As noted in [C, (2.3)], since (E ,F) is a regular Dirichlet form on L2(M ;µ), for any
relatively compact open sets U and V with Ū ⊂ V , there is a function ψ ∈ F ∩ Cc(M)
such that ψ = 1 on U and ψ = 0 on V . Consequently,

∫

U×V c

J(dx, dy) =

∫

U×V c

(ψ(x)− ψ(y))2 J(dx, dy) ≤ E(ψ, ψ) < ∞,

so each bounded function u satisfies (2.1).
We say that a nearly Borel measurable function u on M is E-subharmonic (resp. E-

harmonic, E-superharmonic) in D if u ∈ F loc
D that is locally bounded on D, satisfies (2.1)

for any relatively compact open sets U and V of M with Ū ⊂ V ⊂ V̄ ⊂ D, and that

E(u, ϕ) ≤ 0 (resp. = 0,≥ 0) for any 0 ≤ ϕ ∈ F ∩ Cc(D).

The following is established in [C, Theorem 2.11 and Lemma 2.3] first for harmonic
functions, and then extended in [ChK, Theorem 2.9] to subharmonic functions.

Theorem 2.2. Let D be an open subset of M , and u a bounded function. Then u is

E-harmonic (resp. E-subharmonic) in D if and only if u is harmonic (resp. subharmonic)
in D.

We next recall four results from [CKW]. Lemma 2.3 is essentially given in [CK2,
Lemma 2.1].

Lemma 2.3. ([CKW, Lemma 2.1]) Assume that VD, (1.7) and Jφ,≤ hold. Then there

exists a constant c1 > 0 such that

∫

B(x,r)c
J(x, y)µ(dy) ≤ c1

φ(r)
for every x ∈ M and r > 0.

Proposition 2.4. ([CKW, Proposition 3.1(ii)]) Suppose that VD holds. Then either

LHK(φ) or NDL(φ) implies ζ = ∞ a.s., where ζ denotes the lifetime of the process X.

For a Borel measurable function u on M , following [CKP1], we define its nonlocal tail
Tail(u; x0, r) in the ball B(x0, r) by

Tail (u; x0, r) := φ(r)

∫

B(x0,r)c

|u(z)|
V (x0, d(x0, z))φ(d(x0, z))

µ(dz). (2.2)

In the following, for any x ∈ M and r > 0, set Br(x) = B(x, r).
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Lemma 2.5. ([CKW, Lemma 4.8]) Suppose VD, (1.7), FK(φ), CSJ(φ) and Jφ,≤ hold.

Let x0 ∈ M , R, r1, r2 > 0 with r1 ∈ [R/2, R] and r1+ r2 ≤ R, and u be an E-subharmonic

function in BR(x0). For θ > 0, set v := (u− θ)+. We have

∫

Br1 (x0)

v2 dµ ≤ c1
θ2νV (x0, R)ν

(∫

Br1+r2(x0)

u2 dµ

)1+ν

×
(
1 +

r1
r2

)β2
[
1 +

(
1 +

r1
r2

)d2+β2−β1 Tail (u; x0, R/2)

θ

]
,

where ν is the constant in FK(φ), d2 is the constant in (1.5), β1, β2 are the constants in

(1.7), and c1 is a constant independent of θ, x0, R, r1 and r2.

Proposition 2.6. ([CKW, Proposition 4.10]) (L2-mean value inequality) Assume

VD, (1.7), FK(φ), CSJ(φ) and Jφ,≤ hold. For any x0 ∈ M and r > 0, let u be a bounded

E-subharmonic in Br(x0). Then there is a constant C0 > 0 independent of x0 and r so

that

ess sup Br/2(x0)u ≤ C0

((
1

V (x0, r)

∫

Br(x0)

u2 dµ

)1/2

+ Tail (u; x0, r/2)

)
. (2.3)

The following three results are proved in [CKW].

Proposition 2.7. ([CKW, Proposition 4.14]) Assume VD, (1.7), FK(φ), Jφ,≤ and CSJ(φ)
hold. Then, Eφ holds.

Lemma 2.8. ([CKW, Lemma 4.15]) Assume that VD, (1.7) and FK(φ) hold. Then, Eφ,≤
holds.

Proposition 2.9. ([CKW, Proposition 7.6]) Assume that VD, RVD and (1.7) are satis-

fied. Then either PI(φ) or UHKD(φ) implies FK(φ).

We also record the following elementary elementary iteration lemma, see, e.g., [G,
Lemma 7.1] or [CKW, Lemma 4.9].

Lemma 2.10. Let β > 0 and let {Aj} be a sequence of real positive numbers such that

Aj+1 ≤ c0b
jA1+β

j for every j ≥ 0 with c0 > 0 and b > 1. If A0 ≤ c
−1/β
0 b−1/β2

, then we

have Aj ≤ b−j/βA0 for j ≥ 1, which in particular yields limj→∞Aj = 0.

The following formula, often called the Lévy system formula, will be used many times
in this paper. See, for example [CK2, Appendix A] for a proof.

Lemma 2.11. Let f be a non-negative measurable function on R+×M×M that vanishes

along the diagonal. Then for every t ≥ 0, x ∈ M0 and stopping time T (with respect to

the filtration of {Xt}),

Ex

[
∑

s≤T

f(s,Xs−, Xs)

]
= Ex

[∫ T

0

∫

M

f(s,Xs, y) J(Xs, dy) ds

]
.
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3 Consequences of Harnack inequalities

3.1 Consequences of PHI(φ)

In this subsection (together with some of the results from next subsection), we prove
that PHI(φ) implies UHK(φ), NDL(φ) and UJS. Without further mention, throughout
the proof we will assume that µ and φ satisfy VD and (1.7), respectively. Noting that
V (y, r) > 0 for every y ∈ M and r > 0 (since µ has full support), we have from (1.5) that
for all x, y ∈ M and 0 < r ≤ R,

V (x,R)

V (y, r)
≤ V (y, d(x, y) +R)

V (y, r)
≤ C̃µ

(d(x, y) +R

r

)d2
. (3.1)

Proposition 3.1. Under VD and (1.7), PHI(φ) implies UHKD(φ).

Proof. Let Ci (i = 1, . . . , 6) be the constants taken from the definition of PHI(φ). For
any x0 ∈ M , r > 0, t = C4φ(r) and any 0 ≤ f ∈ L2(M ;µ)∩L1(M ;µ), applying PHI(φ) to
the caloric function v(s, x) := Psf(x) in Q(0, x0, t, r), we have for x, y ∈ B(x0, C5r) \ Nv,

P(C1+C2)φ(r)/2f(x) ≤ C6P(C3+C4)φ(r)/2f(y),

where Nv is the properly exceptional set associated with v. Then,

V (x0, C5r)P(C1+C2)φ(r)/2f(x) ≤ C6

∫

B(x0,C5r)

P(C3+C4)φ(r)/2f(y)µ(dy) ≤ C6

∫
f(y)µ(dy).

Therefore, there is a constant c1 > 0 such that for almost all x ∈ M and t > 0,

Ptf(x) ≤
c1

V (x, φ−1(t))
‖f‖1, (3.2)

where we have used VD and (1.7) in the inequality above. In particular, the semigroup
{Pt} is locally ultracontractive. According to [CKW, Proposition 7.7] (see also [BBCK,
Theorem 3.1] and [GT, Theorem 2.12]), there exists a properly exceptional set N ⊂ M
such that, the semigroup {Pt} possesses the heat kernel p(t, x, y) with domain (0,∞) ×
(M \ N )× (M \ N ).

By (3.2) again, for almost all x, y ∈ M ,

p(t, x, y) ≤ c1
V (x, φ−1(t))

.

In the following, for any x ∈ M and t > 0, define

ϕ(x, t) = inf
0<r≤φ−1(t)

1

µ(B(x, r))

∫

B(x,r)

1

V (z, φ−1(t))
µ(dz).

On the one hand, by (3.1) from VD, there is a constant c2 > 1 such that for all x ∈ M
and t > 0,

1

c2V (x, φ−1(t))
≤ ϕ(x, t) ≤ c2

V (x, φ−1(t))
.
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On the other hand, for any t > 0, x 7→ ϕ(x, t) is an upper semi-continuous function on
M . Indeed, for any x ∈ M ,

lim sup
y→x

ϕ(y, t) = lim
s→0

sup
0<d(y,x)≤s

inf
0<r≤φ−1(t)

1

µ(B(y, r))

∫

B(y,r)

1

V (z, φ−1(t))
µ(dz)

≤ inf
0<r≤φ−1(t)

lim
s→0

sup
0<d(y,x)≤s

1

µ(B(y, r))

∫

B(y,r)

1

V (z, φ−1(t))
µ(dz)

= inf
0<r≤φ−1(t)

1

µ(B(x, r))

∫

B(x,r)

1

V (z, φ−1(t))
µ(dz)

=ϕ(x, t).

Combining all the conclusions above with [CKW, Proposition 7.7] again, we have

p(t, x, y) ≤ c3
V (x, φ−1(t))

for all (x, y) ∈ (M \ N )× (M \ N ).

This proves UHKD(φ). �

A key consequence of PHI(φ) is a near-diagonal lower bound estimate for pD(t, x, y).
For the cases of diffusions, similar fact was proved in [BGK, Section 4.3.4], but there is a
gap in the middle of Page 1129. (Indeed, the proof uses B(x0, R+ ρ) = ∪x∈B(x0,R)B(x, ρ),
which is not true in general unless the metric is geodesic.) Our proof below fixes the issue
(see step (ii) in the proof) and proves NDL(φ) in the framework of general metric spaces.

Proposition 3.2. Assume VD, (1.7) and PHI(φ) hold. Then NDL(φ) holds. Conse-

quently, X = {Xt} is conservative.

Proof. Note that by VD and Proposition 2.4, NDL(φ) implies the conservativeness of
the process X . We only need to verify that NDL(φ) holds. Below we will prove NDL(φ)
with φ(εr) and εφ−1(t) replaced by εφ(r) and φ−1(εt) in the definition.

(i) For any open ball B := B(x0, r) with x0 ∈ M0 and r > 0, it follows from (3.2) and
VD that for any t > 0

‖PB
t f‖∞ ≤ c1

V (x0, φ−1(t))
‖f‖1.

Then, by [BBCK, Theorem 3.1], the Dirichlet semigroup {PB
t } has the heat kernel

pB(t, x, y) defined on (0,∞)× (B \ N1)× (B \ N1) such that

pB(t, x, y) ≤ c1
V (x0, φ−1(t))

, x, y ∈ B \ N1,

where N1 ⊂ B is a properly exceptional set of the killing process {XB
t } such that N1 ⊃

N ∩B; moreover, there is an EB-nest {Fk} consisting of an increasing sequence of compact
sets of B so that N1 = B \ ∪∞

k=1Fk and that for every t > 0, y ∈ B \ N and k ≥ 1,
x 7→ pB(t, x, y) is continuous on each Fk (i.e. for every t > 0 and y ∈ B \N1, the function
x 7→ pB(t, x, y) is quasi-continuous on B).
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(ii) Choose an x̂0 ∈ B(x0, C5r) \ N1, where C5 ∈ (0, 1) is the constant in PHI(φ).
Define

B̂ = {y ∈ B \ N1 : p
B(t, x̂0, y) > 0 for some t > 0}.

We will show that for every x, y ∈ B̂, there is some t > 0 so that pB(t, x, y) > 0, and that

pB(t, x, y) = 0 on (0,∞)× B̂ × (B \ (B̂ ∪N1)). (3.3)

To prove these, first noting that since Px(limt↓0XB
t = XB

0 = x) = 1 implies Px(τB > 0) =

1, we must have pB(t, x̂0, x̂0) =
∫
B
pB(t/2, x̂0, y)

2 µ(dy) > 0 for some t > 0. Thus x̂0 ∈ B̂.
By PHI(φ) applied to the caloric function (s, y) 7→ pB(s, y, x̂0) = pB(s, x̂0, y), we see that

if x ∈ B̂, then there are constants rx > 0 and sx > 0 so that

pB(s, x̂0, z) > 0 for every z ∈ B(x, rx) \ N1 and s ≥ sx. (3.4)

Hence, there is an open subset U of B containing x̂0 so that B̂ = U \ N1. Similarly, for

every x, y ∈ B̂, by PHI(φ), there are constants r0 > 0 and s0 > 0 so that

pB(s, x, z) > 0 and pB(s, y, z) > 0 for every z ∈ B(x̂0, r0) \ N1 and s ≥ s0.

In particular, it follows that for every s, t ≥ s0,

pB(t+ s, x, y) ≥
∫

B(x̂0,r0)

pB(s, x, z)pB(t, z, y)µ(dz) > 0. (3.5)

For x ∈ B̂, define

B̂x = {y ∈ B \ N1 : p
B(t, x, y) > 0 for some t > 0}.

Then B̂ ⊂ B̂x. We claim B̂ = B̂x. Were B̂  B̂x, take y ∈ B̂x \ B̂. By PHI(φ) applied
to the caloric function (s, z) 7→ pB(s, z, y) = pB(s, y, z), there are constants rx > 0 and
sx > 0 so that pB(s, y, z) > 0 for every z ∈ B(x, rx) \ N1 and s ≥ sx, and (3.4) holds.
Hence, for every t, s ≥ sx, we have

pB(t+ s, x̂0, y) ≥
∫

B(x,rx)

pB(t, x̂0, z)p
B(s, z, y)µ(dz) > 0,

which implies that y ∈ B̂. This contradiction shows that B̂x = B̂ for every x ∈ B̂. We
have thus established that for every x, y ∈ B̂, there is some t > 0 so that pB(t, x, y) > 0,

and that (3.3) holds. Consequently, for every t > 0 and x, y ∈ B̂ = U \ N1,

pU(t, x, y) = pB(t, x, y)− Ex

[
pB(t− τU , X

B
τU
, y); t < τU

]
= pB(t, x, y) (3.6)

Observe that by the symmetry of pB(t, x, y), (3.3) implies that

∫

B\U
PB
t 1U(x)µ(dx) =

∫

U×(B\U)

pB(t, x, y)µ(dx)µ(dy) = 0;
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in other words, for every t > 0,

PB
t 1U = 0 µ-a.e. on B \ U. (3.7)

Let λ0 > 0 be the bottom of the generator LU associated with {PU
t } and ψ ≥ 0 the

corresponding eigenfunction with ‖ψ‖L2(U ;µ) = 1. Note that ψ = 0 on B \ U . In view of
(3.6) and (3.7), we have for every t > 0 and x ∈ B \ N1,

PB
t ψ(x) = PU

t ψ(x) = e−λ0tψ(x).

