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Abstract

We introduce an interacting particle system in which two families of reflected diffusions
interact in a singular manner near a deterministic interface I. This system can be used
to model the transport of positive and negative charges in a solar cell or the population
dynamics of two segregated species under competition. A related interacting random walk
model with discrete state spaces has recently been introduced and studied in [9]. In this
paper, we establish the functional law of large numbers for this new system, thereby extending
the hydrodynamic limit in [9] to reflected diffusions in domains with mixed-type boundary
conditions, which include absorption (harvest of electric charges). We employ a new and
direct approach that avoids going through the delicate BBGKY hierarchy.
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1 Introduction

With motivation to model and analyze the transport of positive and negative charges in solar
cells, an interacting random walk model in domains has recently been introduced in [9]. In that
model, a bounded domain in Rd is divided into two adjacent sub-domains D+ and D− by an
interface I. The subdomains D+ and D− represent the hybrid medias which confine the positive
and the negative charges, respectively. At microscopic level, positive and negative charges are
modeled by independent continuous time random walks on lattices inside D+ and D−. These
two types of particles annihilate each other at a certain rate when they come close to each
other near the interface I. This interaction models the annihilation, trapping, recombination
and separation phenomena of the charges. Such a stochastic system can also model population
dynamics of two segregated species under competition near their boarder. Under an appropriate
scaling of the lattice size, the speed of the random walks and the annihilation rate, we proved
in [9] that the hydrodynamic limit is described by a system of nonlinear heat equations that are
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coupled on the interface and satisfy Neumann boundary condition at the remaining part of the
boundary.

While the random walk model in [9] is more amenable to computer simulation, it is subject
to technical restrictions associated with the discrete approximations of both the diffusions per-
formed by the particles and the underlying domains D±. Furthermore, that model does not
consider harvest of charges.

In this paper, a new continuous state stochastic model is introduced and investigated. This
model is different from that of [9] in three ways: the particles perform reflected diffusions on
continuous state spaces rather than random walks over discrete state spaces, particles are ab-
sorbed (harvested) at some regions (harvest sites) away from the interface I, and the annihilation
mechanism near I is different. The model in this paper allows more flexibility in modeling the
underlying spatial motions performed by the particles and in the study of their various proper-
ties. In particular, it is more convenient to work with when we study the fluctuation limit (or,
functional central limit theorem) of the interacting diffusion system, which is the subject of an
on-going project [10].

Here is a heuristic description of our new model (See figure 1): Let D± and I be as above.

Figure 1: I = Interface, Λ± = Harvest sites

There is a harvest region Λ± ⊂ ∂D±\I that absorbs (harvests) ± charges, respectively, whenever
it is being visited. Let N be the (common) initial number of particles in each of D+ and D−. For
simplicity, we assume here that each particle in D± performs a Brownian motion with drift in the
interior of D±. These random motions model the transport of positive (respectively, negative)
charges under an electric potential. When a particle hits the boundary, it is absorbed (harvested)
on Λ±, and is instantaneously reflected on ∂D±\Λ± along the inward normal direction of D±. In
other words, we assume that each particle in D± performs a reflected Brownian motions (RBM)
with drift in D± that is killed upon hitting Λ±. In addition, a pair of particles of opposite signs
has a chance of being annihilated with each other when they are near I. Actually, when two
particles of different types come within a small distance δN (which must occur near the interface
I), they disappear with intensity λ

Nδd+1
N

. Here λ > 0 is a given parameter modeling the rate of

annihilation.

The choice of the scaling λ
Nδd+1

N

for the per-pair annihilation intensity is to guarantee that,

in the limit N → ∞, a non trivial proportion of particles is killed during the time interval
[0, t]. Here is the heuristic reasoning. Since diffusive particles typically spread out in space,
the number of pairs near the interface is of order N2 δd+1

N (because there are NδN number of
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particles in D+ near I, and each of them is near to NδdN number of particles in D−). With
the above choice of per-pair annihilation intensity, the expected number of pairs killed within t
units of time is about (N2 δd+1

N ) ( λ
Nδd+1

N

t) = λNt when t > 0 is small. This implies that a non

trivial proportion of particle is annihilated during [0, t] and accounts for the boundary term in
the hydrodynamic limit.

1.1 Main result and applications

We consider the normalized empirical measures

XN,+t (dx) :=
1

N

∑
α:α∼t

1X+
α (t)(dx) and XN,−t (dy) :=

1

N

∑
β:β∼t

1X−β (t)(dy).

Here 1y(dx) stands for the Dirac measure concentrated at the point y, while α ∼ t (resp. β ∼ t)
denotes the condition that particle X+

α (resp. X−β ) is alive at time t.

Our main result (Theorem 5.2) implies the following: Suppose each particle in D± is a
RBM with gradient drift 1

2 ∇(log ρ±), where ρ± is a strictly positive function on D±. Sup-

pose δN tends to zero and lim infN→∞N δdN ∈ (0,∞]. If (XN,+0 , XN,−0 ) converges in distribu-

tion, then the random measures (XN,+t , XN,−t ) converge in distribution to a deterministic limit
(u+(t, x)ρ+(x)dx, u−(t, y)ρ−(y)dy) for any t > 0, where (u+, u−) is the unique solution of the
coupled heat equations

∂u+

∂t
=

1

2
∆u+ +

1

2
∇(log ρ+) · ∇u+ on (0,∞)×D+

u+ = 0 on (0,∞)× Λ+

∂u+

∂~n+
=

λ

ρ+
u+u− 1{I} on (0,∞)× ∂D+ \ Λ+

(1.1)

and 
∂u−
∂t

=
1

2
∆u− +

1

2
∇(log ρ−) · ∇u− on (0,∞)×D−

u− = 0 on (0,∞)× Λ−

∂u−
∂~n−

=
λ

ρ−
u+u− 1{I} on (0,∞)× ∂D− \ Λ−,

(1.2)

where ~n± is the inward unit normal vector field on ∂D± of D± and 1{I} is the indicator function
on I. Note that ρ± = 1 corresponds to the particular case when there is no drift.

Remark 1.1. Generalizations and Applications: Actually, Theorem 5.2 is general enough to
deal with any general symmetric reflected diffusions and covers the case when the constant λ
is replaced by any continuous function λ(x) on I. It is routine to generalize to any continuous
time-dependent function λ(t, x) and the details are left to the readers. Moreover, it is likely
that a further generalization to tackle multiple deletion of particles near the interface (similar
to that in [17]) can be done in an analogous way. As an immediate application of Theorem 5.2,
we obtain an analytic formula for the asymptotic mass of positive charges harvested during the
time interval [0, T ], which is

1−
∫
D+

u+(T, x)ρ+(x) dx− λ
∫ T

0

∫
I
u+(s, z)u−(s, z) dσ(z) ds.
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Remark 1.2. The condition lim infN→∞N δdN ∈ (0,∞] is an upper bound for the rate at which
the annihilations distance δN tends to 0. Such kind of condition is necessary by the following
reason: The dimension of I is d + 1 lower than that of D+ × D−. So we can choose δN small
enough so that particles of different types cannot ‘see’ each other in the limit N →∞, resulting
a decoupled linear system of PDEs with Dirichlet boundary condition on Λ± and Neumann
boundary condition on ∂D± \ Λ±. See Example 5.3 for a rigorous statement and proof.

1.2 Key ideas

Theorem 3.2.39 of [22] from geometric theory asserts that

lim
δ→0

H2d(Iδ)

cd+1 δd+1
= Hd−1(I), (1.3)

where Iδ := {(x, y) ∈ D+ ×D− : |x − z|2 + |y − z|2 < δ2 for some z ∈ I}, cd+1 is the volume
of the unit ball in Rd+1, and Hm is the m-dimensional Hausdorff measure. In Lemma 7.2, we
strengthen it to

lim
δ→0

1

cd+1 δd+1

∫
Iδ
f(x, y) dxdy =

∫
I
f(z, z) dHd−1(z) (1.4)

uniformly in f from any equi-continuous family in C(D+ ×D−). Property (1.4) leads us to the
following key observation that

lim
δ→0

lim
N→∞

1

cd+1 δd+1
E
∫ T

0
XN,+s ⊗ XN,−s (Iδ) ds = lim

N→∞
lim
δ→0

1

cd+1 δd+1
E
∫ T

0
XN,+s ⊗ XN,−s (Iδ) ds.

This interchange of limit in turn allows us to characterize the mean of any subsequential limit of
(XN,+, XN,−) by comparing the integral equations (4.1) satisfied by the hydrodynamic limit with
its stochastic counterpart (7.6) . Using a similar argument, we can identify the second moment
of any subsequential limit, and hence characterize any subsequential limit of (XN,+, XN,−). We
point out here that 1

cd+1 δd+1

∫ t
0 XN,+s ⊗ XN,−s (Iδ) ds quantifies the amount of interaction among

the two types of particles, and is related (but different from) the collision local time introduced
in [20]. The direct approach developed in this paper to establish the hydrodynamic limit avoids
going through the delicate BBGKY hierarchy as was done in [9].

1.3 Literature

Interacting diffusion systems have been studied by many authors and they continue to be the
subject of active research. See [30] and [32] for such a system on a circle whose hydrodynamic
limit is established using the entropy method. We also mention [16] for a recent large deviation
result for a system of diffusions in R interacting through their ranks. This large deviation
principle implies convergence of the system to the hydrodynamic limit. However, the methods
in these papers do not seem to work (at least not in a direct way) for our annihilating diffusion
model due to the singular interaction on the interface.

An extensively studied class of stochastic particle systems is reaction-diffusion systems (R-D
systems in short), whose hydrodynamic limits are described by R-D equations ∂u

∂t = 1
2∆u+R(u),

where R(u) is a function in u which represents the reaction. R-D systems is an important class
of interacting particle systems arising from various contexts. They were investigated by many
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authors in both the discrete setting (particles perform random walks) and the continuous setting
(particles perform continuous diffusions). For instance, for the case R(u) is a polynomial in u,
these systems were studied in [17, 18, 28, 29] on a cube with Neumann boundary conditions,
and in [3, 4] on a periodic lattice. See also [7] for a survey of a class of discrete (lattice) models
called the Polynomial Model which contains the Schlögl’s model. Recently, perturbations of
the voter models which contain the Lotka-Volterra systems are considered in [13]. The authors
showed that the hydrodynamic limits are R-D equations and established general conditions for
the existence of non-trivial stationary measures and for extinction of the particles. Another
stochastic particle systems which are related to our annihilation-diffusion model is the Fleming-
Viot type systems ([5, 6, 24]). In [6], Burdzy and Quastel studied an annihilating-branching
system of two families of random walks on a domain. In their model, when a pair of parti-
cles of different types meet, they annihilate each other and they are immediately reborn at a
site chosen randomly from the remaining particles of the same type. So the total number of
particles of each type remains constant over the time, and thus this Fleming-Viot type system
is different from the annihilating random walk model of [9]. The hydrodynamic limit of the
model in [6] is described by a linear heat equation with zero average temperature. An elegant
result obtained by P. Dittrich [17] is on a system of reflected Brownian motion on the unit
interval [0, 1] with multiple deletion of particles. More precisely, any k-tuples (2 ≤ k ≤ n) of
particles with distances between them of order ε, say (xi1 , · · · , xik), disappear with intensity
ck(k − 1)!εk−1

∫
[0,1] p(ε

2, xi1 , y) · · · p(ε2, xik , y) dy, where ck > 0 are constants and p(t, x, y) is

the transition density of the reflected Brownian motion on [0, 1]. The hydrodynamic limit is a
R-D equation with reaction term R(u) = −

∑n
k=2 cku

k and Neumann boundary condition. In
contrast to [17], our model has two types of particles instead of one. Moreover, the interaction
of our model is singular near the boundary and gives rise to a boundary integral term in the
hydrodynamic limit.

The rest of the paper is organized as follows. Preliminary materials on setup, reflecting diffu-
sions, and notations are given in Section 2. A rigorous description of the interacting stochastic
particle system we are going to study in this paper is presented in Section 3. In section 4, we
give an existence and uniqueness result of solution of a coupled heat equation with non-linear
boundary condition, analogous to [9, Proposition 2.19]. The full statement of our main result
(Theorem 5.2) of this paper is given in section 5. Section 6 is devoted to the proof of Theorem
5.2. The proof of a key proposition that identifies the first and second moments of subsequential
limits of empirical distributions is given in Section 7.

2 Preliminaries

2.1 Reflected diffusions killed upon hitting a closed set Λ ⊂ D

Let D ⊂ Rd be a bounded Lipschitz domain, and

W 1,2(D) = {f ∈ L2(D; dx) : ∇f ∈ L2(D; dx)}.

Consider the bilinear form on W 1,2(D) defined by

E(f, g) :=
1

2

∫
D
∇f(x) · a∇g(x) ρ(x) dx,
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where ρ ∈ W 1,2(D) is a positive function on D which is bounded away from zero and infinity,
a = (aij) is a symmetric bounded uniformly elliptic d × d matrix-valued function such that
aij ∈W 1,2(D) for each i, j. Since D is Lipschitz boundary, (E ,W 1,2(D)) is a regular symmetric
Dirichlet form on L2(D; ρ(x)dx) and hence has a unique (in law) associated ρ-symmetric strong
Markov process X (cf. [8]).

Definition 2.1. Let (a, ρ) and X be as in the preceding paragraph. We call X an (a, ρ)-
reflected diffusion. A special but important case is when a is the identity matrix, in which
X is called a reflected Brownian motion with drift 1

2 ∇(log ρ). If in addition ρ = 1, then X is
called a reflected Brownian motion (RBM).

Denote by ~n the unit inward normal vector of D on ∂D. The Skorokhod representation of X
tells us (see [8]) that X behaves like a diffusion process associated to the elliptic operator

A :=
1

2 ρ
∇ · (ρa∇) (2.1)

in the interior of D, and is instantaneously reflected at the boundary in the inward conormal
direction ~ν := a~n. It is well known (cf. [2, 25] and the references therein) that X has a
transition density p(t, x, y) with respect to the symmetrizing measure ρ(x)dx (i.e., Px(Xt ∈
dy) = p(t, x, y) ρ(y)dy and p(t, x, y) = p(t, y, x)), that p is locally Hölder continuous and hence
p ∈ C((0,∞) × D × D), and that we have the followings: for any T > 0, there are constants
c1 ≥ 1 and c2 ≥ 1 such that

1

c1td/2
exp

(
−c2|y − x|2

t

)
≤ p(t, x, y) ≤ c1

td/2
exp

(
−|y − x|2

c2 t

)
(2.2)

for every (t, x, y) ∈ (0, T ]×D×D. Using (2.2) and the Lipschitz assumption for the boundary,
we can check that

sup
x∈D

sup
0<δ≤δ0

1

δ

∫
Dδ
p(t, x, y) dy ≤ C1√

t
+ C2 for t ∈ (0, T ] and (2.3)

sup
x∈D

∫
∂D

p(t, x, y)σ(dy) ≤ C1√
t

+ C2 for t ∈ (0, T ], (2.4)

where C1, C2, δ0 > 0 are constants which depends only on d, T , the Lipschitz characteristics of
D, the ellipticity of a and the lower and upper bound of ρ. Here Dδ := {x ∈ D : dist(x, ∂D) < δ}.
In fact (2.4) follows from (2.3) via Lemma 7.1.