Since

e−λ0t‖ψ‖L∞(B;µ) = ‖PB
t ψ‖L∞(B;µ) ≤ µ(B)‖ψ‖L∞(B;µ) sup

x,y∈B\N1

pB(t, x, y),

we have

sup
x,y∈B\N1

pB(t, x, y) ≥ 1

µ(B)
e−λ0t. (3.8)

We claim that ψ > 0 on B̂. Noticing that

v(t, x) := PB
t ψ(x) = e−λ0tψ(x) (3.9)

is a caloric function on (0,∞)× B and ψ > 0 has unit L2(B;µ)-norm, by PHI(φ), there

are some y0 ∈ B̂ and r0 > 0 so that B(y0, r0) \ N1 ⊂ B̂, and ψ > 0 on B(y0, r0). On the

other hand, for every x ∈ B̂, by (3.5) (and so pB(s, x, y0) > 0 for some s > 0) and PHI(φ)
again, there are constants s0 > 0 and r1 ∈ (0, r0] so that pB(t, x, z) > 0 for every t ≥ s0
and z ∈ B(y0, r1) \ N1. It follows then

ψ(x) = eλ0tPB
t ψ(x) ≥ eλ0t

∫

B(y0,r1)

pB(t, x, z)ψ(z)µ(dz) > 0.

The claim that ψ > 0 on B̂ is proved. In particular, ψ(x̂0) > 0.
(iii) Let Ci (i = 1, . . . , 6) be the constants in the definition of PHI(φ). Applying

PHI(φ) to the function v(t, x) = e−λ0tψ(x) in the cylinder Q(0, x0, C4φ(r), r), we get that

v(t−, x̂0) ≤ C6v(t+, x̂0),

where t− = C1+C2

2
φ(r) and t+ = C3+C4

2
φ(r). It follows from (3.9) that

e−λ0t−ψ(x̂0) ≤ C6e
−λ0t+ψ(x̂0).

Since ψ(x̂0) > 0, we arrive at

λ0 ≤
logC6

t+ − t−
≤ 1

φ(κr)
,

where κ > 0 is chosen so that

(C3 + C4)− (C1 + C2)

2
φ(r/2) ≥ φ(κr) logC6
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for all r > 0. This along with (3.8) further yields that for all t > 0,

ess sup x,y∈Bp
B(t, x, y) ≥ 1

µ(B)
e−

t
φ(κr) .

Following the arguments between (4.52) and (4.60) in [BGK, 1130–1131] line by line
with small modifications, we obtain that there is a constant c′ > 0 such that for all x,
y ∈ B(x0, C5r) \ N1 and t ∈ (t0 + C3φ(r), t0 + C4φ(r)) with t0 = (C3 − C1)φ(r),

pB(t, x, y) ≥ c′

V (x0, r)
. (3.10)

Note that, in order to get (3.10) we should change [BGK, (4.57)] into

ess sup x∈B′pB(s, x, z) ≤ C6p
B(t, y, z), y, z ∈ B′ := B(x0, C5r) \ N1.

Furthermore, using (3.10) instead of [BGK, (4.60)], one can verify that NDL(φ) holds for
this case by the almost same argument between (4.60) and (4.63) in [BGK, 1131–1132].
�

We next prove that PHI(φ) implies UJS.

Proposition 3.3. Under VD and (1.7), PHI(φ) implies UJS.

Proof. (i) Since (E ,F) is a regular Dirichlet form on L2(M ;µ), for any relatively
compact open sets U and V with Ū ⊂ V , there is a function ψ ∈ F ∩ Cc(M) such that
ψ = 1 on U and ψ = 0 on V c. Consequently,

∫

U×V c

J(dx, dy) =

∫

U×V c

(ψ(x)− ψ(y))2 J(dx, dy) ≤ E(ψ, ψ) < ∞. (3.11)

Since U and V are arbitrarily, we get that for almost all x ∈ M and each r > 0,

J(x,B(x, r)c) < ∞. (3.12)

(ii) Let D be an open set of M , and f(t, z) be a bounded and non-negative function
on (0,∞)×Dc. Then

u(t, z) :=

{
Ez [f(t− τD, XτD); τD ≤ t] , t > 0, z ∈ M0,

0, t > 0, z ∈ N

is non-negative on (0,∞)×M and caloric in (0,∞)×D. In the proof below, the constants
Ci (i = 1, . . . , 6) are taken from the definition of PHI(φ). For any x, y ∈ M0 and 0 < r ≤
1
2
d(x, y). For any 0 < ε < r and 0 < h < (C1 + C2)φ(r)/2, define

fh(t, z) = 1((C1+C2)φ(r)/2−h,(C1+C2)φ(r)/2)(t)1B(y,ε)(z), t > 0, z ∈ M.
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For t ≥ (C1 + C2)φ(r)/2, define

uh(t, z) =E
z
[
fh(t− τB(x,r), XτB(x,r)

); τB(x,r) ≤ t
]

=Pz
(
XτB(x,r)

∈ B(y, ε), t− (C1 + C2)φ(r)/2 < τB(x,r) < t− (C1 + C2)φ(r)/2 + h
)

if z ∈ M0, and uh(t, z) = 0 if z ∈ N .
According to Lemma 2.11, for any z ∈ B(x, r) ∩M0 and t ≥ (C1 + C2)φ(r)/2,

uh(t, z) = E
z

[∫ τB(x,r)

0

dv

∫

B(y,ε)

1(t−(C1+C2)φ(r)/2,t−(C1+C2)φ(r)/2+h)(v) J(Xv, du)

]

=

∫ t−(C1+C2)φ(r)/2+h

t−(C1+C2)φ(r)/2

Ez

[
1(0,τB(x,r))(v)

∫

B(y,ε)

J(Xv, du)

]
dv

=

∫ t−(C1+C2)φ(r)/2+h

t−(C1+C2)φ(r)/2

PB(x,r)
v H(z) dv,

where H(z) :=
∫
B(y,ε)

J(z, du).

Applying PHI(φ) to uh in Q(0, x, C4φ(r), r), we obtain that for any x0 ∈ B(x, ε1) \
(Nuh

∪ N ) with ε1 ≤ C5r,

uh((C1 + C2)φ(r)/2, x0) ≤ C6uh((C3 + C4)φ(r)/2, x).

Now, by the definition of uh and Proposition 3.1,

uh((C3 + C4)φ(r)/2, x) =

∫

B(x,r)

pB(x,r)

(
(C3 + C4)− (C1 + C2)

2
φ(r), x, z

)

× uh((C1 + C2)φ(r)/2, z)µ(dz)

≤ c1
V (x, r)

∫

B(x,r)

uh((C1 + C2)φ(r)/2, z)µ(dz).

Combining both inequalities above and integrating by 1
V (x,ε1)

∫
B(x,ε1)

· · ·µ(dx0), we have

1

V (x, ε1)

∫

B(x,ε1)

uh((C1 + C2)φ(r)/2, x0)µ(dx0)

≤ c2
V (x, r)

∫

B(x,r)

uh((C1 + C2)φ(r)/2, z)µ(dz).

(3.13)

According to (3.11), H ∈ L1(B(x, r);µ). Then, as h → 0,

∣∣∣
∫

B(x,ε1)

(1
h
uh((C1 + C2)φ(r)/2, z)−H(z)

)
µ(dz)

∣∣∣

≤ 1

h

∫ h

0

∫

B(x,ε1)

∣∣∣PB(x,r)
v H(z)−H(z)

∣∣∣µ(dz) dv

≤ 1

h

∫ h

0

‖(PB(x,r)
v H −H)‖L1(B(x,r);µ) dv → 0,
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thanks to the continuity of the semigroup {PB(x,r)
t } in L1(B(x, r);µ). Similarly, we have

lim
h→0

∣∣∣
∫

B(x,r)

(1
h
uh((C1 + C2)φ(r)/2, z)−H(z)

)
µ(dz)

∣∣∣ = 0.

Thus dividing both sides of (3.13) by h and taking h → 0, we have

1

V (x, ε1)

∫

B(x,ε1)

∫

B(y,ε)

J(z, du)µ(dz) ≤ c2
V (x, r)

∫

B(x,r)

∫

B(y,ε)

J(z, du)µ(dz).

Letting ε1 → 0, by (3.11), (3.12) and the Lebesgue differentiation theorem (e.g. see
[H, Theorem 1.8]), we find that for µ-a.e x ∈ M ,

J(x,B(y, ε)) ≤ c2
V (x, r)

∫

B(x,r)

∫

B(y,ε)

J(z, du)µ(dz) =
c2

V (x, r)

∫

B(y,ε)

∫

B(x,r)

J(z, du)µ(dz).

The above inequality implies that J(x, dy) is absolutely continuous with respect to the
measure µ(dy). So there is a non-negative function J(x, y) so that J(x, dy) = J(x, y)µ(dy).
Since J(dx, dy) is a symmetric measure, we may modify the values of J(x, y) so that it is
symmetric in (x, y) for µ-a.e. x, y ∈ M . Dividing the above by V (y, ε) and then sending
ε → 0, we have by the Lebesgue differentiation theorem again that for µ-a.e. x, y ∈ M
and 0 < r < 1

2
d(x, y), we have

J(x, y) ≤ c2
V (x, r)

∫

B(x,r)

J(z, y)µ(dz),

proving UJS. �

Corollary 3.4. If VD, (1.7), UJS and NDL(φ) are satisfied, then Jφ,≤ holds. In partic-

ular, Jφ,≤ holds under the conditions of VD, (1.7) and PHI(φ).

Proof. For any x ∈ M0 and r, t > 0, by Lemma 2.11,

1 ≥ Px(XτB(x,r)
/∈ B(x, r), τB(x,r) ≤ t and τB(x,r) is a jumping time)

=

∫ t

0

∫

B(x,r)

pB(x,r)(s, x, y)J(y, B(x, r)c)µ(dy) ds.

By using NDL(φ) and taking t = φ(εr) (where ε ∈ (0, 1) is the constant in the definition
of NDL(φ)), we obtain that for any x ∈ M0 and r > 0,

1 ≥
∫ t

t/2

∫

B(x,εφ−1(t/2))

pB(x,r)(s, x, y)J(y, B(x, r)c)µ(dy) ds

≥ t

2
ess inf s∈[t/2,t],y∈B(x,εφ−1(t/2))p

B(x,r)(s, x, y)

∫

B(x,εφ−1(t/2))

J(y, B(x, r)c)µ(dy)

≥ c1t

V (x, φ−1(t))

∫

B(x,εφ−1(t/2))

J(y, B(x, r)c)µ(dy).
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Thus, by VD and (1.7), there are constants c2, c3 > 1 such that

∫

B(x,r)

J(y, B(x, c2r)
c)µ(dy) ≤ c3V (x, r)

φ(r)
. (3.14)

For fixed x, y ∈ M , set r = d(x,y)
1+c2

≤ d(x,y)
2

. Then, by (1.17) and (3.14),

J(x, y) ≤ c4
V (x, r)

∫

B(x,r)

J(z, y)µ(dz)

≤ c24
V (x, r)V (y, r)

∫

B(x,r)

∫

B(y,r)

J(z, u)µ(du)µ(dz)

≤ c24
V (x, r)V (y, r)

∫

B(x,r)

∫

B(x,c2r)c
J(z, u)µ(du)µ(dz)

≤ c5
V (x, r)V (x, r)

∫

B(x,r)

J(z, B(x, c2r)
c)µ(dz) ≤ c6

V (x, r)φ(r)
,

which completes the proof, thanks to VD and (1.7) again. �

We note that by Proposition 3.1, Corollary 3.4, Proposition 3.5 in the next subsection
and Theorem 1.10, we have PHI(φ) =⇒ UHK(φ).

3.2 Consequences of NDL(φ)

In this subsection, we present some consequences of NDL(φ). Since PHI(φ) implies
NDL(φ) by Proposition 3.2, this subsection can be regarded as a continuation of Sub-
section 3.1.

Proposition 3.5. Assume that VD, (1.7), and NDL(φ) hold. Then

(i) PI(φ) holds. If furthermore RVD is satisfied, then FK(φ) also holds.

(ii) Eφ,≥ holds. If in addition RVD is satisfied, then we have Eφ,≤ and so Eφ.

In particular, if VD, RVD, (1.7) and PHI(φ) hold, then so do (i) and (ii).

Proof. (i) For any x0 ∈ M and r > 0, let B = B(x0, r). Define a bilinear form (Ē , F̄)
on L2(B;µ) by

Ē(u, v) =
∫

B×B

(u(x)− u(y))(v(x)− v(y))J(x, y)µ(dx)µ(dy),

F̄ =
{
u ∈ L2(B;µ) : Ē(u, u) < ∞

}
.

One can easily check by using Fatou’s lemma that (Ē , F̄) is closable and is a Dirichlet
form on L2(B;µ). Let {P̄t} be the L2-semigroup associated with (Ē , F̄). Let F̄B be
the closure of F̄ ∩ Cc(B). Then (Ē , F̄B) is a regular Dirichlet form on L2(B;µ), whose
associated semigroup will be denoted as {P̄B

t }. By [CF, Theorem 5.2.17], (Ē , F̄B) is the
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resurrected Dirichlet form of (E ,FB). In other words, if we denote by X̄B = {X̄B
t } the

Hunt process associated with the regular Dirichlet form (Ē , F̄B) on L2(B;µ), then X̄B is
the resurrection of XB = {XB

t } in B, and so X̄B can be obtained from XB by creation
through a Feynman-Kac transform. Consequently, X̄B has a transition density function
p̄B(t, x, y) with respect to µ and p̄B(t, x, y) ≥ pB(t, x, y) for every t > 0 and x, y ∈ B∩M0.
This together with NDL(φ) implies that there exist ε ∈ (0, 1) and c1 > 0 such that for all
x0 ∈ M and x, y ∈ B(x0, ε

2r) ∩M0,

p̄B(φ(εr), x, y) ≥ pB(φ(εr), x, y) ≥ c1
V (x0, r)

.

On the other hand, we know from [CF, Section 6.2], (Ē , F̄) is the active reflected Dirichlet
space for (Ē , F̄B). Although (Ē , F̄) may not be regular as a Dirichlet form on L2(B;µ), by

Silverstein [Si, Theorem 20.1], there is a locally compact separable metric space B̃ (called

regularizing space) so that (Ē , F̄) is regular on L2(B̃; µ̃) and B is intrisincally open in B̃.

Here µ̃ is an extension of µ to B̃ by setting µ̃(B̃ \B) = 0. Let X̃ = {X̃t} denote the Hunt

process on B̃ associated with the regular Dirichlet form (Ē , F̄) on L2(B̃;µ). Then the

part process X̃B = {X̃B
t } of X̃ killed upon leaving B has the same distribution as X̄B.

Now for f ∈ F̄ , by the basic property of Dirichlet form (see, for example, [CF, (1.1.4)]),

Ē(f, f) ≥ 1

φ(εr)

∫

B

f(x)(f − P̄φ(εr)f)(x)µ(dx)

≥ 1

2φ(εr)
Eµ̃
[
(f(X̃φ(εr))− f(X̃0))

2
]

≥ 1

2φ(εr)
Eµ̃
[
(f(X̃φ(εr))− f(X̃0))

2;φ(εr) < τB

]

=
1

2φ(εr)

∫

B×B

p̄B(φ(εr), x, y)(f(x)− f(y))2 µ(dx)µ(dy)

≥ c2
V (x0, r)φ(r)

∫

B(x0,ε2r)

∫

B(x0,ε2r)

(f(x)− f(y))2 µ(dx)µ(dy)

≥ c3
φ(r)

∫

B(x0,ε2r)

(f(x)− f̄B(x0,ε2r))
2 µ(dx).

Recall that f̄D := 1
µ(D)

∫
D
f dµ for any open set D of M . In the last two inequalities above

we have used VD, (1.7) and the fact that
∫

B(x0,ε2r)

(
f(x)− f̄B(x0,ε2r)

)2
µ(dx) = inf

a∈R

∫

B(x0,ε2r)

(f(x)− a)2 µ(dx).

This establishes PI(φ).
That PI(φ) implies FK(φ) under additional assumption RVD is given in Proposition

2.9. (Note that, under additional assumption RVD, FK(φ) is also a direct consequence of
PHI(φ), thanks to Propositions 3.1 and 2.9.)

(ii) By VD, (1.7) and NDL(φ), for some ε ∈ (0, 1),

Px(τB(x,r) ≥ φ(εr)) =

∫

B(x,r)

pB(x,r)(φ(εr), x, y)µ(dy)
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≥
∫

B(x,ε2r)

pB(x,r)(φ(εr), x, y)µ(dy)≥ c6,

and thus Ex0τB(x0,r) ≥ c6φ(r). This proves Eφ,≥.
Next, we assume that RVD is satisfied. Let B = B(x0, r) with x0 ∈ M0 and r > 0, and

B′ = B(x0, r/(2lµ)), where lµ > 1 is the constant in (1.6). Then, VD, (1.7) and NDL(φ)
give us that for t = φ(r/ε) with some ε ∈ (0, 1),

p(t, x, y) ≥ c1
V (x0, r)

, x, y ∈ B\N .

Fix y0 ∈ M with (1+2lµ)r/(2lµ(1+ lµ)) < d(x0, y0) < (1+2lµ)r/(2(1+ lµ)) (such a point
y0 indeed exists due to RVD), then for any x ∈ B′\N ,

Px(Xt /∈ B′) ≥Px(Xt ∈ B(y0, r/(2(1 + lµ)))) =

∫

B(y0,r/(2(1+lµ)))

p(t, x, y)µ(dy)

≥c2V (y0, r/(2(1 + lµ)))

V (x0, r)
≥ c3,

where VD is used in the last inequality. So, we have Px(τB′ > t) ≤ Px(Xt ∈ B′) ≤
1 − c3 for all x ∈ B′\N . Hence, by the Markov property, Px(τB′ > kt) ≤ (1 − c3)

k,
and thus ExτB′ ≤ c4t. Since Ex0τB(x0,r/(2lµ)) = Ex0τB′ , replacing r/(2lµ) by r gives us
that Ex0τB(x0,r) ≤ c5φ(r), where (1.7) is used in the inequality above. Therefore, Eφ

holds. (Note that, by Lemma 2.8, under VD and (1.7), FK(φ) implies Eφ,≤. Then, Eφ,≤
can be also deduced from PHI(φ) directly under additional assumption RVD, thanks to
Propositions 3.1 and 2.9.) �

Combining all the conclusions of this and previous subsections, we can obtain the
following main result in this section.

Theorem 3.6. Assume that µ and φ satisfy VD, RVD and (1.7) respectively. Then the

following hold

PHI(φ) =⇒ UHKD(φ) + NDL(φ) + UJS + Eφ + Jφ,≤

⇐⇒ UHKD(φ) + NDL(φ) + UJS

⇐⇒ UHK(φ) + NDL(φ) + UJS.

Proof. Note that by Corollary 3.4, NDL(φ) + UJS =⇒ Jφ,≤; and that by Proposition
3.5, NDL(φ) implies Eφ. According to Theorem 1.10, UHK(φ) + conservativeness ⇐⇒
UHKD(φ) + Jφ,≤ + Eφ. Then the required assertion now follows from all the previous
propositions. (Here we note that both PHI(φ) and NDL(φ) imply the conservativeness of
the process {Xt}, see Proposition 2.4 and Proposition 3.2.) �
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3.3 Hölder regularity

Another consequence of NDL(φ) is that, it along with Eφ,≤ and Jφ,≤ implies the joint
Hölder regularity of bounded caloric functions. In other words, NDL(φ) + Eφ,≤ + Jφ,≤
imply PHR(φ) and EHR. For our purpose, in the following lemma we use the definition
of NDL(φ) with εφ(r) and φ−1(εt) replaced by φ(εr) and εφ−1(t), respectively.

Lemma 3.7. Suppose that VD, (1.7) and NDL(φ) hold. For every 0 < δ ≤ ε (where
ε is the constant in the definition of NDL(φ)), there exists a constant C1 > 0 such that

for every r > 0, x ∈ M0, t ≥ δφ(r) and any compact set A ⊂ [t − δφ(r), t− δφ(r)/2]×
B(x, φ−1(εδφ(r)/2)),

P(t,x)(σA < τ[t−δφ(r),t]×B(x,r)) ≥ C1
m⊗ µ(A)

V (x, r)φ(r)
, (3.15)

where m⊗ µ is a product of the Lebesgue measure on R+ and µ on M .

Proof. The proof is almost the same as that for [CKK2, Lemma 4.9(i)]. Let τr =
τ[t−δφ(r),t]×B(x,r) and As = {y ∈ M : (s, y) ∈ A}. For any t, r > 0 and x ∈ M0,

δφ(r)P(t,x)(σA < τr) ≥
∫ δφ(r)

0

P(t,x)

(∫ τr

0

1A(t− s,Xs) ds > 0

)
du

≥
∫ δφ(r)

0

P(t,x)

(∫ τr

0

1A(t− s,Xs) ds > u

)
du

=E(t,x)

[∫ τr

0

1A(t− s,Xs) ds

]
.

Note that, for any t ≥ δφ(r),

E(t,x)

[∫ τr

0

1A(t− s,Xs) ds

]
=

∫ δφ(r)

δφ(r)/2

P(t,x)
((
t− s,XB(x,r)

s

)
∈ A

)
ds

=

∫ δφ(r)

δφ(r)/2

Px
(
XB(x,r)

s ∈ At−s

)
ds

=

∫ δφ(r)

δφ(r)/2

ds

∫

At−s

pB(x,r)(s, x, y)µ(dy).

By VD, (1.7) and NDL(φ), for any s ∈ [δφ(r)/2, δφ(r)] and y ∈ B(x, φ−1(εδφ(r)/2)) \N ,

pB(x,r)(s, x, y) ≥ c1
V (x, r)

.

Thus,

E(t,x)

[∫ τr

0

1A(t− s,Xs) ds

]
≥ c1

V (x, r)

∫ δφ(r)

δφ(r)/2

ds

∫

At−s

µ(dy) =
c1m⊗ µ(A)

V (x, r)
.

Combining all the conclusions above, we obtain the desired assertion. �
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Proposition 3.8. Assume that VD, (1.7), NDL(φ), Eφ,≤ and Jφ,≤ hold. For every δ ∈
(0, 1), there exist positive constants C > 0 and γ ∈ (0, 1], where γ is independent of δ, so
that for any bounded caloric function u in Q(t0, x0, φ(r), r),

|u(s, x)− u(t, y)| ≤ C

(
φ−1(|s− t|) + d(x, y)

r

)γ

ess sup [t0,t0+φ(r)]×M |u|

for dt×µ-almost all (s, x) and (t, y) ∈ Q(t0, x0, φ(δr), δr). In other words, under VD and

(1.7), NDL(φ) + Eφ,≤ + Jφ,≤ imply PHR(φ) and EHR.

Proof. With estimate (3.15), the result can be proved in exactly the same way as that
for [CK1, Theorem 4.14]. We omit the details here. �

The following two consequences of Hölder regularities will be used in Subsection 4.2.

Proposition 3.9. Suppose (1.7) holds. Then PHR(φ) implies Eφ,≥.

Proof. Let B = B(x0, r) for x0 ∈ M0 and r > 0. Define u(t, x) = Px(τB > t), which
is a bounded parabolic function in (0,∞) × B. Since limt→0 u(t, x0) = 1, there is some
t0 > 0 so that u(t0, x0) ≥ 3/4. By (1.14) of PHR(φ) and (1.7), there is a constant δ0 > 0
independent of x0 and r > 0 so that |u(s, x0)− u(t0, x0)| ≤ 1/4 for s ∈ [t0, t0 + δ0φ(r)]. It
follows then

Ex0
[
τB(x0,r)

]
=

∫ ∞

0

u(s, x0) ds ≥
∫ t0+δ0φ(r)

t0

u(s, x0) ds ≥ δ0φ(r)/2.

That is, Eφ,≥ holds. �

Lemma 3.10. Suppose EHR holds. Let D ⊂ M be an open set with ess sup y∈D∩M0
EyτD <

∞. Fix a function f ∈ Bb(D) and set u = GDf . Then for any B(x0, r) ⊂ D and

0 < r1 ≤ r,

oscB(x0,r1)∩M0
u ≤ 2 sup

y∈B(x0,r)∩M0

|f(y)| sup
y∈B(x0,r)∩M0

EyτB(x0,r) + c (r1/r)
θ sup
z∈D∩M0

|u(z)|,

where c > 0 and θ ∈ (0, 1] only depend on the constants in EHR.

Proof. Note that for any x ∈ D ∩M0,

GD|f |(x) = Ex

[∫ τD

0

|f(Xt)| dt
]
≤ sup

y∈D∩M0

|f(y)|ExτD.

Consequently, for any r1 ∈ (0, r),

oscB(x,r1)∩M0
GB(x0,r)f ≤ 2 sup

y∈B(x0,r1)∩M0

GB(x0,r)|f |(y)
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≤ 2 sup
y∈B(x0,r)∩M0

|f(y)| sup
y∈B(x0,r1)∩M0

EyτB(x,r).

SinceGDf(y)−GB(x0,r)f(y) = Ey[GDf(XτB(x0,r)
)] = Ey[u(XτB(x0,r)

)] is harmonic inB(x0, r),
and u = 0 outside D, we have by EHR and Remark 1.13(ii) that

oscB(x,r1)∩M0u

≤ oscB(x0,r1)∩M0
GB(x0,r)f + oscB(x0,r1)∩M0

(GDf −GB(x0,r)f)

≤ 2 sup
y∈B(x,r)∩M0

|f(y)| sup
y∈B(x0,r1)∩M0

EyτB(x0,r) + c(r1/r)
θ sup
y∈D∩M0

|Ey[u(XτB(x,r)
)]|

≤ 2 sup
y∈B(x,r)∩M0

|f(y)| sup
y∈B(x,r)∩M0

EyτB(x,r) + c (r1/r)
θ sup
z∈D∩M0

|u(z)|.

This proves the lemma. �

4 Equivalences of PHI(φ)

We have already given some part of the proof of Theorem 1.17 in Section 3. In this section,
we will complete the proof. In Subsection 4.1, we prove (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4).
(1) ⇐⇒ (5) ⇐⇒ (6) will be proved in Subsection 4.2, and (1) ⇐⇒ (7) in Subsection 4.3.

4.1 PHI(φ) ⇐⇒ PHI+(φ) ⇐⇒ UHK(φ)+NDL(φ)+UJS ⇐⇒ NDL(φ)+

UJS

In this subsection, we will establish (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4) in Theorem 1.17. Since
(1) =⇒ (3) is already proved in Subsection 3.1, and (1) =⇒ (2) and (3) =⇒ (4) hold
trivially, it remains to show that prove (4) =⇒ (3) =⇒ (2).