Now we consider an (a, ρ)-reflected diffusion killed upon hitting a closed subset Λ of D. In
particular, Λ can be subset of ∂D (this is the case for Λ± in figure 1). Define

X
(Λ)
t :=

{
Xt, t < TΛ

∂, t ≥ TΛ,
(2.5)

where ∂ is a cemetery point and TΛ := inf {t > 0 : Xt ∈ Λ} is the first hitting time of X on
Λ. Since D \ Λ is open in D, Theorem A.2.10 of [23] asserts that X(Λ) is a Hunt process on
(D \ Λ) ∪ ∂ with transition function PΛ

t (x,A) = Px(Xt ∈ A, t < TΛ). The characterization
of the Dirichlet form of X(Λ) can be found in [11, Theorem 3.3.8] or [23, Theorem 4.4.2]; in
particular, it implies that the semigroup {PΛ

t }t≥0 of X(Λ) is symmetric and strongly continuous
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on L2(D \ Λ, ρ(x)dx). Clearly, X(Λ) has a transition density p(Λ) with respect to ρ(x)dx (i.e.
PΛ
t (x, dy) = p(Λ)(t, x, y) ρ(y) dy). Note that p(Λ)(t, x, y) ≤ p(t, x, y) for all x, y ∈ D and t > 0.

So far Λ is only assumed to be closed in D. We will also need the following regularity
assumption.

Definition 2.2. Λ ⊂ D is said to be regular with respect to X if Px(TΛ = 0) = 1 for all x ∈ Λ,
where TΛ := inf {t > 0 : Xt ∈ Λ}.

This regularity assumption implies that p(Λ)(t, x, y) is jointly continuous in x and y up to the
boundary. In particular, p(Λ)(t, x, y) is continuous for x and y in a neighborhood of I. We now
gather some basic properties of p(Λ)(t, x, y) for later use.

Proposition 2.3. Let X be an (a, ρ)-reflected diffusion defined in Definition 2.1, and p(Λ)(t, x, y)
be the transition density, with respect to ρ(x)dx, of XΛ defined in (2.5). Suppose Λ is closed and
regular with respect to X. Then p(Λ)(t, x, y) ≥ 0 and p(Λ)(t, x, y) = p(Λ)(t, y, x) for all x, y ∈ D
and t > 0. Moreover, p(Λ)(t, x, y) can be extended to be jointly continuous on (0,∞) ×D ×D.
The last property implies that the semigroup {PΛ

t }t≥0 of XΛ is strongly continuous on the Ba-
nach space C∞(D \Λ) := {f ∈ C(D) : f vanishes on Λ} equipped with the uniform norm on D.

The domain of the Feller generator of {P (Λ)
t }t≥0, denoted by Dom(A(Λ)), is dense in C∞(D\Λ).

Proof Define, for all (t, x, y) ∈ (0,∞)×D ×D,

q(Λ)(t, x, y) := p(t, x, y)− r(t, x, y), where r(t, x, y) := Ex [ p(t− TΛ, XTΛ
, y); t ≥ TΛ ] .

Using the fact that x 7→ Px(TΛ < t) is lower semi-continuous (cf. Proposition 1.10 in Chapter
II of [1]), it is easy to check that if Λ is closed and regular, then

lim
n→∞

Pxn(TΛ < t) = 1 (2.6)

whenever t > 0 and xn ∈ D converges to a point in Λ. Recall that p(t, x, y) is symmetric in
(x, y), has two-sided Gaussian estimates (2.2), and is jointly continuous on (0,∞) × D × D.
Using these properties of p together with (2.6), then applying the same argument of section 4
of Chapter II in [1], we have

(a) q(Λ)(t, x, y) is a density for the transition function XΛ.

(b) q(Λ)(t, x, y) ≥ 0 and q(Λ)(t, x, y) = q(Λ)(t, y, x) for all x, y ∈ D and t > 0.

(c) q(Λ)(t, x, y) is jointly continuous on (0,∞)×D ×D.

From (c), the semigroup {P (Λ)
t } of X(Λ) is strongly continuous by a standard argument. C∞(D\

Λ) is a Banach space since it is a closed subspace of C(D). The Feller generator Dom(A(Λ)) of

{P (Λ)
t } is dense in C∞(D \Λ) because any f ∈ C∞(D \Λ) is the strong limit limt↓0

1
t

∫ t
0 P

(Λ)
s fds

in C∞(D \ Λ), and
∫ t

0 P
(Λ)
s fds ∈ Dom(A(Λ)).

2.2 Assumptions and notations

We now return to our annihilating diffusion system. Recall that before being annihilated by
a particle of the opposite kind near I, a particle in D± performs a reflected diffusion with
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absorption on Λ± ⊂ ∂D± \ I. If a particle is absorbed (in Λ±) rather than annihilated (near I),
it is considered to be harvested.

The following assumptions are in force throughout this paper.

Assumption 2.4. (Geometric setting) Suppose D+ and D− are given adjacent bounded Lip-
schitz domains in Rd such that I := D+ ∩ D− = ∂D+ ∩ ∂D− is Hd−1-rectifiable. Λ± is a
closed subset of D± \ I which is regular with respect to the (a±, ρ±)-reflected diffusion X±,
where ρ± ∈W (1,2)(D±)∩C(D±) is a given strictly positive function, a± = (aij±) is a symmetric,

bounded, uniformly elliptic d× d matrix-valued function such that aij± ∈W 1,2(D±) for each i, j.

Assumption 2.5. (Parameter of annihilation) Suppose λ ∈ C+(I) is a given non-negative
continuous function on I. Let λ̂ ∈ C(D+ ×D−) be an arbitrary but fixed extension of λ in the
sense that λ̂(z, z) = λ(z) for all z ∈ I. (Such λ̂ always exists.)

Assumption 2.6. (The annihilation distance) lim infN→∞N δdN ∈ (0,∞], where {δN} ⊂ (0,∞)
converges to 0 as N →∞.

Assumption 2.7. (The annihilation potential) We choose annihilation potential functions

{`δ : δ > 0} ⊂ C+(D+ ×D−) in such a way that `δ ≤ λ̂
cd+1 δd+1 1Iδ on D+ ×D− and

lim
δ→0

∥∥∥`δ − λ̂

cd+1 δd+1
1Iδ
∥∥∥
L2(D+×D−)

= 0 (2.7)

Assumption 2.7 is natural in view of (1.3). Intuitively, if N is the initial number of particles,
then δN is the annihilation distance and IδN controls the frequency of interactions. As remarked
in the introduction, we need to assume that the annihilation distance δN does not shrink too
fast. This is formulated in Assumption 2.6.

Convention: To simplify notation, we suppress Λ± and write X± in place of XΛ± for a
(a±, ρ±)-reflected diffusions on D± killed upon hitting Λ±. We also use p±(t, x, y), P±t and A±
to denote, respectively, the transition density w.r.t. ρ±, the semigroup associated to p±(t, x, y)
and the C∞(D± \Λ±)-generator (called the Feller generator) of X± = XΛ± . Under Assumption
2.4, X± is a Hunt (hence strong Markov) process on

D∂
± :=

(
D± \ Λ±

)
∪ {∂±},

where ∂± is the cemetery point for X± (see Proposition 2.3).

For reader’s convenience, we list other notations that we will adopt here:

B(E) Borel measurable functions on E
Bb(E) bounded Borel measurable functions on E
B+(E) non-negative Borel measurable functions on E
C(E) continuous functions on E
Cb(E) bounded continuous functions on E
C+(E) non-negative continuous functions on E
Cc(E) continuous functions on E with compact support
D([0,∞), E) space of càdlàg paths from [0,∞) to E

equipped with the Skorokhod metric
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C∞(D \ Λ) {f ∈ C(D) : f vanishes on Λ}
C

(n,m)
∞

{
Φ ∈ C(D

n
+ ×D

m
− ) : Φ vanishes outside (D+ \ Λ+)n × (D− \ Λ−)m

}
,

see Subsection 7.2

Hm m-dimensional Hausdorff measure
Iδ {(x, y) ∈ D+ ×D− : |x− z|2 + |y − z|2 < δ2 for some z ∈ I},
cd+1 the volume of the unit ball in Rd+1

`δ the annihilating potential functions in Assumption 2.7

X
(N)
t the configuration process defined in Subsection 3.1

SN ∪Nm=1

(
D∂

+(m)×D∂
−(m)

)
∪ {∂}, the state space of (X

(N)
t )t≥0

(XN,+t , XN,−t ) the normalized empirical measure defined in Subsection 3.2

EN ∪NM=1E
(M)
N ∪ {0∗}, the state space of (XN,+t , XN,−t )t≥0

M+(E) space of finite non-negative Borel measures on E, with weak topology
M≤1(E) {µ ∈M+(E) : µ(E) ≤ 1}
M M≤1(D+ \ Λ+)×M≤1(D− \ Λ−), see Section 5
{FXt : t ≥ 0} filtration induced by the process (Xt), i.e. FXt = σ(Xs, s ≤ t)
1x indicator function at x or the Dirac measure at x

(depending on the context)
L−→ convergence in law of random variables (or processes)
〈f, µ〉

∫
f(x)µ(dx)

x ∨ y max{x, y}
x ∧ y min{x, y}

3 Annihilating diffusion system

In this section, we fixN ∈ N and construct the normalized empirical measure process (XN,+, XN,−)
and the configuration process X(N) for our annihilating particle system. In the construction,
we will label (rather than annihilate) pairs of particles to keep track of the annihilated parti-
cles. This provides a coupling of our annihilating particle system and the corresponding system
without annihilation.

Let m ∈ {1, 2, · · · , N} (in fact, m can be any positive integer). Starting with m points in
each of D∂

+ and D∂
−, we perform the following construction:

Let {X±i = X
Λ±
i }mi=1 be (a±, ρ±)-reflected diffusions on D± killed upon hitting Λ±, starting

from the given points in D∂
±. These 2m processes are constructed to be mutually independent.

In case X±i starts at the cemetery point ∂±, we have X±i (t) = ∂± for all t ≥ 0. Let {Rk}mk=1 be
i.i.d. exponential random variables with parameter one which are independent of {X+

i }mi=1 and
{X−i }mj=1.

Define the first time of labeling (or annihilation) to be

τ1 := inf

t ≥ 0 :
1

2N

∫ t

0

m∑
i=1

m∑
j=1

`δN (X+
i (s), X−j (s)) ds ≥ R1

 . (3.1)
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In the above, `δN (x, y) = 0 if either x = ∂+ or y = ∂−. Hence particles absorbed at Λ± do
not contribute to rate of labeling (or annihilation). At τ1, we label exactly one pair in {(i, j)}
according to the probability distribution given by

`δN (X+
i (τ1−), X−j (τ1−))∑m

p=1

∑m
q=1 `δN (X+

p (τ1−), X−q (τ1−))
assigned to (i, j).

Denote (i1, j1) to be the labeled pair at τ1 (think of the labeled pair as begin removed due to
annihilation of the corresponding particles).

We repeat this labeling procedure using the remaining unlabeled 2(m−1) particles. Precisely,
for k = 2, 3, · · · ,m, we define

τk := inf

t ≥ 0 :
1

2N

∫ τ1+···+τk−1+t

τ1+···+τk−1

∑
i/∈{i1,··· ,il−1}

∑
j /∈{j1,··· ,jl−1}

`δN (X+
i (s), X−j (s)) ds ≥ Rk

 .

At σk := τ1 + τ2 + · · · + τk−1 + τk, the k-th time of labeling (annihilation), we label exactly
one pair (ik, jk) in { (i, j) : i /∈ {i1, · · · , ik−1}, j /∈ {j1, · · · , jk−1} } according to the probability
distribution given by

`δN (X+
i (σk−), X−i (σk−))∑

i/∈{i1,··· ,ik−1}
∑

j /∈{j1,··· ,jk−1} `δN (X+
i (σk−), X−i (σk−))

assigned to (i, j).

We will study the evolution of the unlabeled (or surviving particles, which is described in
detail below.

3.1 The configuration process X(N)

We denote D∂
±(m) the space of unordered m-tuples of elements in D∂

± :=
(
D± \ Λ±

)
∪ {∂±}.

The configuration space for the particles is defined as

SN := ∪Nm=1

(
D∂

+(m)×D∂
−(m)

)
∪ {∂}, (3.2)

where ∂ is a cemetery point (different from ∂±).

We define X
(N)
t ∈ SN to be the following unordered list of (the position of) unlabeled (sur-

viving) particles at time t. That is,

X
(N)
t :=


(
{X+

1 (t), · · · , X+
m(t)}, {X−1 (t), · · · , X−m(t)}

)
, if t ∈ [0, σ1 = τ1);(

{X+
i (t)}i/∈{i1,··· ,ik−1}, {X

−
j (t)}j /∈{j1,··· ,jk−1}

)
, if t ∈ [σk−1, σk), for k = 2, 3, · · · ,m;

∂, if t ∈ [σm, ∞).

By definition, X
(N)
t ∈ D∂

+(m−k+ 1)×D∂
−(m−k+ 1) when t ∈ [σk−1, σk), and X

(N)
t = ∂ if and

only if all particles are labeled (annihilated) at time t (in particular, none of them is absorbed

at Λ±). We call X(N) = (X
(N)
t )t≥0 the configuration process.

Denote (Ω,F , ℘) the ambient probability space on which the above random objects {X+
i }mi=1,

{X−i }mj=1, {Ri}mi=1 and {(i1, j1), · · · , (im, jm)} are defined. For any z ∈ SN , we define Pz to be

the conditional measure ℘
(
· |X(N)

0 = z
)
. From the construction, we have

10



Proposition 3.1. {X(N)} is a strong Markov processes under {Pz : z ∈ SN}.