Lemma 4.1. Assume that VD, (1.7), UHK(φ), NDL(φ) and UJS. Let δ ≤ ε (where
ε ∈ (0, 1) is the constant in the definition of NDL(φ)), and θ ≥ 1/2. Let 0 < δ0 < δ and

0 < δ1 < δ2 < δ3 < δ4 such that (δ3 − δ2)φ(r) ≥ φ(δ0r) and δ4φ(r) ≤ φ(δr) for all r > 0.
Set

Q1 = (t0, t0 + δ4φ(r))× B(x0, δ
2
0r), Q2 = (t0, t0 + δ4φ(r))×B(x0, r)

for x0 ∈ M , t0 ≥ 0 and r > 0. Define

Q3 = [t0 + δ1φ(r), t0 + δ2φ(r)]× B(x0, δ
2
0r/2) \ N

and

Q4 = [t0 + δ3φ(r), t0 + δ4φ(r)]×B(x0, δ
2
0r/2) \ N .

Let f : (t0,∞)×M → R+ be bounded and supported in (t0,∞)× B(x0, (1 + θ)r)c. Then
there is a constant C2 > 0 such that the following holds:

E(t1,y1)f(ZτQ1
) ≤ C2E

(t2,y2)f(ZτQ2
) for every (t1, y1) ∈ Q3 and (t2, y2) ∈ Q4.
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Proof. The proof is the same as that of [CKK1, Lemma 5.3]. We present the proof here
for the sake of completeness.

Without loss of generality, we may and do assume that t0 = 0. For x0 ∈ M and s > 0,
set Bs = B(x0, s). By Lemma 2.11, for any (t2, y2) ∈ Q4,

E(t2,y2)f(ZτQ2
) = E(t2,y2)f(t2 − (τBr ∧ t2), XτBr∧t2)

= E(t2,y2)

[∫ t2

0

1{t≤τBr } dt

∫

Bc
(1+θ)r

f(t2 − t, v)J(Xt, v)µ(dv)

]

=

∫ t2

0

dt

∫

Bc
(1+θ)r

f(t2 − t, v)E(t2,y2)
[
1{t≤τBr }J(Xt, v)

]
µ(dv)

=

∫ t2

0

ds

∫

Bc
(1+θ)r

f(s, v)E(t2,y2)
[
1{t2−s≤τBr}J(Xt2−s, v)

]
µ(dv)

=

∫ t2

0

ds

∫

Bc
(1+θ)r

f(s, v)µ(dv)

∫

Br

pBr(t2 − s, y2, z)J(z, v)µ(dz) (4.1)

≥
∫ t1

0

ds

∫

Bc
(1+θ)r

f(s, v)µ(dv)

∫

B
δ2
0
r

pBr(t2 − s, y2, z)J(z, v)µ(dz).

Since for s ∈ [0, t1], φ(δ0r) ≤ t2− t1 ≤ t2−s ≤ φ(δr), by VD, (1.7) and NDL(φ), we know
that the right hand side of the inequality above is greater than or equal to

c1
V (x0, r)

∫ t1

0

ds

∫

Bc
(1+θ)r

f(s, v)µ(dv)

∫

B
δ20r

J(z, v)µ(dz).

So the proof is complete, once we can obtain that for every (t1, y1) ∈ Q3,

E(t1,y1)f(ZτQ1
) ≤ c2

V (x0, r)

∫ t1

0

ds

∫

Bc
(1+θ)r

f(s, v)µ(dv)

∫

B
δ2
0
r

J(z, v)µ(dz). (4.2)

Similar to the argument for (4.1), we have by using Lemma 2.11,

E(t1,y1)f(ZτQ1
) =

∫ t1

0

ds

∫

Bc
(1+θ)r

f(s, v)µ(dv)

∫

B
δ2
0
r

p
B

δ20r(t1 − s, y1, z)J(z, v)µ(dz)

=

∫ t1

0

ds

∫

B
δ2
0
r

p
B

δ20r(t1 − s, y1, z)µ(dz)

∫

Bc
(1+θ)r

f(s, v)J(z, v)µ(dv).

Notice that
∫

B
δ2
0
r

p
B

δ20r(t1 − s, y1, z)µ(dz)

∫

Bc
(1+θ)r

f(s, v)J(z, v)µ(dv)

=

∫

B
δ2
0
r
\B

3δ2
0
r/4

p
B

δ2
0
r(t1 − s, y1, z)µ(dz)

∫

Bc
(1+θ)r

f(s, v)J(z, v)µ(dv)

28



+

∫

B
3δ20r/4

p
B

δ2
0
r(t1 − s, y1, z)µ(dz)

∫

Bc
(1+θ)r

f(s, v)J(z, v)µ(dv)

=: I1 + I2.

On the one hand, when z ∈ (Bδ20r
\B3δ20r/4

) ∩M0, we have δ20r/4 ≤ d(y1, z) ≤ 3δ20r/2, and
so by UHK(φ), VD and (1.7),

p
B

δ20r(t1 − s, y1, z) ≤
c3t1

V (y1, d(y1, z))φ(d(y1, z))
≤ c4

V (x0, r)

for some constants c3, c4 > 0. Hence,
∫ t1
0

I1 ds is less than or equal to the right hand side
of (4.2). On the other hand, for z ∈ B3δ20r/4

, by UJS and VD,
∫

Bc
(1+θ)r

J(z, v)f(s, v)µ(dv) ≤ c5
V (x0, r)

∫

B(z,δ20r/4)

J(w, v)µ(dw)

∫

Bc
(1+θ)r

f(s, v)µ(dv)

≤ c5
V (x0, r)

∫

B
δ20r

J(w, v)µ(dw)

∫

Bc
(1+θ)r

f(s, v)µ(dv).

Note that the right hand side of the above inequality does not depend on z. Multiplying

both sides by p
B

δ2
0
r(t1 − s, y1, z) and integrating over z ∈ B3δ20r/4

and then over s ∈ [0, t1],

we obtain that
∫ t1
0

I2 ds is also less than or equal to the right hand side of (4.2). This
proves the lemma. �

Once again, in the following lemma we use the definition of NDL(φ) with εφ(r) and
φ−1(εt) replaced by φ(εr) and εφ−1(t), respectively.

Lemma 4.2. Suppose that VD, (1.7) and NDL(φ) hold. Let 0 < δ ≤ ε/4 such that

4δφ(2r) ≤ εφ(r) for all r > 0, where ε ∈ (0, 1) is the constant in the definition of NDL(φ).
Then there exists a constant C3 > 0 such that for every R > 0, r ∈ (0, φ−1(εδφ(R)/2)/2],
x0 ∈ M , δφ(R)/2 ≤ t − s ≤ 4δφ(2R), x ∈ B(x0, φ

−1(εδφ(R)/2)/2) \ N , and z ∈
B(x0, φ

−1(εδφ(R)/2)) \ N

P(t,z)(σU(s,x,r) ≤ τ[s,t]×B(x0,R)) ≥ C3
V (x, r)

V (x,R)
,

where U(s, x, r) = {s} × B(x, r).

Proof. The left hand side of the desired estimate is equal to

Pz(X
B(x0,R)
t−s ∈ B(x, r)) =

∫

B(x,r)

pB(x0,R)(t− s, z, y)µ(dy). (4.3)

By VD, (1.7), NDL(φ), and the facts that δφ(R)/2 ≤ t − s ≤ 4δφ(2R) and B(x, r) ⊂
B(x0, φ

−1(εδφ(R)/2)), (4.3) is greater than or equal to

c1
V (x, r)

V (z, R)
≥ c2

V (x, r)

V (x,R)
.

This proves the desired assertion. �

29



Having these two lemmas as well as Lemma 3.7 at hand, one can obtain the following
form of PHI+(φ).

Theorem 4.3. Suppose that VD and (1.7) hold. Under UHK(φ), NDL(φ) and UJS, the
following PHI+(φ) holds: there exist constants δ > 0, C > 1 and K ≥ 1 such that for

every x0 ∈ M \ N , t0 ≥ 0, R > 0 and every non-negative function u on [0,∞)×M that

is parabolic on Q := (t0, t0 + 4δφ(CR))× B(x0, CR), we have

ess sup (t1,y1)∈Q−u(t1, y1) ≤ K ess inf (t2,y2)∈Q+
u(t2, y2), (4.4)

where Q− = [t0 + δφ(CR), t0 + 2δφ(CR)] × B(x0, R) and Q+ = [t0 + 3δφ(CR), t0 +
4δφ(CR))×B(x0, R).

Proof. Let ε ∈ (0, 1) be the constant in NDL(φ). Take and fix some δ ∈ (0, ε/4] so that
δφ(2r) ≤ φ(εr)/4 for all r > 0 and take δ0 ∈ (0, δ) so that φ(δ0r) ≤ δφ(r) for all r > 0.
The existence of such δ and δ0 is guaranteed by the assumption (1.7). We choose δ and
δ0 in such a way so that Lemma 4.1 holds by taking δj to be jδ for j = 1, 2, 3, 4 there.
Condition (1.7) ensures that there is a constant c0 ∈ (0, 1/2) so that φ−1(δεφ(r)/2) ≥ c0r
for every r > 0. Take

C = (2/c0) + 2 and C0 = C − 2 = 2/c0. (4.5)

The reason of defining such C0 is that the conclusion of Lemma 4.2 holds for any x, z ∈
B(x0, R/C0).

Let u be a non-negative function on [0,∞) × M that is parabolic on Q := (t0, t0 +
4δφ(CR))×B(x0, CR). We will show (4.4) holds.

The proof below is mainly based on that of [CKK1, Theorem 5.2] with some non-trivial
modifications; see also the proof of [CK1, Proposition 4.3] or of [CK2, Theorem 4.12].
Truncating u by n outside Q and then passing n → ∞ if needed, without loss of generality,
we may and do assume that t0 = 0, and that the function u is bounded on Q, see Step 3 in
the proof of [CKK1, Theorem 5.2] (e.g. page 1085 in [CKK1]). Furthermore, by looking at
au+ b for suitable constants a and b, we may and do assume that inf(t,y)∈Q+

u(t, y) = 1/2.
Let (t∗, y∗) ∈ Q+ be such that u(t∗, y∗) ≤ 1. It is enough to show that u(t, x) is bounded
from above in Q− by a constant that is independent of the function u.

For any t ≥ δφ(r), set Q↓(t, δ, x, r) = [t− δφ(r), t]×B(x, r). Note that

m⊗ µ(Q↓(t, δ, x, r)) = δφ(r)V (x, r).

By Lemma 3.7, there exists a constant c1 ∈ (0, 1/2) so that for any r ≤ R/2 and any
compact set D satisfying that

D ⊂
[
t− δφ(r), t− 1

2
δφ(r)

]
×B(x, c0r) ⊂ Q↓(t, δ, x, r)

and

m⊗ µ(D)/m⊗ µ(Q↓(t, δ, x, r)) ≥ cd20

4C̃µ

,
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we have
P(t,x)(σD < τQ↓(t,δ,x,r)) ≥ c1,

where C̃µ and d2 are the constants in (3.1). Let C2 be the constant C2 in Lemma 4.1 with
δj = jδ and θ = 1/2. Define

η =
c1
3
, ξ =

1

3
∧ (C−1

2 η).

We claim that there is a universal constant K ≥ 2 to be determined later, which is
independent of R and the function u, such that u ≤ K on Q−. We are going to prove this
by contradiction.

Suppose this is not true. Then there is some point (t1, x1) ∈ Q− such that u(t1, x1) ≥
K. We will show that there are a constant β > 0 and a sequence of points {(tk, xk)} in
[t0 + δφ(CR)/2, t0 + 2δφ(CR))× B(x0, 2R) ⊂ Q so that u(tk, xk) ≥ (1 + β)k−1K, which
contradicts to the assumption that u is bounded on Q.

Recall that β1, β2, c3 and c4 are the constants in (1.7). Then, by (3.1) and (1.7), we
have for all x ∈ M and all 0 < r1 < r2 ∧ r3 < ∞:

V (x, r1)φ(r1)

V (x, r2)φ(r3)
≥ 1

c4C̃µ

(
r1
r2

)d2 (r1
r3

)β2

. (4.6)

Let C3 be the constant in Lemma 4.2, and set r := RK−1/(2(d2+β2)). We take K ≥ 2 large
enough so that K ≥ (2C̃µ/(C3ξδ

2d2
0 ))2(2C0)

d2 and that, in view of (1.7),

r < R/8 and φ(r) <
1

8
φ(R) for all R > 0 and r = RK−1/(2(d2+β2)).

With such r, we have by (4.6)

m⊗ µ(Q↓(t, δ, x, r))

φ(R)V (x, C0R)
=

δφ(r)V (x, r)

φ(R)V (x, C0R)
≥ δ

c4C̃µC
d2
0

√
K

. (4.7)

Take t̃ = t1 + (5/2)δφ(r) and define Ũ = {t̃} × B(x1, δ
2
0r/2). Observe that t∗ − t̃ ≥

1
2
δφ(CR) since t∗ − t1 ≥ δφ(CR). If the parabolic function u ≥ ξK on Ũ , we would have

by (4.5) and Lemma 4.2 that

1 ≥ u(t∗, y∗) = E
(t∗ ,y∗)u(ZσŨ∧τQ∗ ) ≥ ξKP(t∗,y∗)(σŨ ≤ τQ∗) ≥ ξK

C3V (x1, δ
2
0r/2)

V (x1, C0R)

≥ C3ξK

C̃µ

(δ20r/(2C0R))d2 ≥ C3ξδ
2d2
0

√
K

(2C0)d2C̃µ

≥ 2,

where Q∗ = [t1 − δφ(r), t∗]× B(x0, C0R). This contradiction yields that

there is some y1 ∈ B(x1, δ
2
0r/2) so that u(t̃, y1) < ξK.

We next show that
E(t1,x1) [u(Zτr) : Xτr /∈ B(x1, 3r/2)] ≤ ηK, (4.8)
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where τr := τ(t1−δφ(r),t1+3δφ(r))×B(x1 ,δ20r)
. If it is not true, then we would have by Lemma

4.1 with δj = jδ (j = 1, 2, 3, 4) and θ = 1/2 that

ξK > u(t̃, y1) ≥E(t̃,y1)
[
u(Zτ[t1−δφ(r),t1+3δφ(r)]×B(x1,r)

) : Xτ[t1−δφ(r),t1+3δφ(r)]×B(x1,r)
/∈ B(x1, 3r/2)

]

≥C−1
2 E

(t1,x1) [u(Zτr) : Xτr /∈ B(x1, 3r/2))]

>C−1
2 ηK ≥ ξK,

which is a contradiction. This establishes (4.8).
Let A be any compact subset of

Ã :=

{
(s, y) ∈

[
t1 − δφ(r), t1 −

1

2
δφ(r)

]
×B(x1, c0r) : u(s, y) ≥ ξK

}
,

and define U1 = {t1} × B(x1, δ
2
0r). By Lemmas 3.7 and 4.2 and the strong Markov

property,

1 ≥ u(t∗, y∗) ≥ E(t∗,y∗)[u(ZσA
) : σA ≤ τQ∗ ]

≥ E(t∗,y∗)[u(ZσA
) : σU1 < τQ∗ , σA < τ[t1−δφ(r),t∗]×B(x1,2r)]

≥ P(t∗,y∗)(σU1 < τQ∗) inf
z∈B(x1,r/2)

E(t1,z)[u(ZσA
) : σA < τ[t1−δφ(r),t∗]×B(z,r)]

≥ C3
V (x1, δ

2
0r)

V (x1, C0R)
· ξKC1 inf

z∈B(x1,r/2)

m⊗ µ(A)

V (z, r)φ(r)

≥ C1C3ξK

c4C̃µ

(δ20
2

)d2 m⊗ µ(A)

V (x1, C0R)φ(R)
,

(4.9)

where in the third inequality we used the fact that τ[t1−δφ(r),t∗ ]×B(x1,2r) ≤ τQ∗ . Since A is

an arbitrary compact subset of Ã, we have by (4.9) that

m⊗ µ(Ã)

V (x1, C0R)φ(R)
≤ c4C̃µ

C1C3ξK

(
2

δ20

)d2

.

Thus by (4.7),

m⊗ µ(Ã)

m⊗ µ(Q↓(t1, δ, x1, r))
≤ c24C̃

2
µC

d2
0

δC1C3ξ
√
K

(
2

δ20

)d2

,

which is no larger than
c
d2
0

4C̃µ
by taking K sufficiently large. Let

D =
[
t1 − δφ(r), t1 −

1

2
δφ(r)

]
× B(x1, c0r) \ Ã

and M = sup(s,y)∈Q↓(t1,δ,x1,3r/2) u(s, y). Note that

m⊗ µ(D̃)

m⊗ µ(Q↓(t1, δ, x1, r))
=

δφ(r)V (x1, c0r)

2δφ(r)V (x1, r)
− m⊗ µ(Ã)

m⊗ µ(Q↓(t1, δ, x1, r))
≥ cd20

4C̃µ

.
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We have by (4.8),

K ≤ u(t1, x1) = E
(t1,x1)[u(ZσD∧τr)]

= E(t1,x1)[u(ZσD∧τr) : σD < τr] + E
(t1,x1)[u(ZσD∧τr) : σD ≥ τr, Xτr /∈ B(x1, 3r/2)]

+ E(t1,x1)[u(ZσD∧τr) : σD ≥ τr, Xτr ∈ B(x1, 3r/2)]

≤ ξKP(t1,x1)(σD < τr) + ηK +MP(t1,x1)(σD ≥ τr).

Therefore,

M/K ≥ 1− η − ξP(t1,x1)(σD < τr)

P(t1,x1)(σD ≥ τr)
≥ 1− η − ξc1

1− c1
≥ 1− (2c1)/3

1− c1
=: 1 + 2β,

where β = c1/(6(1−c1)). Consequently, there exists a point (t2, x2) ∈ Q↓(t1, δ, x1, 2r) ⊂ Q
such that u(t2, x2) ≥ (1 + β)K =: K2.

Iterating the procedure above, we can find a sequence of points {(tk, xk)}∞k=1 in [t0 +
δφ(CR)/2, t0+2δφ(CR))×B(x0, 2R) in the following way. Following the above argument
with (t2, x2) and K2 in place of (t1, x1) and K respectively, we obtain that there exists a
point (t3, x3) ∈ Q↓(t2, δ, x2, 2r2) such that

r2 = RK
−1/(d2+β2)
2 = (1 + β)−1/(d2+β2)RK−1/(d2+β2)

and
u(t3, x3) ≥ (1 + β)K2 = (1 + β)2K =: K3.

We continue this procedure to obtain a sequence of points {(tk, xk)} such that (tk+1, xk+1) ∈
Q↓(tk, δ, xk, 2rk) with

rk := RK
−1/(d2+β2)
k = (1 + β)−(k−1)/(d2+β2)RK−1/(d2+β2),

and
u(tk+1, xk+1) ≥ (1 + β)kK =: Kk+1.

As 0 ≤ tk − tk+1 ≤ δφ(2rk) and d(xk, xk+1) ≤ 2rk, we can take K large enough (indepen-
dent of R and u) so that (tk, xk) ∈ [t0 + δφ(CR)/2, t0 + 2δφ(CR))× B(x0, 2R) for all k.
This is a contradiction because u(tk, xk) ≥ (1 + β)k−1K goes to infinity as k → ∞, while
u is bounded on Q. We conclude that u is bounded by K in Q−. The proof is complete.
�

Finally, we prove that under NDL(φ), Jφ,≤ is equivalent to UHK(φ), which immediately
yields that NDL(φ) + UJS ⇐⇒ PHI+(φ).

Proposition 4.4. Assume that VD, (1.7) and RVD hold. Then,

NDL(φ) + Jφ,≤ ⇐⇒ NDL(φ) + UHK(φ) (4.10)

and so

NDL(φ) + UJS ⇐⇒ PHI+(φ) ⇐⇒ PHI(φ). (4.11)
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Proof. First, note that the process {Xt} is conservative due to NDL(φ) (see Proposition
2.4). On the one hand, by Theorem 1.10, UHK(φ) implies Jφ,≤. On the other hand,
according to Proposition 3.5, under VD, (1.7) and RVD, NDL(φ) implies FK(φ) and Eφ.
In particular, the process {Xt} possesses a heat kernel. Thus we have by [CKW, Theorem
4.25] that NDL(φ)+Jφ,≤ imply UHKD(φ). Furthermore, by Theorem 1.10, NDL(φ)+Jφ,≤
imply UHK(φ). This proves (4.10).

By Corollary 3.4, NDL(φ) + UJS =⇒ Jφ,≤, which along with (4.10) gives us

NDL(φ) + UJS ⇐⇒ UHK(φ) + NDL(φ) + UJS.

It now follows from Propositions 3.2 and 3.3, and Theorem 4.3 that

PHI(φ) =⇒ NDL(φ) + UJS =⇒ PHI+(φ).

This establishes assertion (4.11) as PHI+(φ) =⇒ PHI(φ). �

4.2 PHI(φ) ⇐⇒ PHR(φ) + Eφ,≤ +UJS ⇐⇒ EHR+ Eφ + UJS

The main contribution of this subsection is the following relations among PHI(φ), PHR(φ)
and EHR, which establish the equivalences among (1), (5) and (6) of Theorem 1.17.

Theorem 4.5. Assume that µ and φ satisfy VD, RVD and (1.7) respectively. Then

PHI(φ) ⇐⇒ PHR(φ) + Eφ,≤ +UJS ⇐⇒ EHR + Eφ +UJS.

We start with the following key lemma.

Lemma 4.6. Under VD and (1.7), EHR and Eφ,≤ imply FK(φ).

Proof. According to Remark 1.13(ii), throughout this subsection we may and do assume
that the constant ε = 1/2 in the definition of EHR.

For any open subset D of M , let GD be the associated Green operator. Recall that
for any open set D, it holds that

λ1(D)−1 ≤ sup
x∈D∩M0

ExτD = sup
x∈D∩M0

GD1(x). (4.12)

For any ball B = B(x,R) ⊂ M with x ∈ M and R > 0, and any open set D ⊂ B, we will
verify that

sup
x∈D∩M0

ExτD ≤ cφ(R)

(
µ(D)

V (x,R)

)ν

, (4.13)

where c > 0 and ν ∈ (0, 1) are two constants independent of D and B. Once this is
proved, FK(φ) immediately follows from (4.12) and (4.13).

Fix an arbitrary x0 ∈ D∩M0. Let Rk = 2δkR for k ≥ 0, where δ ∈ (0, 1/2] is a constant
to be determined later. Set Bk = B(x0, Rk) for k ≥ 0. Clearly D ⊂ B0 = B(x0, 2R).
Since (GBk − GBk+1)1D is a bounded non-negative function that is harmonic in Bk+1,
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we have by EHR and the µ-symmetry of the Green operator GBk that for any positive
integers n > k ≥ 0,

sup
y∈Bn+1∩M0

(GBk −GBk+1)1D(y)

≤ inf
y∈Bn+1∩M0

(GBk −GBk+1)1D(y) + c1 δ
(n−k)θ sup

y∈Bn+1∩M0

|(GBk −GBk+1)1D(y)|

≤ 1

µ(Bn+1)

∫

Bn+1

(GBk −GBk+1)1D(y)µ(dy) + c1 δ
(n−k)θ sup

y∈Bk∩M0

|GBk1D(y)|

≤ 1

µ(Bn+1)

∫
1Bk∩D(y)G

Bk1Bn+1(y)µ(dy) + c1 δ
(n−k)θ sup

y∈Bk∩M0

|GBk1(y)|

≤ 1

V (x0, Rn+1)
µ(D)‖GBk1‖∞ + c1 δ

(n−k)θ sup
y∈Bk∩M0

|GBk1(y)|,

(4.14)

where c1 = 2θc > 0, and c and θ ∈ (0, 1] are the constants in EHR. On the other hand,
we have by Eφ,≤ that

sup
y∈Bk∩M0

|GBk1(y)| ≤ sup
y∈Bk∩M0

EyτB(y,2Rk) ≤ c2φ(2Rk). (4.15)

Taking k = 0 and n = 1 in (4.14) and k = 1 in (4.15), we find by (1.5) from VD and (1.7)
that

Ex0τD ≤ sup
y∈B2∩M0

GB01D(y)

≤ sup
y∈B2∩M0

(GB0 −GB1)1D(y) + sup
y∈B2∩M0

GB11(y)

≤ c3

(
µ(D)

V (x0, R2)
+ δθ

)
φ(2R0) + c2φ(2R1)

≤ c4

(
µ(D)

V (x0, 2R)
δ−2d2 + δθ

)
φ(R) + c4φ(R)δβ1

≤ c5φ(R)

(
µ(D)

V (x,R)
δ−2d2 + δθ∧β1

)
. (4.16)

Define ν = θ∧β1

2d2+θ∧β1
. If µ(D)

V (x,R)
≤ (1/2)2d2+θ∧β1, we take δ =

(
µ(D)

V (x,R)

)1/(2d2+θ∧β1)

, which is

no larger than 1/2, in (4.16) to deduce

Ex0τD ≤ 2c5φ(R)

(
µ(D)

V (x,R)

)ν

.

If µ(D)
V (x,R)

> (1/2)2d2+θ∧β1, we get from Eφ,≤ that

Ex0τD ≤ c6φ(R)

(
µ(D)

V (x,R)

)ν

.

Since x0 ∈ D ∩M0 is arbitrary, this establishes (4.13) and hence completes the proof. �
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By VD, (1.7) and [CKW, Proposition 7.3], FK(φ) implies the existence of the Dirichlet
heat kernel pD(t, ·, ·) for any bounded open subset D ⊂ M , and that there is a constant
Cν > 0 such that for every x0 ∈ D and t > 0

ess sup x,y∈Dp
D(t, x, y) ≤ Cν

V (x0, r)

(
φ(r)

t

)1/ν

, (4.17)

where r = diam(D), the diameter of D.

Lemma 4.7. Assume that (1.7), EHR and Eφ,≤ are satisfied. Let D be a bounded open

subset of M . Let t > 0, x ∈ D \ N and 0 < r1 < φ−1(t) such that 0 < r1 ≤ r/2 and

B(x, r) ⊂ D, where r =
(
φ−1(t)β1rθ1

)1/(β1+θ)
, β1 is the constant in (1.7) and θ is the

Hölder exponent in EHR. Then,

ess osc y∈B(x,r1)p
D(t, x, y) ≤ C

(
r1

φ−1(t)

)κ

ess sup y∈D pD(t/2, y, y),

where κ = β1θ/(β1 + θ), and C is a constant depending on the constants in (1.7) and

Eφ,≤.

Proof. The proof uses some ideas from but is more direct than that of [GT, Lemma
5.10]. For fixed x ∈ D \ N and s > 0, set u(s, y) = pD(s, x, y). According to Lemma 4.6
and (4.17), ∫

D

u(s, y)2 µ(dy) = pD(2s, x, x) < ∞.

Since, by the symmetry of pD(t/2, z, x) = pD(t/2, x, z),

u(t, y) =

∫

D

pD(t/2, y, z)pD(t/2, z, x)µ(dz) = PD
t/2u(t/2, ·)(y),

we have u(t, ·) ∈ Dom(LD) ⊂ FD for every t > 0. Thus for µ-a.e. y ∈ D,

∂tu(t, y) = LDPD
t/2u(t/2, ·)(y) = PD

t/2LDu(t/2, ·)(y)

=

∫

D

pD(t/2, y, z)LDu(t/2, ·)(z)µ(dz) = −E(pD(t/2, y, ·), u(t/2, ·)).