The key is to note that the choice of (ik, jk) depends only on the value of X
(N)
σk −, and that

τk+1 = inf{t ≥ 0 : A
(k)
t > Rk+1}, where A

(k)
t =

1

2N

∫ σk+t

σk

∑
i=1

∑
j=1

`δN (X+
i (s), X−j (s)) ds.

Hence X(N) is obtained through a patching procedure reminiscent to that of Ikeda, Nagasawa
and Watanabe [26]. The proof is standard and is left to the reader.

3.2 The normalized empirical process (XN,+, XN,−)

Next, we consider EN := ∪NM=1E
(M)
N ∪ {0∗}, where

E
(M)
N :=


 1

N

M∑
i=1

1xi ,
1

N

M∑
j=1

1yj

 : xi ∈ D∂
+, yj ∈ D∂

−


and 0∗ is an abstract point isolated from ∪NM=1E

(M)
N . We define the normalized empirical

measure (XN,+, XN,−) by

(XN,+t , XN,−t ) := UN (X
(N)
t ), (3.3)

where UN : SN → EN is the canonical map given by UN (∂) := 0∗ and

UN : (x, y) = (x1, · · · , xm, y1, · · · , ym) 7→

 1

N

m∑
i=1

1xi ,
1

N

m∑
j=1

1yj


For comparison, we also consider the empirical measure for the independent reflected diffusions

without annihilation:

(X
N,+

, X
N,−

) :=

 1

N

m∑
i=1

1X+
i (t) ,

1

N

m∑
j=1

1X−j (t)

 . (3.4)

For any µ ∈ EN , we define Pµ to be the conditional measure ℘
(
· | (XN,+0 , XN,−0 ) = µ

)
. From

Proposition 3.2, we have

Proposition 3.2. {(XN,+,XN,−)} is a strong Markov processes under {Pµ : µ ∈ EN}.

4 Coupled heat equation with non-linear boundary condition

Denote by C∞([0, T ];D \Λ) the space of continuous functions on [0, T ] taking values in C∞(D \
Λ) := {f ∈ C(D) : f vanishes on Λ}. We equip the Banach space C∞([0, T ];D+ \ Λ+) ×
C∞([0, T ];D− \ Λ−) with norm ‖(u, v)‖ := ‖u‖∞ + ‖v‖∞, where ‖ · ‖∞ is the uniform norm.
Using a probabilistic representation and the Banach fixed point theorem in the same way as we
did in the proof of the existence and uniqueness result for the PDE in [9, Propostion 2.19], we
have the following:
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Proposition 4.1. Let T > 0 and u±0 ∈ C∞(D±\Λ±). Then there is a unique element (u+, u−) ∈
C∞([0, T ];D+ \ Λ+)× C∞([0, T ];D− \ Λ−) that satisfies the coupled integral equation{

u+(t, x) = PΛ+

t u+
0 (x)− 1

2

∫ t
0

∫
I p

Λ+
(t− r, x, z)[λ(z)u+(r, z)u−(r, z)]dσ(z) dr

u−(t, y) = PΛ−
t u−0 (y)− 1

2

∫ t
0

∫
I p

Λ−(t− r, y, z)[λ(z)u+(r, z)u−(r, z)]dσ(z) dr.
(4.1)

Moreover, (u+, u−) satisfies
u+(t, x) = Ex

[
u+

0 (XΛ+

t ) exp
(
−
∫ t

0
(λ · u−)(t− s, XΛ+

s ) dLI,+s

)]
u−(t, y) = Ey

[
u−0 (XΛ−

t ) exp
(
−
∫ t

0
(λ · u+)(t− s, XΛ−

s ) dLI,−s

)]
,

(4.2)

where LI,± is the boundary local time of XΛ± on the interface I, i.e. the positive continuous
additive functional having Revuz measure σ|I , the surface measure σ restricted to I.

It can be shown that continuous functions (u+, u−) satisfying (4.1) is weakly differentiable
and satisfies the following PDE (4.3)-(4.4) in the distributional sense.

Definition 4.2. We call the unique solution (u+, u−) ∈ C∞([0, T ];D+ \Λ+)×C∞([0, T ];D− \
Λ−) of (4.1) the weak solution to the following coupled PDEs starting from (u+

0 , u
−
0 ):

∂u+

∂t
= A+u+ on (0,∞)×D+

u+ = 0 on (0,∞)× Λ+

∂u+

∂ ~ν+
=

λ

ρ+
u+u− 1{I} on (0,∞)× ∂D+ \ Λ+

(4.3)

and 
∂u−
∂t

= A−u− on (0,∞)×D−

u− = 0 on (0,∞)× Λ−

∂u−
∂ ~ν−

=
λ

ρ−
u+u− 1{I} on (0,∞)× ∂D− \ Λ−,

(4.4)

where ~ν± := a±~n± is the inward conormal vector field on ∂D±. Here 1{I} is the indicator
function of I.

5 Main result: rigorous statement

Denote by M≤1(D± \ Λ±) the space of non-negative Borel measures on D± \ Λ± with mass at
most 1 and set

M := M≤1(D+ \ Λ+)×M≤1(D− \ Λ−),

equipped with the topology of weak convergence.

Remark 5.1. M is in fact a Polish space. Let {fn;n ≥ 1} and {gn;n ≥ 1} be sequences of
continuous functions with |fn| ≤ 1 and |gn| ≤ 1 whose linear span are dense in C∞(D+ \ Λ+)
and C∞(D− \ Λ−), respectively. For µ = (µ+, µ−) and ν = (ν+, ν−) in M, define

%(µ, ν) :=
∞∑
n=1

2−n
(∣∣∣∣∫

D+

fn(x)(µ+ − ν+)(dx)

∣∣∣∣+

∣∣∣∣∫
D−

gn(y)(µ− − ν−)(dy)

∣∣∣∣) .
12



It is well known that M is a complete separable metric space under the metric %.

Regard 1∂± as 0± and 0∗ as (0+,0−), where 0± is the zero measure on D±, respectively.
Clearly, EN ⊂M for all N , and the processes (XN,+, XN,−) have sample paths in D([0,∞), M),
the Skorokhod space of càdlàg paths in M.

We can now rigorously state our main result. In what follows,
L−→ denotes convergence in

law.

Theorem 5.2. (Hydrodynamic Limit) Suppose that Assumptions 2.4 to 2.7 hold. If as N →∞,

(XN,+0 , XN,−0 )
L−→ (u0

+(x)ρ+(x)dx, u0
−(y)ρ−(y)dy) in M, where u0

± ∈ C∞(D± \ Λ±), then

(XN,+,XN,−)
L−→ (u+(t, x)ρ+(x)dx, u−(t, y)ρ−(y)dy) in D([0, T ],M)

for any T > 0, where (u+, u−) is the unique weak solution of (4.3)-(4.4) with initial value
(u0

+, u
0
−).

As mentioned in Remark 1.2 in the introduction, an assumption on the rate at which δN
tends to zero, such as Assumption 2.6, is necessary for Theorem 5.2 to hold. Below is a counter-
example.

Example 5.3. Suppose that {X+
i (t)}∞i=1 and {X−j (t)}∞j=1 are RBMs on D+ and D−, respec-

tively, and they are all mutually independent. Note that X+
i and X−j never meet in the sense

that
P
(
X+
i (t) = X−j (t) for some t ∈ [0,∞) and i, j ∈ {1, 2, 3, · · · }

)
= 0. (5.1)

This implies that there exists {δN} so that
∑∞

N=1 αN <∞, where

αN := P
(

(X+
i (t), X−j (t)) ∈ IδN for some t ∈ [0,∞) and i, j ∈ {1, 2, · · · , N}

)
. (5.2)

Hence by Borel-Cantelli lemma, we know that with probability 1, there will be no annihila-
tion for the particle system (which occurs only when a pair of particles are in IδN ) when N is
sufficiently large. In this case, (XN,+t , XN,−t ) converges to (P+

t u
+
0 (x)dx, P−t u

−
0 (y)dy) in distri-

bution in D([0, T ],M) instead, provided that (XN,+0 , XN,−0 ) converges to (u+
0 (x)dx, u−0 (y)dy) in

distribution in M.

Question. We will see from Theorem 6.6 below that the tightness of (XN,+t , XN,−t ) holds without

Assumption 2.6. Can we characterize all limit points of (XN,+t , XN,−t ) without Assumption 2.6?
Is lim infN→∞N δdN ∈ (0,∞] the sharpest condition for Theorem 5.2 to hold?

6 Hydrodynamic limit

Recall that Assumptions 2.4 to 2.7 are in force throughout this paper.

6.1 Martingales and tightness

In this subsection, we present some key martingales that are used to establish tightness of
(XN,+, XN,−). More martingales related to the time dependent process (t, (XN,+t , XN,−t )) will
be given in subsection 7.2.
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6.1.1 Martingales for reflected diffusions

We will need the following collection of fundamental martingales, together with their quadratic
variations, for reflected diffusions.

Lemma 6.1. Suppose XΛ is an (a, ρ)-reflected diffusion in a bounded Lipschitz domain D killed
upon hitting Λ. Suppose all assumptions in Proposition 2.3 hold, and f is in the domain of the
Feller generator Dom(A(Λ)). Then we have

M(t) := f(XΛ(t))− f(XΛ(0))−
∫ t

0
A(Λ)f(XΛ(s)) ds (6.1)

is an FXΛ

t -martingale that is bounded on each compact time interval and has quadratic variation∫ t
0 (a∇f · ∇f) (XΛ(s)) ds under Px for any x ∈ D \Λ. Moreover, if X1 and X2 are independent

copies of XΛ, and if Mi is the above M with XΛ replaced by Xi, then the cross variation
〈M1, M2〉t = 0.

Proof For f ∈ Dom(A(Λ)), M(t) defined in (6.1) is an FXΛ

t -martingale that is bounded on each
compact time interval. Since D is bounded, f is clearly in the domain of the L2-generator of
XΛ. Hence it follows from the Fukushima decomposition of f(XΛ

t ) (see [11, Theorems 4.2.6 and
4.3.11] that M(t) is a martingale additive functional of XΛ of finite energy having quadratic
variation 〈M(t)〉t =

∫ t
0 (a∇f · ∇f)(XΛ(s))ds. If X1 and X2 are independent copies of XΛ, then

M1 and M2 are independent and so 〈M1,M2〉 = 0.

An immediate consequence of Lemma 6.1 is∫ t

0
PΛ
s (a∇f · ∇f)(x) ds = Ex[M(t)2] ≤ 8(‖f‖2 + ‖A(Λ)f‖2 t2) for x ∈ D, (6.2)

where ‖g‖ is the uniform norm of g on D.

6.1.2 Martingales for annihilating diffusion system

Theorem 6.2. Fix any positive integer N . Suppose F ∈ Cb(EN ) is a bounded continuous
function and G ∈ B(EN ) is a Borel measurable function on EN such that

M t := F (X
N,+
t ,X

N,−
t )−

∫ t

0
G(X

N,+
s ,X

N,−
s ) ds

is an F (X
N,+

,X
N,−

)
t -martingale under Pµ for any µ ∈ EN . Then

Mt := F (XN,+t ,XN,−t )−
∫ t

0
(G+KF )(XN,+s ,XN,−s ) ds

is a F (XN,+,XN,−)
t -martingale under Pµ for any µ ∈ EN , where

KF (ν) := − 1

2N

M∑
i=1

M∑
j=1

`δN (xi, yj)
(
F (ν) − F

(
ν+ −N−11{xi}, ν

− −N−11{yj}
))

(6.3)

whenever ν =
(

1
N

∑M
i=1 1{xi},

1
N

∑M
j=1 1{yj}

)
∈ E(M)

N , and KF (0∗) := 0.
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Remark 6.3. (i) Theorem 6.2 indicates the infinitesimal generator of (XN,+,XN,−) on Cb(EN )

is given by L + K, where L is the infinitesimal generator of (X
N,+

,X
N,−

) on Cb(EN ). Note
that G is merely assumed to be Borel measurable, the above provides us with a broader class of

martingales (such as N
(φ+,φ−)
t in Corollary 6.4) than from using the Cb(EN )-generator.

(ii) Theorem 6.2 can be generalized to deal with time-dependent functions Fs ∈ Cb(EN )
(s ≥ 0). See Theorem 7.6 in subsection 7.2.

Proof of Theorem 6.2. We adopt the abbreviation X := (XN,+,XN,−) when there is no confusion.

In particular, we write FX
t in place of F (XN,+,XN,−)

t . By Markov property for X, it suffices to
show that for all t ≥ 0 and ν ∈ EN ,

Eν
[
F (Xt)− F (X0)−

∫ t

0
(G+KF )(Xs) ds

]
= 0. (6.4)

The idea is to spit the time interval [0, t] into pieces according to the jumping times of F (Xs) (s ∈
[0, t]) caused by annihilation (excluding the jumps caused by absorbtion at the harvest sites Λ±),
then apply M in each piece and take into account the jump distributions.

Suppose ν = (ν+, ν−) = ( 1
N

∑m
i=1 1xi ,

1
N

∑m
j=1 1yj ) ∈ E

(m)
N . Recall that σi := τ1 + · · · τi

(i = 1, 2, · · · ,m) is the time of the i-th labeling (annihilation) of particles. write

F (Xt)− F (X0) =

m∑
i=0

(
F (X(t∧σi+1)−)− F (Xt∧σi)

)
+

m∑
j=1

(
F (Xt∧σj )− F (X(t∧σj)−)

)
, (6.5)

where σ0 := 0, σm+1 :=∞ and Xs− := limr↗sXr. Hence it suffices to show that

Eν
[
F (X(t∧σi+1)−)− F (Xt∧σi)−

∫ t∧σi+1

t∧σi
G(Xs) ds

]
= 0 and (6.6)

Eν
[
F (Xt∧σj )− F (X(t∧σj)−)−

∫ t∧σj

t∧σj−1

KF (Xs) ds
]

= 0 (6.7)

for i ∈ {0, 1, 2, · · · ,m} and j ∈ {1, 2, · · · ,m}.
The left hand side of (6.6) equals

Eν
[
Eν
[
F (X(t∧σi+1)−)− F (Xt∧σi)−

∫ t∧σi+1

t∧σi
G(Xs) ds

∣∣∣FX
t∧σi

] ]
= Eν

[
EXσi

[
F (X(t∧σi+1−σi)−)− F (X0)−

∫ t∧σi+1−σi

0
G(Xs) ds

]
1t>σi

]
= Eν

[
EXσi

[
F (X((t−σi)∧τi+1)−)− F (X0)−

∫ (t−σi)∧τi+1

0
G(Xs) ds

]
1t>σi

]
.

The first equality follows from the strong Markov property of X (applied to the stopping time
σi) and the fact that the expression inside the expectation vanishes when t ≤ σi. Note that
σi is regarded as a constant w.r.t. the expectation EXσi , because FX

σi contains the sigma-
algebra generated by σi. The second equality follows from the easy fact that (t ∧ σi+1) − σi =
(t − σi) ∧ (σi+1 − σi) = (t − σi) ∧ τi+1 on t > σi. Therefore, to establish (6.6), it is enough to
show that for any η ∈ EN and w ≥ 0, we have

Eη
[
F (X(w∧τ)−)− F (X0)−

∫ w∧τ

0
G(Xs) ds

]
= 0, (6.8)
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where τ is the time of the first annihilation for X starting from η (i.e. τ = τ1 under Pη where τ1

is defined by (3.1)).

(6.8) obviously holds if η is the zero measure since both sides vanish. Suppose η ∈ E
(n)
N .

Observe that τ is a stopping time for F̃X
t := σ(FX

t , {Ri; 1 ≤ i ≤ n}) and that M t is a F̃X
t -

martingale under Pη since {Ri} is independent of X under Pη. Hence, by the optional sampling
theorem, (6.8) is true, and so is (6.6).

Following the same arguments as above, the left hand side of (6.7) equals

Eν
[
EXσj−1

[
F (X(t−σj−1)∧τj )− F (X((t−σj−1)∧τj)−) +

∫ (t−σj−1)∧τj

0
KF (Xs) ds

]
1t>σj−1

]
,

where σj−1 is regarded as a constant w.r.t. the expectation EXσj−1 . Therefore, (6.7) holds if for
any η ∈ EN and θ ≥ 0, we have

Eη
[
F (Xθ∧τ )− F (X(θ∧τ)−)−

∫ θ∧τ

0
KF (Xs) ds

]
= 0, (6.9)

where τ is the time of the first killing for X starting from η.

Suppose η = ( 1
N

∑n
i=1 1xi ,

1
N

∑n
j=1 1yj ) ∈ E

(n)
N and Xτ− = ( 1

N

∑n
i=1 1X+

i (τ−),
1
N

∑n
j=1 1X−j (τ−)),

where {X±k : k = 1, · · · , n} are reflected diffusions killed upon hitting Λ± in the construc-
tion of X. At time τ , one pair of particles among {(X+

i , X
−
j ) : 1 ≤ i, j ≤ n} is labeled

(annihilated), where the pair (X+
i , X

−
j ) is chosen to be labeled (annihilated) with probability

`δN (X+
i (τ−), X−j (τ−))∑n

p=1

∑n
q=1 `δN (X+

p (τ−), X−q (τ−))
. Hence

Eη
[
F (X(θ∧τ)−)− F (Xθ∧τ )

]
(6.10)

= Eη
[
Eη
[
F (Xτ−)− F (Xτ )

∣∣∣FX
τ−

]
; τ < θ

]
= Eη

[ n∑
i=1

n∑
j=1

`δN (X+
i (τ−), X−j (τ−))∑n

p=1

∑n
q=1 `δN (X+

p (τ−), X−q (τ−))
(6.11)(

F (Xτ−) − F
(
Xτ− − (

1

N
1X+

i (τ−),
1

N
1X−j (τ−))

))
; τ < θ

]
= Eη

[
−(2N)KF (Xτ−)∑n

p=1

∑n
q=1 `δN (X+

p (τ−), X−q (τ−))
; τ < θ

]
= Eη

[ ∫ θ

0
−KF (Xs) ds

]
.

The last equality follows from the fact that

τ = inf
{
t ≥ 0 :

1

2N

∫ t

0

n∑
p=1

n∑
q=1

`δN (X+
p (s), X−q (s)) ds ≥ R

}
,

where R is an independent exponential random variable of parameter 1 under Pη (see Proposition
2.2 of [12] for a rigorous proof). Hence (6.9) is established and the proof is complete.

The following corollary is the key to the tightness of (XN,+,XN,−). Recall that A± is the
Feller generator of the diffusion X± = XΛ± on D± \ Λ±, respectively.
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Corollary 6.4. Fix any positive integer N . For any φ± ∈ Dom(A±), we have

M
(φ+,φ−)
t := 〈φ+,X

N,+
t 〉+ 〈φ−,XN,−t 〉

−
∫ t

0
〈A+φ+, X

N,+
s 〉+ 〈A−φ−, XN,−s 〉 − 1

2
〈`δN (φ+ + φ−), XN,+s ⊗ XN,−s 〉 ds

is an F (XN,+,XN,−)
t -martingale under Pµ for any µ ∈ EN , where

〈f(x, y), µ+(dx)⊗ µ−(dy)〉 :=
1

N2

∑
i

∑
j

f(xi, yj) whenever µ = (N−1
∑
i

1xi , N
−1
∑
j

1yj ).

Moreover, M
(φ+,φ−)
t has quadratic variation

[M (φ+,φ−)]t =
1

N

∫ t

0

(
〈a+∇φ+ · ∇φ+, X

N,+
s 〉+ 〈a−∇φ− · ∇φ−, XN,−s 〉

+
1

2
〈`δN (φ+ + φ−)2, XN,+s ⊗ XN,−s 〉

)
ds (6.12)

and supt∈[0,T ] Eµ[(M
(φ+,φ−)
t )2] ≤ C

N for some constant C that is independent of N and µ.

Proof From Lemma 6.1, we have the following two F (X
N,+

,X
N,−

)
t -martingales for φ± ∈ Dom(A±):

M
(φ+,φ−)
t := 〈φ+,X

N,+
t 〉+ 〈φ−,X

N,−
t 〉 −

∫ t

0
〈A+φ+, X

N,+
s 〉+ 〈A−φ−, X

N,−
s 〉 ds and

N
(φ+,φ−)
t := (〈φ+,X

N,+
t 〉+ 〈φ−,X

N,−
t 〉)2

−
∫ t

0
2
(
〈φ+,X

N,+
s 〉+ 〈φ−,X

N,−
s 〉

)(
〈A+φ+,X

N,+
s 〉+ 〈A−φ−,X

N,−
s 〉

)
+

1

N

(
〈a+∇φ+ · ∇φ+, X

N,+
s 〉+ 〈a−∇φ− · ∇φ−, X

N,−
s 〉

)
ds.

Note that F1(µ) = F1(µ+, µ−) := 〈φ+, µ
+〉 + 〈φ−, µ−〉 is a function in C(EN ), with the

convention that φ±(∂±) := 0 and F1(0∗) := 0. A direct calculations shows that

KF1(µ) =
−1

2
〈`δN (φ+ + φ−), µ+ ⊗ µ−〉

Therefore, by Theorem 6.2, M
(φ+,φ−)
t is an F (XN,+,XN,−)

t -martingale. Similarly, F2(µ) := (〈φ+, µ
+〉+

〈φ−, µ−〉)2 ∈ C(EN ) and

KF2(µ) = −
(
〈φ+, µ

+〉+ 〈φ−, µ−〉
)
〈`δN (φ+ + φ−), µ+ ⊗ µ−〉+

1

2N
〈`δN (φ+ + φ−)2, µ+ ⊗ µ−〉.

Hence Theorem 6.2 asserts that

N
(φ+,φ−)
t :=

(
〈φ+,X

N,+
t 〉+ 〈φ−,XN,−t 〉

)2

−
∫ t

0
2
(
〈φ+,X

N,+
s 〉+ 〈φ−,XN,−s 〉

)(
〈A+φ+,X

N,+
s 〉+ 〈A−φ−,XN,−s 〉

)
17



+
1

N

(
〈a+∇φ+ · ∇φ+, X

N,+
s 〉+ 〈a−∇φ− · ∇φ−, XN,−s 〉

)
−(〈φ+,X

N,+
s 〉+ 〈φ−,XN,−s 〉)〈`δN (φ+ + φ−), XN,+s ⊗ XN,−s 〉

+
1

2N
〈`δN (φ+ + φ−)2, XN,+s ⊗ XN,−s 〉 ds

is an F (XN,+,XN,−)
t -martingale. Since

(
M

(φ+,φ−)
t

)2
−N (φ+,φ−)

t is equal to the right hand side of

(6.12), which is a continuous process of finite variation, it has to be [M (φ+,φ−)]t. This proves
(6.12). Therefore,

Eµ[(M
(φ+,φ−)
t )2] = Eµ

[
[M (φ+,φ−)]t

]
≤ 1

N

(∫ t

0
〈P+

s

(
a+∇φ+ · ∇φ+

)
, XN,+0 〉 ds+

∫ t

0
〈P−s

(
a−∇φ− · ∇φ−

)
, XN,−0 〉 ds

+
1

2
‖(φ+ + φ−)2‖

∫ t

0
〈`δN , X

N,+
s ⊗ XN,−s 〉

)
ds

≤ 1

N

(
8
(
‖φ+‖2 + ‖A+φ+‖2 t2

)
+ 8
(
‖φ−‖2 + ‖A−φ−‖2 t2

)
+

1

2
‖(φ+ + φ−)2‖

∫ t

0
〈`δN , X

N,+
s ⊗ XN,−s 〉

)
ds,

where we have used (6.2) in the last inequality. Finally, we show that

sup
µ∈EN

∫ t

0
Eµ[〈`δN , X

N,+
s ⊗ XN,−s 〉] ≤ 1. (6.13)

Let (X̃N,+, X̃N,−) be the normalized empirical measure corresponding to the case Λ± being

empty sets. By applying the martingale M
(φ+,φ−)
t to the case Λ± being empty sets and φ± = 1

(now 1 is in the domain of the Feller generator), we have∫ t

0
E[〈`δN , X̃

N,+
s ⊗ X̃N,−s 〉] ds =

(
〈1, X̃N,+0 〉 − E[〈1, X̃N,+t 〉]

)
≤ 1.

We then obtain (6.13) by a coupling of (XN,+, XN,−) and (X̃N,+, X̃N,−). The idea is that
(X̃N,+, X̃N,−) dominates (XN,+, XN,−). This coupling can be constructed by labeling (rather
than killing) particles which hit Λ±, using the same method of subsection 3.1. Hence we obtain

the desired bound for Eµ[(M
(φ+,φ−)
t )2].

6.1.3 Tightness

The proof of tightness for (XN,+, XN,−) is non-trivial because E
[
〈`δN , X

N,+
s ⊗ XN,−s 〉2

]
blows

up near s = 0 in such a way that limN→∞
∫ t

0 E
[
〈`δN , X

N,+
s ⊗ XN,−s 〉2

]
ds =∞. To deal with this

singularity at s = 0, we will use the following lemma whose proof is based on the Prohorov’s
theorem. We omit the proof here since it is simple. A proof can be found in [21].

Lemma 6.5. Let {YN} be a sequence of real-valued processes such that t 7→
∫ t

0 YN (r) dr is
continuous on [0, T ] a.s., where T ∈ [0,∞). Suppose (i) and (ii) below holds.
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(i) There exists q > 1 such that limN→∞ E[
∫ T
h |YN (r)|q dr] <∞ for any h > 0,

(ii) limα↘0 limN→∞ P(
∫ α

0 |YN (r)| dr > ε0) = 0 for any ε0 > 0.

Then {
∫ t

0 YN (r) dr}N∈N is tight in C([0, T ],R).

Here is our tightness result for (XN,+,XN,−). Note that it does not require Assumption 2.6.

Theorem 6.6. (Tightness) Suppose {δN} tends to 0. Then {(XN,+,XN,−)} is tight in D([0, T ],M)
and any of subsequential limits is carried on CM[0, T ]. Moreover, {JN} is tight in C([0, T ]),
where JN (t) :=

∫ t
0 〈`δN , X

N,+
s ⊗ XN,−s 〉 ds.

Proof Recall from Remark 5.1 that M is a complete separable metric space. Since Dom(A±)
is dense in C∞(D± \ Λ±), we only need to check a ”weak tightness criteria” (cf. Proposition
1.7 of [27]), i.e. it suffices to check that {(〈φ+,X

N,+〉, 〈φ−,XN,−〉)}N is tight in D([0, T ],R2)
for any φ± ∈ Dom(A±). By Prohorov’s theorem (see Theorem 1.3 and Remark 1.4 of [27]),
{(〈φ+,X

N,+〉, 〈φ−,XN,−〉)}N is tight in D([0, T ],R2) if the following two properties (a) and (b)
hold:

(a) For all t ∈ [0, T ] and ε0 > 0, there exists a compact set K(t, ε0) ⊂ R2 such that

sup
N

P
(

(〈φ+,X
N,+
t 〉, 〈φ−,XN,−t 〉) /∈ K(t, ε0)

)
< ε0.

(b) For all ε0 > 0,

lim
γ→0

lim
N→∞

P

 sup
|t−s|<γ
0≤s,t≤T

∣∣∣(〈φ+,X
N,+
t 〉, 〈φ−,XN,−t 〉

)
−
(
〈φ+,X

N,+
s 〉, 〈 φ−, XN,−

s 〉
)∣∣∣

R2
> ε0

 = 0.

Property (a) is true since we can always take K = [−‖φ+‖∞, ‖φ+‖∞]× [−‖φ−‖∞, ‖φ−‖∞]. To
verify property (b), we only need to focus on XN,+. Note that (writing φ = φ+ for simplicity)
by Corollary 6.4, we have

〈φ,XN,+t 〉− 〈φ,XN,+s 〉 =

∫ t

s
〈A+φ, XN,+r 〉 dr− 1

2

∫ t

s
〈`δN φ, X

N,+
r ⊗XN,−r 〉 dr+ (MN (t)−MN (s)),

(6.14)
where MN (t) is a martingale. So we only need to verify (b) with 〈φ,XN,+t 〉 − 〈φ,XN,+s 〉 replaced
by each of the three terms on the right hand side of (6.14).

The first term of (6.14) is obvious since 〈A+φ, XN,+r 〉 ≤ ‖A+φ‖. For the third term of (6.14),
recall that limN→∞ E

[
MN (t)2

]
= 0 by Corollary 6.4. Hence, by applying Chebyshev’s inequality

and then Doob’s maximal inequality, we see that (b) is satisfied by the third term of (6.14).