Hence, by the Cauchy-Swarchz inequality and the spectral representation,

|∂tu(t, y)| ≤
√
E(pD(t/2, y, ·), pD(t/2, y, ·))

√
E(u(t/2, ·), u(t/2, ·))

=
√

E(PD
t/4p

D(t/4, y, ·), PD
t/4p

D(t/4, y, ·))
√

E(PD
t/4u(t/4, ·), PD

t/4u(t/4, ·))

≤
√
(2/t) ‖pD(t/4, y, ·)‖2L2(D;µ)

√
(2/t) ‖u(t/4, ·)‖2L2(D;µ)

=
2

t

√
pD(t/2, y, y)pD(t/2, x, x) ≤ 2

t
ess supD\N pD(t/2, y, y).
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In particular, by (4.17), f(t, y) := ∂tu(t, y) is a bounded function on D for every t > 0.
Note that lims→∞ pD(s, x, y) = 0 for every y ∈ D \ N , also thanks to (4.17). Then we
have

u(t, y) = −
∫ ∞

t

∂sp
D(s, x, y) ds = −

∫ ∞

0

∂tp
D(t+ r, x, y) dr

= −
∫ ∞

0

∫

D

pD(r, y, z)∂tp
D(t, x, z)µ(dz) dr = −GDf(t, ·)(y).

Hence, by EHR, Lemma 3.10 and Eφ,≤, for any 0 < r1 ≤ r/2,

ess osc B(x,r1)u(t, ·) ≤2 sup
y∈B(x,r)\N

|f(t, y)| sup
y∈B(x,r)\N

EyτB(x,r) + c1

(r1
r

)θ
sup

y∈D\N
|u(t, y)|

≤c2

[
φ(r)

A

t
+
(r1
r

)θ
A

]
,

where A = supz∈D\N pD(t/2, z, z). In the last inequality above, we also used the facts that

supy,z∈D\N pD(t, y, z) = supz∈D\N pD(t, z, z) and t 7→ supz∈D\N pD(t, z, z) is a decreasing
function, see e.g., the proof of Lemma [CKW, Lemma 7.9].

For any 0 < r < φ−1(t), by (1.7),

φ(r)

t
≤ c3

(
r

φ−1(t)

)β1

,

whence it follows that for any 0 < r1 ≤ r/2 and 0 < r < φ−1(t),

ess osc B(x,r1)u ≤ C

[(
r

φ−1(t)

)β1

+
(r1
r

)θ
]
A.

By choosing r =
(
φ−1(t)β1rθ1

)1/(β1+θ)
in the inequality above, we proved the desired asser-

tion. �

Lemma 4.8. Suppose that VD, (1.7), EHR and Eφ,≤ hold. Then for any x ∈ M0, t > 0
and 0 < r ≤ 2−(β1+θ)/β1φ−1(t) the following estimate holds

|pB(x,φ−1(t))(t, x, x)− pB(x,φ−1(t))(t, x, y)| ≤
(

r

φ−1(t)

)κ
C

V (x, φ−1(t))
, y ∈ B(x, r)\N ,

where β1 is the constant in (1.7), θ is the Hölder exponent in EHR, and κ is the constant

in Lemma 4.7.

Proof. Fix x ∈ M0 and t, r1 > 0 with 0 < r1 ≤ 2−(β1+θ)/β1φ−1(t). We choose r =(
φ−1(t)β1rθ1

)1/(β1+θ)
as in Lemma 4.7. Then, 0 < r1 ≤ r/2. By applying Lemma 4.7 with

D = B(x, φ−1(t)), we get

ess osc y∈B(x,r1)p
B(x,φ−1(t))(t, x, y) ≤ C

(
r1

φ−1(t)

)κ

ess sup y∈B(x,φ−1(t))p
B(x,φ−1(t))(t/2, y, y).

37



This along with (4.17) yields the desired assertion. �

Having all the lemmas at hand, we can obtain the following result.

Proposition 4.9. Let VD, (1.7), EHR and Eφ be satisfied. Then for any open subset

D ⊂ M , the semigroup {PD
t } possesses the heat kernel pD(t, x, y), and moreover NDL(φ)

holds true.

Proof. The existence of heat kernel pD(t, x, y) associated with the semigroup {PD
t } for

any open subset D ⊂ M has been stated in the remark below Lemma 4.6, and so we only
need to verify NDL(φ).

According to Eφ and [CKW, Lemma 4.17], there are constants ε ∈ (0, 1) and δ ∈
(0, 1/2) such that for all x ∈ M0 and for any t, r > 0 with t ≤ δφ(r), Px(τB(x,r) ≤ t) ≤ ε.
In the following, let B = B(x, r) and 0 < t ≤ δφ(r). Then for any x ∈ B\N , since the
process {Xt} has no killings inside M ,

∫

B

pB(t, x, y)µ(dy) = Px(τB > t) ≥ 1− ε.

Therefore,

pB(2t, x, x) =

∫

B

pB(t, x, y)2 µ(dy) ≥ 1

µ(B)

(∫

B

pB(t, x, y)µ(dy)

)2

≥ c1
V (x, r)

.

In particular, taking r = φ−1(t/δ) > 0 in the inequality above, we arrive at

pB(x,φ−1(t/(2δ)))(t, x, x) ≥ c2
V (x, φ−1(t))

.

Furthermore, according to Lemma 4.8, VD and (1.7), there exists a constant c3 > 0 such
that for any 0 < r ≤ 2−(β1+θ)/β1φ−1(t/(2δ)), we have

|pB(x,φ−1(t/(2δ)))(t, x, x)−pB(x,φ−1(t/(2δ)))(t, x, y)| ≤
(

r

φ−1(t)

)κ
c3

V (x, φ−1(t))
, y ∈ B(x, r)\N ,

where β1 is the constant in (1.7), θ is the Hölder exponent in EHR, and κ is the constant
in Lemma 4.7.

Combining with both inequalities above and choosing η ∈ (0, 1) small enough such
that ηκc3 ≤ 1

2
c2 and ηφ−1(t) ≤ 2−(β1+θ)/β1φ−1(t/(2δ)) for all t > 0, one can get that for

any x ∈ M0 and y ∈ B(x, ηφ−1(t))\N ,

pB(x,φ−1(t/(2δ)))(t, x, y)

≥ pB(x,φ−1(t/(2δ)))(t, x, x)− |pB(x,φ−1(t/(2δ)))(t, x, x)− pB(x,φ−1(t/(2δ)))(t, x, y)|
≥ c2

2V (x, φ−1(t))
.

38



That is, thanks to VD and (1.7) again, there are constants ci > 0 (i = 4, 5, 6) such that
0 < 2c4 ≤ c5 and for any x ∈ M0 and y ∈ B(x, 2c4φ

−1(t))\N ,

pB(x,c5φ−1(t))(t, x, y) ≥ c6
V (x, φ−1(t))

.

Now, for any x0 ∈ M and r, t > 0 such that (c4+c5)φ
−1(t) ≤ r, we have B(x, c5φ

−1(t)) ⊂
B(x0, r) for all x ∈ B(x0, c4φ

−1(t)), and so

pB(x0,r)(t, x, y) ≥ pB(x,c5φ−1(t))(t, x, y) ≥ c6
V (x, φ−1(t))

, x, y ∈ B(x0, c4φ
−1(t))\N .

This proves that NDL(φ) holds true with ε = c4 ∧ 1
c4+c5

. �

Note that by Proposition 4.9 and Proposition 2.4, EHR+Eφ imply the conservativeness
of the process {Xt} (see Proposition 2.4).

Next, we present the proof of Theorem 4.5.

Proof of Theorem 4.5. That PHI(φ) =⇒ NDL(φ) + Eφ + UJS + Jφ,≤ has been
established in Subsection 3.1, where RVD is used. Since NDL + Eφ,≤ + Jφ,≤ =⇒ PHR(φ)
by Proposition 3.8, we have PHI(φ) implies PHR(φ) + Eφ +UJS.

On the other hand, by Proposition 4.9 and (4.11) (where RVD is used too), we have

EHR + Eφ +UJS =⇒ NDL(φ) + UJS ⇐⇒ PHI(φ),

which together with Proposition 3.9 completes the proof of the theorem. �

4.3 PI(φ) + Jφ,≤ +CSJ(φ) + UJS ⇐⇒ PHI(φ)

In this subsection, we will prove the above mentioned equivalence in Theorem 1.17. Note
that, under VD, (1.7) and RVD, PHI(φ) =⇒ PI(φ) + Jφ,≤ + CSJ(φ) + UJS has already
been proved by combining the results in Subsection 3.1, Propositions 3.5 and Theorem
1.10. So all we need is to prove the following theorem.

Theorem 4.10. Assume that µ and φ satisfy VD, RVD and (1.7) respectively. Then

PI(φ) + Jφ,≤ + CSJ(φ) + UJS =⇒ PHI(φ).

First of all, note that PI(φ)+Jφ,≤+CSJ(φ) imply the conservativeness of the process.
Indeed, PI(φ) +RVD imply FK(φ) by Proposition 2.9, and FK(φ) + Jφ,≤ +CSJ(φ) imply
Eφ by Proposition 2.7. Furthermore, Jφ,≤ +Eφ imply the conservativeness of the process
(see [CKW, Lemma 4.21]).

To prove the theorem, we begin with the following logarithmic lemma, which plays
the key role in the proof of Hölder continuity of harmonic functions. The proof below is
motivated by that of [CKP1, Lemma 1.3].
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Proposition 4.11. Let Br = B(x0, r) for some x0 ∈ M and r > 0. Assume that u ∈ F loc
BR

is a bounded and superharmonic function in a ball BR such that u ≥ 0 on BR. If VD,

(1.7), CSJ(φ) and Jφ,≤ hold, then for any l > 0 and 0 < 2r ≤ R,

∫

Br×Br

[
log
(u(x) + l

u(y) + l

)]2
J(dx, dy) ≤ c1V (x0, r)

φ(r)

(
1 +

φ(r)

φ(R)

Tail (u−; x0, R)

l

)
,

where Tail (u−; x0, R) is the nonlocal tail of u− in B(x0, R) defined by (2.2), and c1 is a

constant independent of u, x0, r, R and l.

Proof. According to CSJ(φ), Jφ,≤ and [CKW, Proposition 2.3(5)], we can choose
ϕ ∈ FB3r/2

related to Cap(Br, B3r/2) such that

E(ϕ, ϕ) ≤ 2Cap(Br, B3r/2) ≤
c1V (x0, r)

φ(r)
. (4.18)

Since u is a bounded and superharmonic function in a ball BR and ϕ2

u+l
∈ FB3r/2

for any
l > 0, we have by Theorem 2.2 that

0 ≤E
(
u,

ϕ2

u+ l

)

=

∫

B2r×B2r

(u(x)− u(y))
( ϕ2(x)

u(x) + l
− ϕ2(y)

u(y) + l

)
J(dx, dy)

+ 2

∫

B2r×Bc
2r

(u(x)− u(y))
ϕ2(x)

u(x) + l
J(dx, dy)

=

∫

B2r×B2r

(
(u(x) + l)− (u(y) + l)

)( ϕ2(x)

u(x) + l
− ϕ2(y)

u(y) + l

)
J(dx, dy)

+ 2

∫

B2r×Bc
2r

(u(x)− u(y))
ϕ2(x)

u(x) + l
J(dx, dy)

=

∫

B2r×B2r

ϕ(x)ϕ(y)

(
ϕ(y)

ϕ(x)
+

ϕ(x)

ϕ(y)
− ϕ(x)(u(y) + l)

ϕ(y)(u(x) + l)
− ϕ(y)(u(x) + l)

ϕ(x)(u(y) + l)

)
J(dx, dy)

+ 2

∫

B2r×Bc
2r

(u(x)− u(y))
ϕ2(x)

u(x) + l
J(dx, dy)

= : I1 + I2.

Applying the inequality

a

b
+

b

a
− 2 = (a− b)(b−1 − a−1) ≥ (log a− log b)2, a, b > 0

with a = u(y)+l
ϕ(y)

and b = u(x)+l
ϕ(x)

, we find that

ϕ(x)(u(y) + l)

ϕ(y)(u(x) + l)
+

ϕ(y)(u(x) + l)

ϕ(x)(u(y) + l)
− ϕ(y)

ϕ(x)
− ϕ(x)

ϕ(y)
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≥
(
log

u(y) + l

ϕ(y)
− log

u(x) + l

ϕ(x)

)2

−
(
ϕ(y)

ϕ(x)
+

ϕ(x)

ϕ(y)
− 2

)
,

and so

I1 ≤−
∫

B2r×B2r

ϕ(x)ϕ(y)

(
log

u(y) + l

ϕ(y)
− log

u(x) + l

ϕ(x)

)2

J(dx, dy)

+

∫

B2r×B2r

(ϕ(x)− ϕ(y))2 J(dx, dy).

On the other hand, due to the fact that u ≥ 0 on BR, for all x ∈ B2r and y ∈ BR \B2r,

u(x)− u(y)

u(x) + l
≤ 1;

while for all x ∈ B2r and y ∈ Bc
R,

u(x)− u(y)

u(x) + l
≤ (u(x)− u(y))+

u(x) + l
≤ u(x) + u−(y)

u(x) + l
≤ 1 + l−1u−(y).

Therefore,

I2 ≤ 2

∫

B2r×Bc
2r

ϕ2(x) J(dx, dy) + 2l−1

∫

B2r×Bc
R

u−(y)ϕ
2(x) J(dx, dy).