For the second term of (6.14), we show that

lim
γ→0

lim
N→∞

P

 sup
|t−s|<γ
0≤s,t≤T

∫ t

s
〈`δN , X

N,+
r ⊗ XN,−r 〉 dr > ε0

 = 0. (6.15)
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Observe that, since 〈`δN , X
N,+
r ⊗XN,−r 〉 is non-negative, it suffices to prove (6.15) for the domi-

nating case where Λ± are empty. We now prove this together with the tightness of {JN} at one
stroke by applying Lemma 6.5 to the special case q = 2 and YN (r) = 〈`δN , X

N,+
r ⊗ XN,−r 〉.

Using the Gaussian upper bound (2.2) for the heat kernel of the reflected diffusions, we have

lim
N→∞

∫ T

h
E[〈`δN , X

N,+
s ⊗ X

N,−
s 〉2] ds ≤ C(d,D+, D−)‖ρ+‖ ‖ρ−‖

∫ T

h
s−2d ds <∞.

The hypothesis (i) of Lemma 6.5 is therefore satisfied, since (X
N,+

, X
N,−

) dominates (XN,+, XN,−).

It remains to verify hypothesis (ii) of Lemma 6.5, that is, to prove that for any ε0 > 0,
limα→0 limN→∞ P(Jn(α) > ε0) = 0. By Corollary 6.4 again, for any φ ∈ Dom(A+), we have

1

2

∫ t

0
〈`δNφ, X

N,+
s ⊗ XN,−s 〉 ds = 〈φ,XN,+0 〉 − 〈φ,XN,+t 〉+

∫ t

0
〈A+φ, XN,+s 〉 ds+MN (t), (6.16)

where MN (t) is a martingale and limN→∞ E
[
(MN (t))2

]
= 0 for all t > 0. Note that the left

hand side of (6.16) is comparable to JN (t) whenever we pick φ ∈ Dom(A+) in such a way
that `δNφ ≈ `δN . The idea is to pick φ ≈ 1(D+)r , then let r → 0 to bound JN (t) from above.
Here 1(D+)r is the set of points in D+ whose distance from the boundary is less than r. More

specifically, for any r > 0, let ψr ∈ C(D+) be such that ψr = 1 on (D+)r, ψr = 0 on D+ \(D+)2r

and 0 ≤ ψ ≤ 1. Let φr ∈ Dom(A+) ∩ C+(D+) be such that ‖φr − ψr‖∞ = o(r). Such φr exists
since Dom(A+) is dense in C(D+). Then (6.16) implies

0 ≤ JN (α)

≤
∣∣∣ ∫ α

0
〈`δN − `δNφr, X

N,+
s ⊗ XN,−s 〉 ds

∣∣∣+ 〈φr,XN,+0 〉 − 〈φr,XN,+α 〉+ ‖A+φr‖α+ |MN (α)|

≤ o(r)JN (α) + 〈φr,XN,+0 〉+ ‖A+φr‖α+ |MN (α)| whenever r > 2δN .

This is because when r > 2δN , φr(x) is close to 1 on (D+)δN . Hence we have, for r > 2δN ,

(1− o(r)) JN (α) ≤ 〈φr,XN,+0 〉+ ‖A+φr‖α+ |MN (α)|.

From this, we have

lim
α→0

lim
N→∞

P(JN (α) > 3ε0) ≤ lim
N→∞

P
(
〈φr,XN,+0 〉 > ε0(1− o(r))

)
.

Note that 0 ≤ φr ≤ 1(D+)2r
+ o(r). So for r > 0 small enough,

P
(
〈φr,XN,+0 〉 > ε0(1− o(r))

)
≤ P(〈1(D+)2r

,XN,+0 〉 > ε0/2).

Moreover, since XN,+0
L−→u+

0 (x)dx with u+
0 ∈ C(D), we have

lim
r→0

lim
N→∞

P(〈1(D+)2r
,XN,+0 〉 > ε0/2) = 0.

Hence the second hypothesis of Lemma 6.5 is verified. We have shown that (ii) is true. Thus
(XN,+, XN,−) is relatively compact. Property (ii) above also tells us that any subsequential limit
has law concentrated on C([0,∞),M) (detail can be found in [21]).
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6.2 Identifying subsequential limits

Recall that we have already established tightness of {(XN,+,XN,−);N ≥ 1} in Theorem 6.6.
Hence any subsequence has a further subsequence which converges in distribution inD([0, T ],M).
Let P∞ be the law of an arbitrary subsequential limit (X∞,+, X∞,−). Then P∞((X∞,+, X∞,−) ∈
C([0,∞),M)) = 1 by Theorem 6.6. Our goal is to show that

(X∞,+, X∞,−) = (u+(t, x)ρ+(x)dx, u−(t, y)ρ−(y)dy) P∞ − a.s.

An immediate question is whether X∞,+ and X∞,− have densities with respect to the Lebesque

measure. For this, we can compare (XN,+,XN,−) with (X
N,+

, X
N,−

) to get an affirmative an-
swer. The construction in subsection 3.1 provides a natural coupling between {(XN,+,XN,−)}
and {(XN,+,XN,−)}. We summarize some preliminary information about (X∞,+, X∞,−) in the
following lemma. Its proof can be found in [21].

Lemma 6.7.

P∞
(
〈X∞,+t , φ+〉ρ+

≤ 〈P+
t u

+
0 , φ+〉ρ+

and 〈X∞,−t , φ−〉ρ− ≤ 〈P
−
t u
−
0 , φ−〉ρ−

for t ≥ 0 and φ± ∈ C∞(D± \ Λ±)

)
= 1.

In particular, both X∞,+t and X∞,−t are absolutely continuous with respect to the Lebesque measure
for t ≥ 0. Moreover, (X∞,+t , X∞,−t ) = (v+(t, x)ρ+(x)dx, v−(t, y)ρ−(y)dy) for some v±(t) ∈
Bb(D±) with v+(t, x) ≤ P+

t u
+
0 (x) and v−(t, y) ≤ P−t u

−
0 (y) for a.e. (x, y) ∈ D+ ×D−.

The characterization (X∞,+, X∞,−) will be accomplished by the following result of “mean-
variance analysis”:

Proposition 6.8. For all φ± ∈ C∞(D± \ Λ±) and t ≥ 0, we have

E∞[〈v±(t), φ±〉ρ± ] = 〈u±(t), φ±〉ρ± , (6.17)

E∞[〈v±(t), φ±〉2ρ± ] = 〈u±(t), φ±〉2ρ± . (6.18)

where v± is the density of X∞,±, w.r.t. ρ±(x)dx, stated in Lemma 6.7.

We postpone the proof of Proposition 6.8 to Section 7, and proceed to present the proof of
Theorem 5.2.

6.3 Proof of Theorem 5.2

Proof Tightness of {(XN,+,XN,−)} was proved in Theorem 6.6. It remains to identify any
subsequential limit. We conclude from (6.17) and (6.18) that

〈X∞,+t , φ+〉 = 〈u+(t), φ+〉ρ+
and 〈X∞,−t , φ−〉 = 〈u−(t), φ−〉ρ− P∞-a.s.

for any fixed t > 0 and φ± ∈ C∞(D± \ Λ±). Recall that (X∞,+, X∞,−) ∈ C([0,∞),M) by
Theorem 6.6 and that C∞(D± \ Λ±) is separable. Hence through rational numbers and a
countable dense subsets of C∞(D± \ Λ±) to strengthen the previous statement to

P∞
(

(X∞,+t , X∞,−t ) = (u+(t, x)ρ+(x)dx, u−(t, y)ρ−(y)dy) ∈M for every t ≥ 0
)

= 1.

This completes the proof of Theorem 5.2.
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7 Characterization of the mean and the variance

The goal of this last section is to prove Proposition 6.8. We first strengthen a result from
Geometric Measure Theory .

7.1 Minkowski content for {(z, z) : z ∈ I}

We first look at a single domain and prove a related result.

Lemma 7.1. Let D ⊂ Rd be a bounded Lipschitz domain. If F ⊂ C(D) is an equi-continuous
and uniformly bounded family of functions on D, then

lim
ε→0

sup
f∈F

∣∣∣1
ε

∫
Dε

f(x)dx−
∫
∂D

f(x)σ(dx)
∣∣∣ = 0.

Proof The result holds trivially when d = 1, by the uniform continuity of f . We will only
consider d ≥ 2. The idea is to cut ∂D into small pieces so that f is almost constant in each
piece, and then apply (1.3) in each piece.

Fix η > 0. There exists δ > 0 such that |f(x) − f(y)| < η whenever |x − y| ≤ δ. Since D
is bounded and Lipschitz (or by a more general result by G. David in [14] or [15, Section 2]),
we can reduce to local coordinates to obtain a partition {Qi}Ni=1 of ∂D in such a way that for
any i, Qi is the Lipschitz image of a bounded subset of Rd−1 (hence it is (Hd−1)-rectifiable),
diam(Qi) ≤ δ and ∂Qi is (Hd−2)-rectifiable. Here ∂Qi is the boundary of Qi with respect to
the topology induced by ∂D.

Let (Qi)ε := {x ∈ D : dist(x,Qi) < ε} and (∂Qi)ε := {x ∈ D : dist(x, ∂Qi) < ε}. Since
{(Qi)ε \ (∂Qi)ε}Ni=1 are disjoint and ∪Ni=1(Qi)ε \ (∂Qi)ε ⊂ Dε ⊂ ∪Ni=1(Qi)ε, we have

∣∣∣ N∑
i=1

∫
(Qi)ε

f dx−
∫
Dε

f dx
∣∣∣ ≤ N∑

i=1

∫
(∂Qi)ε

|f | dx. (7.1)

Therefore, we have∣∣∣1
ε

∫
Dε

f dx−
∫
∂D

f dσ
∣∣∣

≤
∣∣∣1
ε

∫
Dε

f dx− 1

ε

N∑
i=1

∫
(Qi)ε

f dx
∣∣∣+
∣∣∣1
ε

N∑
i=1

∫
(Qi)ε

f dx−
∫
∂D

f dσ
∣∣∣

≤ 1

ε

N∑
i=1

∫
(∂Qi)ε

|f | dx+
N∑
i=1

∣∣∣1
ε

∫
(Qi)ε

f dx−
∫
Qi

f dσ
∣∣∣ by (7.1)

≤
N∑
i=1

(
‖f‖∞

|(∂Qi)ε|
ε

+
∣∣∣1
ε

∫
(Qi)ε

f − f(ξi) dx
∣∣∣+ |f(ξi)|

∣∣∣ |(Qi)ε|
ε
− σ(Qi)

∣∣∣+
∣∣∣ ∫

Qi

f − f(ξi) dσ
∣∣∣)

≤ η

N∑
i=1

(
|(Qi)ε|
ε

+ σ(Qi)

)
+ ‖f‖∞

N∑
i=1

(
|(∂Qi)ε|

ε
+
∣∣∣ |(Qi)ε|

ε
− σ(Qi)

∣∣∣) .
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Since ∂Qi and (Qi)ε are (Hd−2)-rectifiable and (Hd−1)-rectifiable, respectively, [22, Theorem
3.2.39] tells us that

lim
ε→0

|(∂Qi)ε|
c2ε2

= Hd−2(∂Qi) and lim
ε→0

|(Qi)ε|
ε

= Hd−1(Qi),

where cm := |{x ∈ Rm : |x| < 1}|. Thus,

lim
ε→0

∣∣∣1
ε

∫
Dε

f dx−
∫
∂D

f dσ
∣∣∣ ≤ 2η

∑
i

σ(Qi) = 2σ(∂D) η.

Since η > 0 is arbitrary and the above estimate is uniform over f ∈ F , we get the desired result.

Now we prove an analogous result for the interface I.

Lemma 7.2. Under our geometric setting in Assumption 2.4, if F ⊂ C(D+ ×D−) is an equi-
continuous and uniformly bounded family of functions on D+ ×D−, then

lim
δ→0

sup
f∈F

∣∣∣(cd+1 δ
d+1)−1

∫
Iδ
f(x, y) dx dy −

∫
I
f(z, z) dσ(z)

∣∣∣ = 0.

Proof By the same argument as in the proof of Lemma 7.1, we can construct a nice partition
{Qi}Ni=1 of I and apply [22, Theorem 3.2.39 (p. 275)]. The only essential difference is that now
we require ∂Qi \ ∂I to be (Hd−2)−rectifiable, where ∂I is the boundary of I with respect to the
topology induced by ∂D+, or equivalently by ∂D−. Moreover, instead of (7.1), we now have

∣∣∣ N∑
i=1

∫
(Qi)δ

f dxdy −
∫
Iδ
f dxdy

∣∣∣ ≤ N∑
i=1

∫
(∂Qi\∂I)δ

|f | dxdy. (7.2)

Note that we do not need any assumption on ∂I.

Corollary 7.3. Suppose F ⊂ C(D+×D−) is a family of equi-continuous and uniformly bounded
functions on D+ ×D−. Then

lim
ε→0

sup
f∈F

∣∣∣ ∫
D+

∫
D−

`ε(x, y)f(x, y) dxdy −
∫
I
f(z, z)σ(dz)

∣∣∣ = 0.

Remark 7.4. Following the same proof as above, clearly we can strengthen Lemma 7.2 and
Corollary 7.3 by only requiring F to be equi-continuous and uniformly bounded on a neigh-
borhood of the interface I. We can also generalize Lemma 7.1 to deal with

∫
J f(x) dσ(x) for

any closed Hd−1-rectifiable subset of J of ∂D, and by requiring F to be equi-continuous and
uniformly bounded on a neighborhood of J .

7.2 Martingales for space-time processes

In this subsection, we collect some integral equations satisfied by (XN,+, XN,−) that will be used
later to identify the limit. These integral equations can be viewed as the Dynkins’ formulae
for our annihilating diffusion system, and will be proved rigorously by considering suitable
martingales associated with the process (t, (XN,+t , XN,−t )).
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Lemma 7.5. Suppose XΛ is an (a, ρ)-reflected diffusion in a bounded Lipschitz domain D killed
upon hitting a closed subset Λ of ∂D that is regular with respect to X. Then for any T > 0 and
bounded measurable function φ on D \ Λ, we have

PΛ
T−sφ(XΛ

s ) is a FXΛ

s -martingale for s ∈ [0, T ], (7.3)

under Px for any x ∈ D\Λ. Moreover, its quadratic variation is
∫ s

0 a∇PΛ
T−rφ·∇PΛ

T−rφ(XΛ(r)) dr.