Combining all the estimates above and the fact that ϕ = 1 on Br, we obtain

∫

Br×Br

[
log

(
u(x) + l

u(y) + l

)]2
J(dx, dy)

≤
∫

B2r×B2r

ϕ(x)ϕ(y)

(
log

u(y) + l

ϕ(y)
− log

u(x) + l

ϕ(x)

)2

J(dx, dy)

≤
∫

B2r×B2r

(ϕ(x)− ϕ(y))2 J(dx, dy) + 2

∫

B2r×Bc
2r

ϕ2(x) J(dx, dy)

+ 2l−1

∫

B2r×Bc
R

u−(y)ϕ
2(x) J(dx, dy)

≤ E(ϕ, ϕ) + c2V (x0, r)

φ(R)l
Tail (u−; x0, R),

where the last inequality follows from Jφ,≤ and the fact that for any x ∈ B3r/2 and y ∈ Bc
R

with R ≥ 2r,

V (x0, d(x0, y))φ(d(x0, y))

V (x, d(x, y))φ(d(x, y))
≤ c′

(
1 +

d(x0, x)

d(x, y)

)β2+α2

≤ c′
(
1 +

3r/2

R− 3r/2

)β2+α2

≤ c′′,

thanks to VD and (1.7). Hence, the desired assertion follows from the inequality and
(4.18). �
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For the diffusion case, Proposition 4.11 was originally due to Moser. In that case, one
can use the Leibniz rule, but for the jump case some more care is required. See [KZ,
Corollary 7.7] for a related inequality. In the following we give another proof that is more
robust.

Proof. (Another proof of Proposition 4.11) For a function v on M and for fixed
x, y ∈ M , write

v̄(t) = v̄xy(t) := tv(x) + (1− t)v(y), t ∈ [0, 1].

Take ϕ ∈ FB3r/2
as in (4.18) in the previous proof. For any x, y ∈ M and l > 0, it holds

that

(u(x)− u(y))
[
ϕ(x)2/(u(x) + l)− ϕ(y)2/(u(y) + l)

]

=

∫ 1

0

[
d

dt

ϕ̄2

(ū+ l)
(s)

]
d

dt
(ū(s) + l) ds

=

∫ 1

0

2ϕ̄(s) d
dt
ϕ̄(s)

(ū(s) + l)

d

dt
(ū(s) + l) ds−

∫ 1

0

[
ϕ̄

(ū+ l)
(s)

]2 [
d

dt
(ū(s) + l)

]2
ds

=

∫ 1

0

2

[
ϕ̄(s)

d

dt
ϕ̄(s)

] [
d

dt
log(ū(s) + l)

]
ds−

∫ 1

0

ϕ̄(s)2
[
d

dt
log(ū(s) + l)

]2
ds.

Multiplying J(x, y) and integrating over B2r×B2r w.r.t. µ×µ in both sides of the equality
above, we have

∫

B2r×B2r

∫ 1

0

ϕ̄(s)2
[
d

dt
log(ū(s) + l)

]2
ds J(dx, dy)

+ E(u, ϕ2/(u+ l))− 2

∫

B2r×Bc
2r

(u(x)− u(y))
ϕ2(x)

u(x) + l
J(dx, dy)

= 2

∫

B2r×B2r

∫ 1

0

[
ϕ̄(s)

d

dt
ϕ̄(s)

] [
d

dt
log(ū(s) + l)

]
ds J(dx, dy)

≤ 2

[∫

B2r×B2r

∫ 1

0

ϕ̄(s)2
( d

dt
log(ū(s) + l)

)2
ds J(dx, dy)

]1/2

×
[∫

B2r×B2r

∫ 1

0

( d

dt
ϕ̄(s)

)2
ds J(dx, dy)

]1/2

≤ 2

[∫

B2r×B2r

∫ 1

0

ϕ̄(s)2
( d

dt
log(ū(s) + l)

)2
ds J(dx, dy)

]1/2
E(ϕ, ϕ)1/2.

(4.19)

In the following, we set

K :=

∫

B2r×B2r

∫ 1

0

ϕ̄(s)2
( d

dt
log(ū(s) + l)

)2
ds J(dx, dy).

Now, as in the previous proof,

2

∣∣∣∣
∫

B2r×Bc
2r

(u(x)− u(y))
ϕ2(x)

u(x) + l
J(dx, dy)

∣∣∣∣ = |I2| ≤ E(ϕ, ϕ) + c2V (x0, r)

φ(R)l
Tail (u−; x0, R).
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Further, noting that u+ l is bounded and superharmonic on 2B, we have by Theorem 2.2
that E(u, ϕ2/(u+ l)) ≥ 0. Plugging these and (4.18) into (4.19), we have

K − c1V (x0, r)

φ(r)
− c2V (x0, r)

φ(R)l
Tail (u−; x0, R) ≤ 2K1/2

(
c1V (x0, r)

φ(r)

)1/2

We thus obtain

K ≤ c3V (x0, r)

φ(r)

[
1 +

φ(r)

φ(R)

Tail (u−; x0, R)

l

]
.

On the other hand, since ϕ = 1 on Br, using the Cauchy-Schwarz inequality we have

K ≥
∫

B2r×B2r

(ϕ(x)2 ∧ ϕ(y)2)

∫ 1

0

[
d

dt
log(ū(s) + l)

]2
ds J(dx, dy)

≥
∫

B2r×B2r

(ϕ(x)2 ∧ ϕ(y)2)

[∫ 1

0

d

dt
log(ū(s) + l) ds

]2
J(dx, dy)

≥
∫

Br×Br

[log(u(y) + l)− log(u(x) + l)]2 J(dx, dy).

We therefore prove the desired inequality, by combining all the inequalities above. �

As a consequence of Proposition 4.11, we have the following statement.

Corollary 4.12. Let Br = B(x0, r) for some x0 ∈ M and r > 0. Assume that u ∈ F loc
BR

is a bounded and superharmonic function in a ball BR such that u ≥ 0 on BR. For any

a, l > 0 and b > 1, define

v =
[
log
(a+ l

u+ l

)]
+
∧ log b.

If VD, (1.7), CSJ(φ), Jφ,≤ and PI(φ) hold, then for any l > 0 and 0 < 2κr ≤ R,

1

V (x0, r)

∫

Br

(v − vBr)
2dµ ≤ c1

(
1 +

φ(r)

φ(R)

Tail (u−; x0, R)

l

)
,

where κ ≥ 1 is the constant in PI(φ), vBr =
1

µ(Br)

∫
Br

v dµ and c1 is a constant independent

of u, x0, r, R and l.

Proof. By PI(φ) and (1.7), we have
∫

Br

(v − vBr)
2dµ ≤ c2φ(r)

∫

Bκr×Bκr

(v(x)− v(y))2 J(dx, dy).

Observing that v is a truncation of the sum of a constant and log(u+ l),

∫

Bκr×Bκr

(v(x)− v(y))2 J(dx, dy) ≤
∫

Bκr×Bκr

(
log
(u(x) + l

u(y) + l

))2

J(dx, dy).

Hence, it suffices to apply Proposition 4.11 to conclude the assertion. �
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Proposition 4.13. Let Br = B(x0, r) for some x0 ∈ M and r > 0. Assume that u ∈ F loc
BR

is a bounded and harmonic function in a ball BR. If VD, RVD, (1.7), CSJ(φ), Jφ,≤ and

PI(φ) hold, there are constants γ ∈ (0, β1) and c > 0 such that

ess osc Br′u ≤ c
(r′
r

)γ
[(

1

V (x0, 2r)

∫

B(x0,2r)

u2 dµ

)1/2

+ Tail (u; x0, r)

]
, (4.20)

where 0 < r′ ≤ r < R/2. In particular, suppose that VD, RVD and (1.7) hold, then we

have

PI(φ) + Jφ,≤ + CSJ(φ) =⇒ EHR.

Proof. (i) First, by Jφ,≤ and Lemma 2.3, it is easy to see that

Tail (u; x0, r) ≤ c′‖u‖∞, r > 0.

Thus, assuming (4.20), there is a constant c′′ > 0 such that for all 0 < r < R/2,

ess osc Bru ≤ c′′
( r

R

)γ
‖u‖∞.

From this, we can easily see that, once (4.20) is proved, EHR is yielded.
(ii) In the following, we mainly prove (4.20). We begin with the argument of [CKP1,

Theorem 1.2]. Before starting, let us fix some notations. For any j ≥ 0 and 0 < 2r < R,
let rj = rσj and Bj = Brj , where σ ∈ (0, 1/(4κ)] and κ ≥ 1 is the constant in PI(φ). Let
us define

w(r0) = w(r) = 2C0

[(
1

V (x0, 2r)

∫

B(x0,2r)

u2 dµ

)1/2

+ Tail (u; x0, r)

]

with the constant C0 given in (2.3) of Proposition 2.6, and

w(rj) =
(rj
r0

)γ
w(r0)

for some γ ∈ (0, β1). In order to prove the required assertion, it will suffice to verify that

ess osc Bj
u ≤ w(rj), j ≥ 0. (4.21)

Indeed, for any 0 < r′ ≤ r, we can choose j ≥ 0 such that rj+1 < r′ ≤ rj. Then, by (4.21),
we have

ess osc Br′u ≤ ess osc Bj
u ≤ w(rj) ≤ σγ

(rj+1

r

)γ
w(r) ≤ σγ

(r′
r

)γ
w(r).

Thus, the required assertion holds with c = 2C0σ
γ.

(iii) We will prove (4.21) by induction. For this, note that PI(φ) +RVD imply FK(φ)
by Proposition 2.9. Then, according to the definition of w(r0) and Proposition 2.6, (4.21)
holds for j = 0, since both the functions u+ and u− bounded subharmonic in BR.
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Now, we make an induction assumption and assume that (4.21) is valid for all 0 ≤ i ≤ j
for some j ≥ 0, and then we prove it holds also for j + 1. We have that either

µ(2Bj+1 ∩ {u ≥ ess inf Bj
u+ w(rj)/2})

µ(2Bj+1)
≥ 1

2
, (4.22)

or
µ(2Bj+1 ∩ {u ≤ ess inf Bj

u+ w(rj)/2})
µ(2Bj+1)

≥ 1

2
(4.23)

must hold. If (4.22) holds, we set uj := u − ess inf Bj
u, and if (4.23) holds, we set

uj := w(rj)− (u− ess inf Bj
u). In both cases we have uj ≥ 0 on Bj and

µ(2Bj+1 ∩ {uj ≥ w(rj)/2})
µ(2Bj+1)

≥ 1

2
(4.24)

holds. Clearly, uj is bounded and harmonic in BR satisfying that

ess sup Bi
|uj| ≤w(rj) + ess sup Bi

|u− ess inf Bj
u|

≤w(ri) + ess sup Bi
|u− ess inf Bi

u|+ |ess inf Bi
u− ess inf Bj

u|
≤2w(ri) + ess sup Bi

u− ess inf Bi
u

≤3w(ri), 0 ≤ i ≤ j.

(4.25)

We now claim that under the induction assumption we have

Tail (uj; x0, rj) ≤ c0σ
−γw(rj), (4.26)

where c0 > 0 is independent of u, x0, r and σ. Indeed, we have

Tail (uj; x0, rj) =φ(rj)

j∑

i=1

∫

Bi−1\Bi

|uj(x)|
V (x0, d(x0, x))φ(d(x0, x))

µ(dx)

+ φ(rj)

∫

Bc
0

|uj(x)|
V (x0, d(x0, x))φ(d(x0, x))

µ(dx)

≤φ(rj)

j∑

i=1

ess sup Bi−1
|uj|

∫

Bc
i

1

V (x0, d(x0, x))φ(d(x0, x))
µ(dx)

+ φ(rj)

∫

Bc
0

|uj(x)|
V (x0, d(x0, x))φ(d(x0, x))

µ(dx)

≤c1

j∑

i=1

φ(rj)

φ(ri)
w(ri−1),

where in the last inequality we have used (4.25), Lemma 2.3,

|uj| ≤ w(r0) + ess sup B0
|u|+ |u|, j ≥ 0
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and
∫

Bc
0

|uj(x)|
V (x0, d(x0, x))φ(d(x0, x))

µ(dx)

≤ c′
[

1

φ(r0)

(
ess sup B0

|u|+ w(r0)
)
+

∫

Bc
0

|u(x)|
V (x0, d(x0, x))φ(d(x0, x))

µ(dx)

]

≤ c′′
w(r0)

φ(r0)
≤ c′′

w(r0)

φ(r1)
.

Note that, in the second inequality above we used the fact that

ess sup B0
|u| ≤ ess sup B0

u+ + ess sup B0
u− ≤ w(r0)

deduced from Proposition 2.6. Estimating further, we have

j∑

i=1

φ(rj)

φ(ri)
w(ri−1) = w(r0)

(rj
r0

)γ j∑

i=1

φ(rj)

φ(ri)

(ri−1

rj

)γ

≤ c2w(r0)
(rj
r0

)γ j∑

i=1

(rj
ri

)β1
(ri−1

rj

)γ

= c2w(r0)
(rj
r0

)γ j∑

i=1

(ri−1

ri

)γ(rj
ri

)β1−γ

≤ c2σ
−γ

1− σβ1−γ
w(rj) ≤ c3σ

−γw(rj),

where we used (1.7) in the first inequality, and used σ ∈ (0, 1/(4κ)] and β1 > γ in the
second inequality. Hence, (4.26) is proved with c0 independent of σ.

Next, consider the function v defined as follows

v :=
[
log
(w(rj)/2 + l

uj + l

)]
+
∧ k, k, l > 0.

Using the fact σ ∈ (0, 1/(4κ)] again and applying Corollary 4.12, we get

1

µ(2Bj+1)

∫

2Bj+1

(v − v2Bj+1
)2 dµ ≤ c4

(
1 + l−1φ(rj+1)

φ(rj)
Tail (uj; x0, rj)

)
.

This, along with (4.26) and (1.7), yields that

1

µ(2Bj+1)

∫

2Bj+1

(v − v2Bj+1
)2 dµ ≤ c5

(
1 + l−1σβ1−γw(rj)

)
.