Proof (7.3) follows from the Markov property of XΛ. Denote by L(Λ) the L2-generator of X(Λ).
Then for every t ∈ [0, T ), PΛ

T−sφ ∈ Dom(L(Λ)). It follows from the spectral representation of

L(Λ) that ∥∥∥∂PΛ
T−sφ

∂s

∥∥∥
L2

= ‖ − L(Λ)PΛ
T−sφ‖L2 ≤

‖φ‖L2

T − s
.

Thus (s, x) 7→ PΛ
T−sφ(x) for s ∈ [0, T ) and x ∈ D \ Λ is in the domain of the Dirichlet form

for the space-time process (s,X
(Λ)
s ). By an application of the Fukushima decomposition in the

context of time-dependent Dirichlet forms, one concludes that the quadratic variation of the
martingale s 7→ PΛ

T−sφ(XΛ
s ) is

∫ s
0 a∇PΛ

T−rφ · ∇PΛ
T−rφ(XΛ(r)) dr; see [31, Example 6.5.6].

As mentioned in Remark 6.3, a time-dependent version of Theorem 6.2 is valid. We now state
it precisely. A proof can be obtained by following the same argument in the proof of Theorem
6.2, but now to the time dependent process (t, (XN,+t ,XN,−t )). The detail is left to the reader.

Theorem 7.6. Let T > 0, and fs ∈ Cb(EN ) and gs ∈ B(EN ) for s ∈ [0, T ]. Suppose

M s := fs(X
N,+
s ,X

N,−
s )−

∫ s

0
gr(X

N,+
r ,X

N,−
r ) dr

is a F (X
N,+

,X
N,−

)
s -martingale for s ∈ [0, T ], under Pµ for any µ ∈ EN . Then

Ms := fs(X
N,+
s ,XN,−s )−

∫ s

0
(gr +Kfr)(X

N,+
r ,XN,−r ) dr

is a F (XN,+,XN,−)
r -martingale for s ∈ [0, T ], under Pµ for any µ ∈ EN , where the operator K is

given by (6.3).

Consider X(n,m) := (X+
1 , · · · , X+

n , X
−
1 , · · · , X−m) ∈ (D∂

+)n × (D∂
−)m, which consists of inde-

pendent copies of X±’s. The transition density of X(n,m) w.r.t. ρ(n,m) is p(n,m), where

p(n,m)(t, (~x, ~y), (~x′, ~y′)) :=
n∏
i=1

p+(t, xi, x
′
i)

m∏
j=1

p−(t, yj , y
′
j)

ρ(n,m)(~x, ~y) :=

n∏
i=1

ρ+(xi)

m∏
j=1

ρ−(yj).

The semigroup of X(n,m), denoted by P
(n,m)
t , is strongly continuous on

C(n,m)
∞ :=

{
Φ ∈ C(D

n
+ ×D

m
− ) : Φ vanishes outside (D+ \ Λ+)n × (D− \ Λ−)m

}
(7.4)

Clearly, C
(1,0)
∞ = C∞(D+ \ Λ+) and C

(0,1)
∞ = C∞(D− \ Λ−).
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Corollary 7.7. Let n and m be any non-negative integers, T > 0 be any positive number and

Φ ∈ C(n,m)
∞ . Consider the function f : [0, T ]×EN → R defined as follows: f(s,0∗) := 0 and for

an arbitrary element µ ∈ EN \ {0∗}, we can write µ = ( 1
N

∑
i∈A+

1xi ,
1
N

∑
j∈A− 1yj ) for some

index sets A+ and A−, then

f(s, µ) :=
∑

i1,··· ,in
distinct

∑
j1,··· ,jm
distinct

P
(n,m)
T−s Φ(xi1 , · · · , xin , yj1 , · · · , yjm),

where the first summation is on the collection of all n-tuples (i1, · · · , in) chosen from distinct
elements of A+, the second summation is on the collection of all m-tuples (j1, · · · , jm) chosen
from distinct elements of A−. Then we have

f
(
s, (XN,+s ,XN,−s )

)
−
∫ s

0
Kf(r, ·)(XN,+r ,XN,−r ) dr

is a F (XN,+,XN,−)
s -martingale for s ∈ [0, T ], under Pν , for any ν ∈ EN .

Proof Clearly, f(s, ·) ∈ Cb(EN ) for s ∈ [0, T ]. By Lemma 7.5, we have f(s,Xs) is a FX
s -

martingale for s ∈ [0, T ] for all T ≥ 0. Hence we can take gr to be constant zero and fr to be
f(r, ·) in Theorem 7.6 to finish the proof.

As an immediate consequence, we obtain the Dynkin’s formula for our system: For 0 ≤ t ≤ T ,
we have

E
[
f
(
T, (XN,+T ,XN,−T )

)
− f

(
t, (XN,+t ,XN,−t )

)
−
∫ T

t
Kf(r, ·)(XN,+r ,XN,−r ) dr

]
= 0 (7.5)

Corollary 7.7 is the key to obtain the system of equations satisfied by the correlation functions
of the particles in the annihilating diffusion system. This system of equations, usually called
BBGKY hierarchy, will be formulated in the forthcoming paper [10]. The specific integral
equations that we need to identify subsequential limits of {(XN,+,XN,−)} are stated in the
following lemmas. These equations are a part of the BBGKY hierarchy.

Lemma 7.8. For any φ± ∈ C∞(D± \ Λ±) and 0 ≤ t ≤ T <∞, we have

E
[
〈φ+, X

N,+
T 〉+ 〈φ−, XN,−T 〉

]
− E

[
〈P+

T−tφ+, X
N,+
t 〉+ 〈P−T−tφ−, X

N,−
t 〉

]
(7.6)

= −1

2

∫ T

t
E
[
〈`δN (P+

T−rφ+ + P−T−rφ−), XN,+r ⊗ XN,−r 〉
]
dr

and

E
[
〈φ+, X

N,+
T 〉2

]
− E

[
〈P+

T−tφ+, X
N,+
t 〉2

]
(7.7)

= −
∫ T

t
E
[
〈P+

T−rφ+,X
N,+
r 〉 〈`δN (P+

T−rφ+), XN,+r ⊗ XN,−r 〉
]
dr + +o(N),

where o(N) is a term which tends to zero as N → ∞. A similar formula for (7.7) holds for
XN,−.

25



Proof Since Dom(A±) is dense in C∞(D± \ Λ±). Therefore, it suffices to check the lemma for
φ± ∈ Dom(A±).

Identity (7.6) follows directly from Corollary 7.7 by taking f(s, µ) = 〈P+
T−sφ+, µ

+〉+〈P−T−sφ−, µ−〉.

For (7.7), we can apply Lemma 7.5 and Theorem 7.6, with fs(µ) = 〈P+
T−sφ+, µ

+〉2 and

gs(µ) = 1
N 〈a+∇P+

T−sφ+ · ∇P+
T−sφ+, µ

+〉, to obtain

E
[
〈φ+, X

N,+
T 〉2]− E[〈P+

T−tφ+, X
N,+
t 〉2

]
= −

∫ T

t
E
[
〈P+

T−rφ+,X
N,+
r 〉 〈`δN (P+

T−rφ+), XN,+r ⊗ XN,−r 〉
]
dr

+
1

2N

∫ T

t
E
[
2a+∇P+

T−sφ+ · ∇P+
T−sφ+, X

N,+
r 〉+ 〈`δN (P+

T−rφ+)2, XN,+r ⊗ XN,−r 〉
]
dr.

Note that the term with a factor 1
N converges to zero as N → ∞. This can be proved by the

same argument for the bound of the quadratic variation Eµ[(M
(φ+,φ−)
t )2] in Corollary 6.4. Hence

we have (7.7).

We now derive the integral equations satisfied by the integrands (with respect to dr) on the
right hand side of (7.6) and (7.7). The integrand (with respect to dr) of the right hand side of
(7.7) is of the form

〈φ, µ+〉〈ϕ, µ+ ⊗ µ−〉 =
1

N3

(∑
i

∑
j

φ(xi)ϕ(xi, yj) +
∑
`

∑
i 6=`

∑
j

φ(x`)ϕ(xi, yj)
)
,

where ϕ ∈ B(D+ ×D−), φ = φ+ ∈ B(D+) and µ = ( 1
N

∑
i 1xi ,

1
N

∑
j 1yj ) ∈ EN . We define

P
(∗)
t (〈φ, µ+〉〈ϕ, µ+ ⊗ µ−〉) (7.8)

:=
1

N3

(∑
i

∑
j

P
(1,1)
t (φϕ)(xi, yj) +

∑
`

∑
i 6=`

∑
j

P
(2,1)
t (φϕ)(x`, xi, yj)

)
= 〈P (2,1)

t (φϕ)(x1, x2, y), µ+(dx1)⊗ µ+(dx2)⊗ µ−(dy)〉

+
1

N
〈P (1,1)

t (φϕ)(x, y)− P (2,1)
t (φϕ)(x, x, y), µ+(dx)⊗ µ−(dy) 〉,

In P
(1,1)
t (φϕ), we view φϕ as the function of two variables (a, b) 7→ φ(a)ϕ(a, b); in P

(2,1)
t (φϕ),

we view φϕ as the function of three variables (a1, a2, b) 7→ φ(a1)ϕ(a2, b). The definition of P
(∗)
t

is motivated by the fact that f(s, µ) := P
(∗)
T−s〈φ+ϕ, µ

+ ⊗ µ+ ⊗ µ−〉 is of the same form as the
function in Corollary 6.4.

Lemma 7.9. For any ϕ ∈ C(1,1)
∞ , φ± ∈ C∞(D± \ Λ±) and 0 ≤ t ≤ T <∞, we have

E[〈ϕ, XN,+T ⊗ XN,−T 〉]− E[〈P (1,1)
T−t ϕ, X

N,+
t ⊗ XN,−t 〉]

= −1

2

∫ T

t
E
[〈

`δN (x, y)

(
〈Fr(x, ·), XN,−r 〉+ 〈Fr(·, y), XN,+r 〉 − 1

N
Fr(x, y)

)
,

XN,+r (dx)⊗ XN,−r (dy)
〉]

dr (7.9)
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and

E[〈φ+, X
N,+
T 〉〈ϕ, XN,+T ⊗ XN,−T 〉]− E

[
P

(∗)
T−t 〈φ+ϕ, X

N,+
t ⊗ XN,+t ⊗ XN,−t 〉

]
= −1

2

∫ T

t
E
[〈

`δN (x, y)

(
〈Hr(x, ·, ·), XN,+r ⊗ XN,−r 〉

+〈Hr(·, x, ·), XN,+r ⊗ XN,−r 〉+ 〈Hr(·, ·, y), XN,+r ⊗ XN,+r 〉

− 1

N

[
〈2Hr(x, x, ·), XN,−r 〉+ 〈Hr(·, x, y), XN,+r 〉+ 〈Hr(x, ·, y), XN,+r 〉

]
+

1

N

[
〈Gr(x, ·), XN,−r 〉+ 〈Gr(·, y), XN,+r 〉 − 〈Hr(·, ·, y), XN,+r 〉

]
+

1

N2
[2Hr(x, x, y)−Gr(x, y)]

)
, XN,+r (dx)⊗ XN,−r (dy)

〉]
dr, (7.10)

where Fr = P
(1,1)
T−r ϕ, Gr = P

(1,1)
T−r (φ+ϕ) and Hr = P

(2,1)
T−r (φ+ϕ). A similar formula for (7.10)

holds for E
[
〈φ−, XN,−T 〉 〈ϕ, XN,+T ⊗ XN,−T 〉

]
.

Proof We first prove (7.9). Consider, for s ∈ [0, T ], fs(µ) = f(s, µ) := 〈P (1,1)
T−s ϕ, µ

+ ⊗ µ−〉.
Then (7.9) follows from Corollary 6.4 by directly calculating E[K(fr)(X

N,+
r ,XN,−r )] as follows:

If UN (~x, ~y) = µ where (~x, ~y) ∈ E(m)
N , then

−Kfr(µ) =
1

2N

m∑
i=1

m∑
j=1

`δN (xi, yj)

(
fr(µ)− fr(µ+ − 1

N
1{xi}, µ

− − 1

N
1{yj})

)

=
1

2N

m∑
i=1

m∑
j=1

`δN (xi, yj)

(
1

N2

(∑
l

Fr(xi, yl) +
∑
k

Fr(xk, yj)− Fr(xi, yj)

))

=
1

2N

m∑
i=1

m∑
j=1

`δN (xi, yj)

(
1

N
〈Fr(xi), µ−〉+

1

N
〈Fr(yj), µ+〉 − 1

N2
Fr(xi, yj)

)
=

1

2

〈
`δN (〈Fr, µ−〉+ 〈Fr, µ+〉 −N−1Fr), µ

+ ⊗ µ−
〉
.

For (7.10), we choose fs(µ) := P
(∗)
T−s〈φ+ϕ, µ

+⊗µ+⊗µ−〉 instead and follow the same argument
as above. The expression on the right hand side of (7.10) follows from the observation that, for
fixed (i, j), we have

N3

(
gr(µ)− gr(µ+ − 1

N
1{xi}, µ

− − 1

N
1{yj})

)
=

∑
q

∑
`

Hr(xi, xq, y`) +
∑
p

∑
`

Hr(xp, xi, y`) +
∑
p

∑
q

Hr(xp, xq, yj)

−
∑
`

Hr(xi, xi, y`)−
∑
p

Hr(xp, xi, yj)−
∑
q

Hr(xi, xq, yj) +Hr(xi, xi, yj)

+
∑
`

Gr(xi, y`) +
∑
p

Gr(xp, yj)−Gr(xi, yj)

−
∑
`

Hr(xi, xi, y`)−
∑
p

Hr(xp, xp, yj) +Hr(xi, xi, yj).
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The above expression can be obtained by using the Inclusion-Exclusion Principle.

The next two sections will be devoted to the proof of (6.17) and (6.18), respectively.

7.3 First moment

The goal of this subsection is to prove (6.17) in Proposition 6.8. The following key lemma allows
us to interchange limits. This is a crucial step in our characterization of (X∞,+, X∞,−), and is
the step where Assumption 2.6 that lim infN→∞N δdN ∈ (0,∞] is used.

Lemma 7.10. Suppose Assumption 2.6 holds. Then for any t > 0 and any φ ∈ C
(1,1)
∞ , as

ε → 0, each of E∞ [〈`εφ, v+(t)ρ+ ⊗ v−(t)ρ−〉] and E
[
〈`εφ, XN,+t ⊗ XN,−t 〉

]
converges uniformly

in N ∈ N and in any initial distributions {(XN,+0 ,XN,−0 )}. Moreover,

Aφ(t) := lim
ε→0

E [〈`εφ, v+(t)ρ+ ⊗ v−(t)ρ−〉] = lim
N ′→∞

lim
ε→0

E
[
〈`εφ, XN

′,+
t ⊗ XN

′,−
t 〉

]
for any subsequence {N ′} along which {(XN,+,XN,−)}N converges to (X∞,+,X∞,−) in distribu-
tion in D([0, T ],M). Furthermore, |Aφ(t)| ≤ ‖φ‖ ‖P+

t f‖ ‖P
−
t g‖ ‖ρ+‖ ‖ρ−‖σ(∂I).

Proof Since ρ± ∈ C(D±) and is strictly positive, for notational simplicity, we assume without
loss of generality that ρ± = 1. (The general case can be proved in the same way.) Recall from

(7.9) that for any ϕ ∈ C(1,1)
∞ , φ± ∈ C∞(D± \ Λ±) and 0 ≤ s ≤ t <∞, we have

E
[
〈ϕ, XN,+t ⊗ XN,−t 〉

]
− E

[
〈P (1,1)

t−s ϕ, X
N,+
s ⊗ XN,−s 〉

]
(7.11)

= −1

2

∫ t

s
E
[〈

`δN

(
〈P (1,1)

t−r ϕ, X
N,−
r 〉+ 〈P (1,1)

t−r ϕ, X
N,+
r 〉 − 1

N
P

(1,1)
t−r ϕ

)
, XN,+r ⊗ XN,−r

〉]
dr.

Note that `εφ ∈ C(1,1)
∞ for ε small enough since I is disjoint from Λ±. We fix s ∈ (0, t). Putting

`ε1φ and `ε2φ, respectively, in the place of ϕ in (7.11) and then subtract, we have

Θ :=
∣∣∣E[〈`ε1φ, X

N,+
t ⊗ XN,−t 〉]− E[〈`ε2φ, X

N,+
t ⊗ XN,−t 〉]

∣∣∣ (7.12)

=
∣∣∣E [〈Fs, XN,+s ⊗ XN,−s 〉

]
− 1

2

∫ t

s
E
[ 〈

`δN

(
〈Fr, XN,−r 〉+ 〈Fr, XN,+r 〉 − 1

N
Fr

)
, XN,+r ⊗ XN,−r

〉 ]
dr
∣∣∣

≤ E
[
〈
∣∣Fs∣∣, XN,+s ⊗ X

N,−
s 〉

]
+

1

2

∫ t

s
E
[ 〈

`δN 〈
∣∣Fr∣∣, XN,−r 〉, XN,+r ⊗ X

N,−
r

〉 ]
+

1

2
E
[ 〈

`δN 〈
∣∣Fr∣∣, XN,+r 〉, XN,+r ⊗ X

N,−
r

〉 ]
+

1

2N
E
[ 〈 ∣∣`δN Fr∣∣, XN,+r ⊗ X

N,−
r

〉 ]
dr

≤
∥∥P (1,1)

s (|Fs|)
∥∥+

1

2

∫ t

s
(A1 +A2 +A3) dr,

where Fr := P
(1,1)
t−r (`ε1φ− `ε2φ), A1 :=

∥∥∥P (1,1)
r

(
`δN P

(0,1)
r (|Fr|)

)∥∥∥, A2 :=
∥∥∥P (1,1)

r

(
`δN P

(1,0)
r (|Fr|)

)∥∥∥,

and A3 := 1
N

∥∥∥P (1,1)
r

(∣∣`δN Fr∣∣) ∥∥∥.

Clearly
∥∥P (1,1)

s (|Fs|)
∥∥ ≤ ‖Fs‖. By applying Lemma 7.2 to the equi-continuous and uniformly

bounded family

{(x, y) 7→ φ(x) p(t− s, (a, b), (x, y)) : (a, b) ∈ D+ ×D−} ⊂ C(1,1)
∞ ⊂ C(D+ ×D−),
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we see that ‖Fs‖ converges to zero uniformly for N ∈ N and for any initial configuration, as ε1

and ε2 both tend to zero.

By definition of A1, (1.3), the Gaussian upper bound estimate (2.2) for the transition density
p of the reflected diffusion, we have

A1 = sup
(a,b)

∫
D+

∫
D−

`δN (x, y)

(
sup
y
P−r (|Fr|) (x, y)

)
p(r, (a, b), (x, y)) dxdy

≤

(
sup
(x,y)

P−r (|Fr|) (x, y)

)
C(d,D+, D−)

sd
if N ≥ N(d,D+, D−).

Using this bound, we have∫ t

s
A1dr

≤ C

sd

∫ t

s
sup
(x,y)

P−r

(
|P (1,1)
t−r (`ε1φ− `ε2φ) |

)
(x, y) dr

=
C

sd

∫ t−s

0
sup
(x,y)

P−t−w

(
|P (1,1)
w (`ε1φ− `ε2φ) |

)
(x, y) dw

=
C

sd

∫ t−s

0

(
sup
(x,y)

∫
D−

∣∣∣∣ ∫
D+

∫
D−

(`ε1φ− `ε2φ) (x̃, ỹ)p(w, (x, b), (x̃, ỹ)) dx̃ dỹ

∣∣∣∣ p−(t− w, y, b) db
)
dw

≤ C

sd

(∫ α

0

2C√
w
t−d/2 dw +

∫ t−s

α

∥∥∥P (1,1)
w (`ε1φ− `ε2φ)

∥∥∥ dw) . (7.13)

The last inequality holds for any α ∈ (0, t− s). This is because

sup
(x,y)

∫
D−

∫
D+

∫
D−

`ε(x̃, ỹ) p(w, (x, b), (x̃, ỹ)) dx̃ dỹ p−(t− w, y, b) db

= sup
(x,y)

∫
D−

∫
D+

`ε(x̃, ỹ) p+(w, x, x̃) p−(t, y, ỹ) dx̃ dỹ

by Chapman-Kolmogorov equation for p−

≤ 2C(d,D+, D−, T )√
w

t−d/2 by applying the bound (2.3) on D+.

Hence, from (7.13), by letting α ↓ 0 suitably and applying Lemma 7.2 to the equi-continuous
and uniformly bounded family{

(x, y) 7→ φ(x) p(w, (a, b), (x, y)) : (a, b) ∈ D+ ×D−, w ∈ [α, t− s]
}
⊂ C(D+ ×D−),

we see that
∫ t
s A1 dr converges to 0 as ε1 and ε2 tends to 0 uniformly for N large enough. The

same conclusion hold for
∫ t
s A2 dr by the same argument.

So far we have not used the Assumption 2.6 of lim infN→∞N δdN ∈ (0,∞]. We now use this

assumption to show that
∫ t
s A3 dr tends to 0 uniformly for N large enough, as ε1 and ε2 tend to

0. By a change of variable r 7→ t− w,∫ t

s
A3dr ≤

∫ t−s

0
sup
(a,b)

∫
D+

∫
D−

p(t− w, (a, b), (x, y))
1

N
`δN (x, y)

∣∣P (1,1)
w (`ε1φ− `ε2φ) (x, y)

∣∣ dxdy dw
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≤ 2C1

sd/2 td/2

∫ α

0

1√
w
dw +

C2

N sd

∫ t−s

α

∥∥P (1,1)
w (`ε1φ− `ε2φ)

∥∥ dw.
The last inequality holds for any α ∈ (0, t − s), where C1 = C1(d,D+, D−, T, φ) and C2 =
C2(d,D+, D−). This is because for ε > 0,

sup
(a,b)

∫ ∫ (∫ ∫
p(w, (x, y), (x̃, ỹ)) `ε(x̃, ỹ) dx̃ dỹ

)
p(t− w, (a, b), (x, y))

1

N
`δN (x, y) dxdy

≤ |Iε|
cd+1εd+1

sup
(a,b)

sup
(x̃,ỹ)

1

cd+1Nδ
d+1
N

∫
D
δN
+

∫
D−∩B(x,δN )

p(w, (x, y), (x̃, ỹ))p(t− w, (a, b), (x, y)) dydx

≤ |Iε|
cd+1εd+1

C(d,D−)

td/2
sup
a

sup
x̃

1

cd+1Nδ
d+1
N

∫
D
δN
+

p+(w, x, x̃)p+(t− w, a, x) dx

≤ |Iε|
cd+1εd+1

C(d,D−)

td/2
C(d,D+)

sd/2
sup
x̃

1

cd+1Nδ
d+1
N

∫
D
δN
+

p+(w, x, x̃) dx

by the Gaussian upper bound (2.2) for p+

≤ |Iε|
cd+1εd+1

C(d,D+, D−)

sd/2 td/2
1√
w

for N ≥ N(d,D+),

by the assumption lim inf
N→∞

N δdN ∈ (0,∞] and the bound (2.3) on D+.

In conclusion, we have shown that
{
E[〈`εφ, XN,+t ⊗ XN,−t 〉]

}
ε>0

is a Cauchy family and con-

verges as ε→ 0 to a number in [−∞,∞]. Furthermore, the convergence is uniformly for N large
enough and for any initial configuration. On other hand, since {(XN,+,XN,−)}N converges in
distribution to a continuous process to (v+(·, x)dx, v−(·, y)dy) and (µ+, µ−) 7→ 〈`εφ, µ+ ⊗ µ−〉
is a bounded continuous function on M, we have

E∞ [〈`εφ, v+(t)⊗ v−(t)〉] = lim
N ′→∞

E
[
〈`εφ, XN

′,+
t ⊗ XN

′,−
t 〉

]
for all t ≥ 0. Hence the proof for the convergence of limε→0 E∞ [〈`εφ, v+(t)⊗ v−(t)〉] is the same.
Finally, the bound for |Aφ(t)| follows directly from Lemma 6.7 and Lemma 7.2. This bound also
tells us that Aφ(t) actually lies in R.

From the above lemma, we immediately have

Corollary 7.11. Suppose that Assumption 2.6 holds and {N ′} is any subsequence along which
{(XN,+,XN,−)}N converges to (X∞,+,X∞,−) in distribution in D([0, T ],M). Then for φ ∈
C∞(D+ \ Λ+) ∪ C∞(D− \ Λ−), we have

lim
N ′→∞

E[〈`δN′φ, X
N ′,+
r ⊗ XN

′,−
r 〉] = Aφ(r) for r > 0, and

lim
N ′→∞

∫ t

s
E
[
〈`δN′φ, X

N ′,+
r ⊗ XN

′,−
r 〉

]
dr =

∫ t

s
Aφ(r) dr for 0 < s ≤ t <∞. (7.14)

Question. It is an interesting question if one can strengthen (7.14) to include s = 0.

We can now present our proof for (6.17) by applying a Gronwall type argument to (7.18).
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Proof of (6.17). Without loss of generality, we continue to assume ρ± = 1. Recall from (7.6)
that for φ+ ∈ C∞(D+ \ Λ+) and 0 < s ≤ t <∞, we have

E
[
〈φ+,X

N,+
t 〉

]
− E

[
〈P+

t−sφ+,X
N,+
s 〉

]
= −1

2

∫ t

s
E
[
〈`δN P

+
t−rφ+,X

N,+
r ⊗ XN,−r 〉

]
dr. (7.15)

By (7.14), we can let N →∞ to obtain

E∞[〈φ+, v+(t)〉]− E∞[〈P+
t−sφ+, v+(s)〉] = −1

2
E∞

[∫ t

s
AP

+
t−rφ+(r) dr

]
(7.16)

for 0 < s ≤ t <∞. Now let s→ 0. By the uniform bound for (v+, v−) given by Lemma 6.7, the
continuity of (v+(s), v−(s)) in s and Lebesgue dominated convergence theorem, we obtain

E∞[〈φ+, v+(t)〉]− 〈P+
t φ+, u

+
0 〉 = −1

2

∫ t

0
lim
ε→0

E∞
[
〈`ε P+

t−rφ+, v+(r)⊗ v−(r)〉
]
dr. (7.17)

Using the first equation in (4.1) in the definition of (u+, u−), the above equation (7.17) also
holds if we replace (v+, v−) by (u+, u−). On subtraction, we get〈

φ+, u+(t)− E∞[v+(t)]
〉

(7.18)

= −1

2

∫ t

0
lim
ε→0

∫
D−

∫
D+

`ε(x, y)P+
t−rφ+(x)

(
u+(r, x)u−(r, y)− E∞[v+(r, x)v−(r, y)]

)
dxdy dr.

The above equation holds for φ+ ∈ C∞(D+\Λ+) (and since ρ+ has support in the entire domain
D+), so we have

u+(t)− E∞[v+(t)] (7.19)

= −1

2

∫ t

0
lim
ε→0

∫
D−

∫
D+

`ε(x, y) p+(t− r, x, ·)
(
u+(r, x)u−(r, y)− E∞[v+(r, x)v−(r, y)]

)
dxdy dr

almost everywhere in D+.

Let w±(t) := u±(t)−E∞[v±(t)] ∈ Bb(D±) and ‖w±(r)‖± be the L∞ norm in D±. Then by the
a.s. bound of v± in Lemma 6.7 and a simple use of triangle inequality, we have ‖u+(r, x)u−(r, y)−
E∞[v+(r, x)v−(r, y)]‖ ≤ (‖u+

0 ‖ ‖w−(r)‖+ ‖u−0 ‖ ‖w+(r)‖). On other hand,∫
D−

∫
D+

`ε(x, y) p+(t− r, x, a) dxdy (7.20)

=
1

cd+1εd+1

∫
Iε
p+(t− r, x, a) dxdy

≤ 1

cd+1εd+1

∫
Dε+

∫
B(x,ε)∩Dε−

p+(t− r, x, a) dydx

≤
|B(x, ε) ∩Dε

−|
cd+1εd+1

∫
Dε+

p+(t− r, x, a) dx

≤ C(d,D+)√
t− r

+ C̃(d,D+) uniformly for a ∈ D+, for ε < ε(d,D+).
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Using these observations, it is easy to check that (7.19) implies

‖w+(t)‖+ ≤
∫ t

0
(‖u+

0 ‖ ‖w−(r)‖+ ‖u−0 ‖ ‖w+(r)‖) C(d,D+, T )√
t− r

dr. (7.21)

By the same argument, we have

‖w−(t)‖− ≤
∫ t

0
(‖u+

0 ‖ ‖w−(r)‖+ ‖u−0 ‖ ‖w+(r)‖) C(d,D−, T )√
t− r

dr. (7.22)

Adding (7.21) and (7.22), we have, for C = C(‖u+
0 ‖, ‖u

−
0 ‖, d,D+, D−, T ),

‖w+(t)‖+ + ‖w−(t)‖− ≤ C
∫ t

0
(‖w−(r)‖+ ‖w+(r)‖) 1√

t− r
dr. (7.23)

By a “Gronwall type” argument (cf. [21]), we have ‖w+(t)‖+ + ‖w−(t)‖− = 0 for all t ∈ [0, T ].
Since T > 0 is arbitrary, we have ‖w+(t)‖+ + ‖w−(t)‖− = 0 for all t ≥ 0. This completes the
proof for (6.17).