Hence, choosing l = εw(rj) with ε = σβ1−γ, we get that

1

µ(2Bj+1)

∫

2Bj+1

(v − v2Bj+1
)2 dµ ≤ c6. (4.27)
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To continue, denote in short B̃ = 2Bj+1. We obtain from (4.24) that

k =
1

µ(B̃ ∩ {uj ≥ w(rj)/2})

∫

B̃∩{uj≥w(rj)/2}
k dµ

=
1

µ(B̃ ∩ {uj ≥ w(rj)/2})

∫

B̃∩{v=0}
k dµ

≤ 2

µ(B̃)

∫

B̃

(k − v) dµ = 2(k − vB̃).

By integrating the preceding inequality over the set B̃ ∩ {v = k}, we further obtain

µ(B̃ ∩ {v = k})
µ(B̃)

k ≤ 2

µ(B̃)

∫

B̃∩{v=k}
(k − vB̃) dµ ≤ 2

µ(B̃)

∫

B̃

|v − vB̃| dµ ≤ c7,

where (4.27) and the Cauchy-Schwarz inequality are used in the last inequality. Let us
take

k = log

(
w(rj)/2 + εw(rj)

3εw(rj)

)
= log

( 1
2
+ ε

3ε

)
≈ log

(1
ε

)
,

and so we have
µ(B̃ ∩ {uj ≤ 2εw(rj)})

µ(B̃)
≤ c7

k
≤ c8

− log σ
. (4.28)

(iv) We are now in a position to start a suitable iteration to deduce the desired
oscillation reduction. From here we make essential changes of the argument in the proof
of [CKP1, Theorem 1.2]. Note that, in the setting of [CKP1] the proof is heavily based on
the fractional Poincaré inequalities (see [CKP1, (5.11)]), which however are not available
in the present situation. To deal with this difficulty, we apply Lemma 2.5 instead. In the
following, we fix j ≥ 0. First, for any i ≥ 0, we define

̺i = (1 + 2−i)rj+1, Bi = B̺i

and set

ki = (1 + 2−i)εw(rj), wi = (ki − uj)+, Ai =
µ(Bi ∩ {uj ≤ ki})

µ(Bi)
.

Then, we have by VD and Lemma 2.5 that

Ai+2(ki+1 − ki+2)
2 =

1

µ(Bi+2)

∫

Bi+2∩{uj≤ki+2}
(ki+1 − ki+2)

2 dµ

≤ 1

µ(Bi+2)

∫

Bi+2

w2
i+1 dµ

≤ c8
(ki − ki+1)2ν

(
1

µ(Bi+1)

∫

Bi+1

w2
i dµ

)1+ν (
̺i+2

̺i+1 − ̺i+2

)β2

×
[
1 +

1

ki − ki+1

(
̺i+2

̺i+1 − ̺i+2

)d2+β2−β1

Tail (wi; x0, ̺i+1)

]
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≤ c9
[(2−i − 2−i−1)εw(rj)]2ν

[
(εw(rj))

2Ai

]1+ν
(

1

2−i − 2−i−1

)β2

×
[
1 +

1

(2−i − 2−i−1)εw(rj)

(
1

2−i − 2−i−1

)d2+β2−β1

Tail (wi; x0, rj+1)

]

≤ c10[εw(rj)]
2A1+ν

i 2(1+2ν+d2+2β2−β1)i

(
1 +

1

εw(rj)
Tail (wi; x0, rj+1)

)
,

where ν is the constant in FK(φ), and in the third inequality we have used the facts that
uj ≥ 0 on Bi+1 ⊂ Bj and

∫

Bi+1

w2
i dµ ≤ k2

i µ(B
i+1 ∩ {wi ≥ 0}) ≤ c′(εw(rj))

2µ(Bi ∩ {uj ≤ ki}).

Hence,

Ai+2 ≤ c11A
1+ν
i 2(3+2ν+d2+2β2−β1)i

(
1 +

1

εw(rj)
Tail (wi; x0, rj+1)

)
.

Note that, by the facts that uj ≥ 0, wi ≤ 2εw(rj) on Bj and |wi| ≤ |uj|+ 2εw(rj) on M ,

Tail (wi; x0, rj+1) = φ(rj+1)

∫

Bj\Bj+1

|wi(x)|
V (x0, d(x0, x))φ(d(x0, x))

µ(dx)

+
φ(rj+1)

φ(rj)
Tail (wi; x0, rj)

≤ c12

(
2εw(rj)φ(rj+1)

∫

Bc
j+1

µ(dx)

V (x0, d(x0, x))φ(d(x0, x))

+ 2εw(rj)φ(rj+1)

∫

Bc
j

µ(dx)

V (x0, d(x0, x))φ(d(x0, x))

+
φ(rj+1)

φ(rj)
Tail (uj; x0, rj)

)

≤ c12
(
εw(rj) + σβ1Tail (uj; x0, rj)

)

≤ c13

(
1 +

σβ1−γ

ε

)
εw(rj) ≤ 2c13εw(rj),

where the second and the third inequalities follow from Lemma 2.3 and (4.26), respectively,
and the last inequality is due to ε = σβ1−γ. Combining with all the conclusions above, we
arrive at

Ai+2 ≤ c14A
1+ν
i 2(3+2ν+d2+2β2−β1)i.

Let c∗ = c
−1/ν
14 2−(3+2ν+d2+2β2−β1)/ν2 and choose the constant σ ∈

(
0, 1

4
∧ exp−

(
c8
c∗

) )
. Then,

by (4.28),

A0 ≤ c∗ = c
−1/ν
14 2−(3+2ν+d2+2β2−β1)/ν2 .

According to Lemma 2.10, we can deduce that limi→∞Ai = 0. Therefore, uj ≥ εw(rj) on
Bj+1, and then we can find that

ess osc Bj+1
u = ess sup Bj+1

uj − ess inf Bj+1
uj ≤ (1− ε)w(rj) = (1− ε)σ−γw(rj+1),
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where the inequality above follows from the fact that ess sup Bj+1
uj ≤ w(rj), since under

(4.22)

ess sup Bj+1
uj = ess sup Bj+1

u− ess inf Bj
u ≤ ess sup Bj

u− ess inf Bj
u ≤ w(rj),

or under (4.23)

ess sup Bj+1
uj = w(rj)− ess inf Bj+1

(u− ess inf Bj
u) ≤ w(rj).

Taking finally γ ∈ (0, β1) small enough such that σγ ≥ 1− ε = 1− σβ1−γ , we obtain that

ess osc Bj+1
u ≤ w(rj+1)

holds, proving the induction step and finishing the proof of (4.21). �

We are now in a position to present the proof of the main theorem in this subsection.

Proof of Theorem 4.10. By Theorem 4.5, it suffices to prove that

PI(φ) + Jφ,≤ + CSJ(φ) + UJS =⇒ EHR + Eφ +UJS.

As mentioned in the remark below Theorem 4.10, under VD, RVD and (1.7),

PI(φ) + Jφ,≤ + CSJ(φ) =⇒ Eφ.

On the other hand, according to Proposition 4.13 (where RVD is used again),

PI(φ) + Jφ,≤ + CSJ(φ) =⇒ EHR.

The proof is complete. �

Remark 4.14. By the proof above and Propositions 4.9 and 3.5, under VD, RVD and
(1.7), we have the following relations without using UJS:

PI(φ) + Jφ,≤ + CSJ(φ) =⇒ EHR + Eφ =⇒ NDL(φ) =⇒ PI(φ) + Eφ.

Proof of Corollary 1.18. Assume PHI(φ) and Jφ,≥ are satisfied. Then by Theorem
1.17(4), Jφ and CSJ(φ) hold. So by Theorem 1.9(4), HK(φ) also holds.

Conversely, assume HK(φ) holds. By Theorem 1.9, Jφ and CSJ(φ) are satisfied. Note
that UJS holds trivially because of Jφ. Thus by Theorem 1.17 again, PHI(φ) holds. �
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5 Applications and Examples

The stability results in Theorem 1.17 allow us to obtain PHI for a large class of symmet-
ric jump processes using “transferring method”; that is, by first establishing PHI for a
particular symmetric jump process with jumping kernel J(x, y), we can use Theorem 1.17
to obtain PHI for other symmetric jump processes whose jumping kernels are comparable
to J(x, y). Examples are given in [CKW, Section 6.1] on fractals that support anoma-
lous diffusions with two-sided heat kernel estimates. The subordination of these diffusion
processes enjoy HK(φ) and hence PHI(φ) by Corollary 1.18, and so can be served as the
base examples.

In the remainder of this section, we show that some conditions in the equivalence
statements of Theorem 1.17 are necessary through some counterexamples.

Example 5.1. (PHI(φ) does not imply HK(φ)) Let M = Rd and 0 < α < 2. For
0 < θ < 1 and v ∈ Rd with |v| = 1, define A = {h ∈ Rd : |(h/|h|, v)| ≥ θ} and

J(x, y) = 1A(x− y)|x− y|−d−α.

Clearly Jφ,≤ and UJS hold. According to [DK, Example 3], it is easy to see that this
example satisfies PI(φ) with φ(s) = sα. By Remark 1.5, SCSJ(φ) holds. So by Theorem
1.17, PHI(φ) holds. However, since Jφ,≥ does not hold, HK(φ) does not hold either.

Example 5.2. (EHR and Eφ do not imply EHI nor PHI(φ).) Let M = R3 and

0 < α < 2. Consider a symmetric process Xt = (Z
(1)
t , Z

(2)
t , Z

(3)
t ), where Z

(i)
t , i = 1, 2, 3, are

independent 1-dimensional symmetric α-stable processes. In [BC], it is proved that {Xt}
satisfies EHR and Eφ with φ(r) = rα, but it does not satisfy EHI and so also not satisfy
PHI(φ). Indeed, in this case one can easily see that UJS does not hold. (We note that in
[BC], the authors discussed more general processes on Rd that are expressed by a system of

stochastic differential equations dXt = A(Xt−) dZt, where Z
(i)
t , 1 ≤ i ≤ d, are independent

1-dimensional symmetric α-stable processes and A is a matrix-valued function which is
bounded, continuous and non-degenerate.) We also note that for this example, PI(φ) and
SCSJ(φ) are satisfied by [DK, Example 4] and Remark 1.5 respectively.

Example 5.3. (EHI and Eφ do not imply PHI(φ)) Let M = R2 and 1 < α < 2.
Consider a symmetric Lévy process X = {Xt} on R2 with the Lévy measure of the form

ν(dx) = h(x) dx := |x|−2−αf(x/|x|) dx,

where f : S1 → R+ is bounded and symmetric. Then, it is proved in [BS, Corollary 13]
that EHI holds for non-negative harmonic functions. In fact, [BS, Theorem 1] gives more
general fact in Rd setting with d ≥ 1 that EHI holds for non-negative harmonic functions
on B(0, 1) if and only if there is a constant C > 0 such that the following holds

∫

B(y,1/2)

|y − v|α−dh(v) dv ≤ C

∫

B(y,1/2)

h(v) dv, |y| > 1.
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Let us take a particular choice of f given as follows. For i ∈ N, let θi = (3π/8)4−i and
θ′i = (3π/8)2−i. Note that

∑∞
i=1(θi + θ′i) = π/2. Define

H =
{
eθ

√−1, e−θ
√−1,−eθ

√−1,−e−θ
√−1 : θ ∈ A

}
,

where

A = [0, θ1) ∪
( ∞⋃

n=1

[ n∑

i=1

(θi + θ′i),
n∑

i=1

(θi + θ′i) + θn+1

))
.

Set f(x) = 1H(x). Then, writing ξn =
∑n

i=1(θi + θ′i) + θn+1/2 and J(x, y) = h(x− y), we
see that

J(eξn
√
−1, 0) = 1.

Setting Hn = {eθ
√−1 : θ ∈ [ξn − θn+1/2, ξn + θn+1/2)}, we have for large n,

V (eξn
√
−1, 2−n−1)−1

∫

B(eξn
√

−1,2−n−1)

J(z, 0) dz ≤ c(2n+1)2
∫

B(eξn
√
−1,2−n−1)

1Hn(z/|z|) dz

≤ c′4n2−n−14−n−1 ≤ c02
−n,

so UJS does not hold. Therefore, by Theorem 1.17, PHI(φ) can not hold in this case.
We will briefly explain why Eφ holds with φ(r) = rα. Note that the corresponding

generator can be written as follows

Lu(x) =
∫

R2

(
u(x+ z)− u(x)−∇u(x) · z1{|z|<1}

)
ν(dz).

For g ∈ C2
b (R

2) with 0 ≤ g ≤ 1, let gr(y) = g(y/r) for r > 0. Then, by similar
computations as in [KSV, Lemma 13.4.1], we have |Lgr| ≤ c1r

−α, and so P0(τB(0,r) ≤ t) ≤
c2t/r

α for all t, r > 0. This implies

E0[τB(0,r)] ≥
rα

2c2
P0(τB(0,r) ≥ rα/(2c2)) ≥

rα

4c2
,

so that (since the process is the Lévy process) Eφ,≥ holds. Next we have by the Lévy
system formula,

P0(τB(0,r) ≤ rα) ≥ P0(X hits B(0, 6r) \B(0, 3r) by time rα)

≥ P0(Xrα∧τB(0,r)
∈ B(0, 6r) \B(0, 3r))

= E0

[∫ rα∧τB(0,r)

0

ν((B(0, 6r) \B(0, 3r))−Xs) ds

]

≥ ν(B(0, 5r) \B(0, 4r))E0[rα ∧ τB(0,r)]

≥ c3
rα
E0[rα ∧ τB(0,r)]

≥ c3
rα

· rα

2c2
P0
(
τB(0,r) ≥ rα/(2c2)

)
≥ c3

4c2
=: c4.

It follows that P0(τB(0,r) > rα) ≤ 1 − c4. Iterating this as in the proof of Proposition
3.5(ii), we obtain Eφ,≤.
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