7.4 Second moment

In this subsection, we give a proof for (6.18) in Proposition 6.8. We start with a key lemma that
is analogous to Lemma 7.10.

Lemma 7.12. Suppose Assumption 2.6 holds. Then for any t > 0 and any φ ∈ C∞(D+\Λ+), as

ε→ 0, each of E∞
[
〈φ, v+(t)〉ρ+

〈`εφ, v+(t)ρ+ ⊗ v−(t)ρ−〉
]

and E
[
〈φ, XN,+t 〉〈`εφ, XN,+t ⊗ XN,−t 〉

]
converges uniformly for N ∈ N and for any initial distributions {(XN,+

0 ,XN,−0 )}. Moreover, we
have

Bφ(t) := lim
ε→0

E∞
[
〈φ, v+(t)〉ρ+

〈`εφ, v+(t)ρ+ ⊗ v−(t)ρ−〉
]

= lim
N ′→∞

lim
ε→0

E
[
〈φ, XN

′,+
t 〉〈`εφ, XN

′,+
t ⊗ XN

′,−
t 〉

]
∈ R

for any subsequence {N ′} along which {(XN,+,XN,−)}N converges to (X∞,+,X∞,−) in distri-
bution in D([0, T ],M). Similar results hold for φ ∈ C∞(D− \ Λ−), but with 〈φ, v−(t)〉ρ− and

〈φ, XN,−t 〉 in place of 〈φ, v+(t)〉ρ+
and 〈φ, XN,+t 〉 respectively.

Proof The proof follows the same strategy as that of Lemma 7.10, based on (7.10) rather
than (7.9). We only provide the main steps. Without loss of generality, assume φ = φ+ ∈
C∞(D+ \ Λ+) and ρ± = 1.

Suppose t > 0 and s ∈ (0, t) are fixed. Then (7.10) implies that

Θ :=
∣∣∣E(〈φ, XN,+t 〉〈`ε1φ, X

N,+
t ⊗ XN,−t 〉 − 〈φ, XN,+t 〉〈`ε2φ, X

N,+
t ⊗ XN,−t 〉

) ∣∣∣ (7.24)

≤
∣∣∣E(P (∗)

t−s 〈φ(x1)(`ε1(x2, y)− `ε2(x2, y))φ(x2), XN,+t (dx1)⊗ XN,+t (dx2)⊗ XN,−t (dy) 〉
) ∣∣∣

+
1

2

∫ t

s
E
[〈

`δN (x, y)

(
〈Hr(x, ·, ·), XN,+r ⊗ XN,−r 〉

+〈Hr(·, x, ·), XN,+r ⊗ XN,−r 〉+ 〈Hr(·, ·, y), XN,+r ⊗ XN,+r 〉
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+
1

N

[
〈2Hr(x, x, ·), XN,−r 〉+ 〈Hr(·, x, y), XN,+r 〉+ 〈Hr(x, ·, y), XN,+r 〉

]
+

1

N

[
〈Gr(x, ·), XN,−r 〉+ 〈Gr(·, y), XN,+r 〉+ 〈Hr(·, ·, y), XN,+r 〉

]
+

1

N2
[2Hr(x, x, y)−Gr(x, y)]

)
, XN,+r (dx)⊗ XN,−r (dy)

〉]
dr,

where

Gr :=
∣∣∣P (1,1)
t−r

(
φ2(x) (`ε1(x, y)− `ε2(x, y))

)∣∣∣ ∈ C(1,1)
∞ ⊂ C(D+ ×D−) and

Hr :=
∣∣∣P (2,1)
t−r

(
φ(x1)φ(x2) (`ε1(x2, y1)− `ε2(x2, y1))

)∣∣∣ ∈ C(2,1)
∞ ⊂ C(D

2
+ ×D−).

In the formula for Gr above, P
(1,1)
t−r (ϕ(x, y)) ∈ C(D+ ×D−) is defined as

(a, b) 7→
∫
D+×D−

p(1,1)(t− r, (a, b), (x, y)) dxdy.

The expression P
(2,1)
t−r (ϕ(x, y)) is defined in a similar way.

Comparison with (X
N,+

, X
N,−

) then yields

Θ ≤ (1 +
1

N
) ‖Hs‖+

1

N
‖Gs‖+

∫ t

s

(
9∑
i=1

Ai +B1 +B2

)
dr, (7.25)

where, with abbreviations that will be explained,

A1 :=
∥∥∥P (1,1)

r

(
`δN (x, y)

∥∥P (1,1)
r Hr(x, ·, ·)

∥∥)∥∥∥
A2 :=

∥∥∥P (1,1)
r

(
`δN (x, y)

∥∥P (1,1)
r Hr(·, x, ·)

∥∥)∥∥∥
A3 :=

∥∥∥P (1,1)
r

(
`δN (x, y)

∥∥P (2,0)
r Hr(·, ·, y)

∥∥)∥∥∥
A4 :=

2

N

∥∥∥P (1,1)
r

(
`δN (x, y)

∥∥P (0,1)
r Hr(x, x, ·)

∥∥)∥∥∥
A5 :=

1

N

∥∥∥P (1,1)
r

(
`δN (x, y)

∥∥P (1,0)
r Hr(·, x, y)

∥∥)∥∥∥
A6 :=

1

N

∥∥∥P (1,1)
r

(
`δN (x, y)

∥∥P (1,0)
r Hr(x, ·, y)

∥∥)∥∥∥
A7 :=

1

N

∥∥∥P (1,1)
r

(
`δN (x, y)

∥∥P (0,1)
r Gr(x, ·)

∥∥)∥∥∥
A8 :=

1

N

∥∥∥P (1,1)
r

(
`δN (x, y)

∥∥P (1,0)
r Gr(·, y)

∥∥)∥∥∥
A9 :=

1

N

∥∥∥P (1,1)
r

(
`δN (x, y)

∥∥P (1,0)
r Hr(·, ·, y)

∥∥)∥∥∥
B1 :=

2

N2

∥∥∥P (1,1)
r (`δN (x, y)Hr(x, x, y))

∥∥∥
B2 :=

1

N2

∥∥∥P (1,1)
r (`δN (x, y)Gr(x, y))

∥∥∥
In the above, the first P

(1,1)
r acts on the (x, y) variable, while the second P

(i,j)
r in each Ai acts

on the ‘ · ’ variable. Beware of the difference between P
(2,0)
r Hr(·, ·, y) and P

(1,0)
r Hr(·, ·, y) in
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A3 and A9 respectively. In fact, P
(2,0)
r Hr(·, ·, y) is defined as the function on D

2
+ which maps

(a1, a2) to
∫
D2

+
p(2,0)(r, (a1, a2), (x1, x2))Hr(x1, x2, y) d(x1, x2), while P

(1,0)
r Hr(·, ·, y) is defined

as the function on D+ which maps a1 to
∫
D+

p(1,0)(r, a1, x)Hr(x, x, y) dx.

The rest of the proof goes in the same way as that for Lemma 7.10. For example, note that

‖Hs‖ = sup
(a1,a2,b1)

∣∣∣ ∫
D2

+×D−
φ(x1)φ(x2) (`ε1(x2, y1)− `ε2(x2, y1))

p(2,1)(t− s, (a1, a2, b1), (x1, x2, y1)) d(x1, x2, y1)
∣∣∣.

By applying Lemma 7.2 to the equi-continuous and uniformly bounded family{
(x1, x2, y) 7→ φ(x1)φ(x2) p(2,1)(t−s, (a1, a2, b), (x1, x2, y)) : (a1, a2, b) ∈ D

2
+×D−

}
⊂ C(D

2
+×D−),

we see that ‖Hs‖ converges to zero uniformly for N large enough and for any initial configu-
ration, as ε1 and ε2 both tend to zero. The integral term with respect to dr can be estimated
as in the proof of Lemma 7.10, using the bound (2.3), Lemma 7.2 and Assumption 2.6 that
lim infN→∞N δdN ∈ (0,∞].

We have shown that
{
E
[
〈φ, XN,+t 〉〈`εφ, XN,+t ⊗ XN,−t 〉

]}
ε>0

is a Cauchy family which con-

verges, as ε → 0, uniformly for N large enough and for any initial configuration. Hence Bφ(t)
in the statement of the lemma exists in [−∞,∞]. Finally, we have Bφ(t) ∈ R since |Bφ(t)| <∞
by Lemma 6.7 and Lemma 7.2.

From the above lemma, we immediately obtain

Corollary 7.13. Suppose Assumption 2.6 holds and {N ′} is a subsequence along which {(XN,+,XN,−)}
converges to (X∞,+,X∞,−) in distribution in D([0, T ],M). Then for φ ∈ C∞(D+ \ Λ+),

lim
N ′→∞

E
[
〈φ, XN ′,+r 〉〈`δN′φ, X

N ′,+
r ⊗ XN

′,−
r 〉

]
= Bφ(r) for r > 0, and

lim
N ′→∞

∫ t

s
E
[
〈φ, XN ′,+r 〉〈`δN′φ, X

N ′,+
r ⊗ XN

′,−
r 〉

]
dr =

∫ t

s
Bφ(r) dr for 0 < s ≤ t <∞. (7.26)

We are now ready to give the

Proof of (6.18). As before, without loss of generality we assume ρ± = 1. Recall from (7.7) that
for φ = φ+ ∈ C∞(D+ \ Λ+) and 0 < s ≤ t <∞, we have

E[〈φ,XN,+t 〉2]− E[〈P+
t−sφ,X

N,+
s 〉2] (7.27)

= −1

2

∫ t

s
E[ 〈P+

t−rφ,X
N,+
r 〉 〈`δN (P+

t−rφ), XN,+r ⊗ XN,−r 〉 ] dr + o(N).

Letting N ′ →∞ in (7.26), we get

E∞[〈φ, v+(t)〉2]− E∞[〈P+
t−sφ, v+(s)〉2 = −1

2

∫ t

s
BP+

t−rφ(r) dr
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for 0 < s ≤ t <∞. Now let s→ 0. By the uniform bound for (v+, v−) given by Lemma 6.7, the
continuity of (v+(s), v−(s)) in s and the Lebesgue dominated convergence theorem, we obtain

E∞
[
〈φ+, v+(t)〉2

]
− 〈P+

t φ, u
+
0 〉

2 = −1

2

∫ t

0
lim
ε→0

E∞
[
〈P+

t−rφ, v+(r)〉〈`εP+
t−rφ, v+(r)⊗ v−(r)〉

]
dr.

(7.28)

Using the definition of (u+, u−), the above equation (7.28) also holds if we replace (v+, v−)
by (u+, u−). On subtraction, we get

E∞[〈φ, v+(t)〉2]− 〈φ, u+(t)〉2 =
1

2

∫ t

0
lim
ε→0

E∞
[
〈P+

t−rφ, u+(r)〉 〈`εP+
t−rφ, u+(r)⊗ u−(r)〉

−〈P+
t−rφ, v+(r)〉 〈`εP+

t−rφ, v+(r)⊗ v−(r)〉
]
dr. (7.29)

The left hand side of (7.29) equals E∞[〈φ, v+(t)− u+(t)〉2] because E∞[〈φ, v+(t)〉] = 〈φ, u+(t)〉.
Since E∞[〈`εP+

t−rφ, v+(r)⊗ v−(r)〉] = 〈`εP+
t−rφ, u+(r)⊗u−(r)〉, the integrand in the right hand

side of (7.29) with respect to dr equals

lim
ε→0

E∞
[
〈`εP+

t−rφ, v+(r)⊗ v−(r)〉 (〈P+
t−rφ, u+(r)− v+(r)〉)

]
≤ C E∞

[ ∣∣∣〈P+
t−rφ, u+(r)− v+(r)〉

∣∣∣ ] .
The constant C = C(φ, f, g,D+, D−) above arises from the uniform bound for v(r) in Lemma
6.7 and the bound (2.3). Hence we have

E∞[〈φ, v+(t)− u+(t)〉2] ≤ C
∫ t

0
E∞

[ ∣∣∣〈P+
t−rφ, u+(r)− v+(r)〉

∣∣∣ ] dr.
Letting w+(t) = u+(t)− v+(t), we obtain

E∞[〈φ, w+(t)〉2] ≤ C
∫ t

0
E∞[〈P+

t−rφ, w+(r)〉2] dr. (7.30)

We can then deduce by a ”Gronwall-type” argument that E∞[〈φ, w+(t)〉2] = 0 for all t ≥ 0. In
fact, by Fubinni’s theorem, the left hand side of (7.30) equals∫

D+

∫
D+

φ(x1)φ(x2)E∞[w+(t, x1)w+(t, x2)] dx1 dx2, (7.31)

and the integrand with respect to dr of the right hand side of (7.30) is∫
D+

∫
D+

φ(a1)φ(a2)

∫
D+

∫
D+

p+(t−r, x1, a1)p+(t−r, x2, a2)E∞[w+(t, x1)w+(t, x2)] dx1dx2da1da2.

Hence for a.e. a1, a2 ∈ D+, we have

E∞[w+(t, a1)w+(t, a2)]

≤ C

∫ t

0

∫
D+

∫
D+

p+(t− r, x1, a1)p+(t− r, x2, a2)E∞[w+(t, x1)w+(t, x2)] dx1 dx2 dr.

Let f(t) , sup
(a1,a2)∈D2

+

∣∣E∞[w+(t, a1)w+(t, a2)]
∣∣, then the above equation asserts that f(t) ≤

C
∫ t

0 f(r) dr. Note that f(r) ∈ L1[0, t] since it is bounded. Hence by Gronwall’s lemma, we

have f(t) = 0 for all t ≥ 0. This together with (7.31) yields E∞[〈φ, w+(t)〉2] = 0. Hence
E∞[〈φ, v+(t)〉2] = 〈φ, u+(t)〉2. The same holds for v−. This completes the proof for (6.18).
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