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Abstract

Suppose that d ≥ 1 and 0 < β < α < 2. We establish the existence and uniqueness of
the fundamental solution qb(t, x, y) to a class of (possibly nonsymmetric) non-local operators
Lb = ∆α/2 + Sb, where

Sbf(x) := A(d,−β)

∫

Rd

(
f(x+ z)− f(x)−∇f(x) · z1{|z|≤1}

) b(x, z)
|z|d+β

dz

and b(x, z) is a bounded measurable function on Rd×Rd with b(x, z) = b(x,−z) for x, z ∈ Rd.
Here A(d,−β) is a normalizing constant so that Sb = ∆β/2 when b(x, z) ≡ 1. We show that

if b(x, z) ≥ −A(d,−α)
A(d,−β) |z|

β−α, then qb(t, x, y) is a strictly positive continuous function and

it uniquely determines a conservative Feller process Xb, which has strong Feller property.
The Feller process Xb is the unique solution to the martingale problem of (Lb,S(Rd)),
where S(Rd) denotes the space of tempered functions on Rd. Furthermore, sharp two-sided
estimates on qb(t, x, y) are derived. In stark contrast with the gradient perturbations, these
estimates exhibit different behaviors for different types of b(x, z). The model considered in
this paper contains the following as a special case. Let Y and Z be (rotationally) symmetric
α-stable process and symmetric β-stable processes on Rd, respectively, that are independent
to each other. Solution to stochastic differential equations dXt = dYt + c(Xt−)dZt has
infinitesimal generator Lb with b(x, z) = |c(x)|β .

AMS 2010 Mathematics Subject Classification: Primary 60J35, 47G20, 60J75; Secondary
47D07

Keywords and phrases: symmetric stable process, fractional Laplacian, perturbation, non-
local operator, integral kernel, positivity, Lévy system, Feller semigroup, martingale problem

1 Introduction

Let d ≥ 1 be an integer and 0 < β < α < 2. For integer k ≥ 1, denote by Ck
b (R

d) (resp. Ck
c (R

d))
the space of continuous functions on Rd that have bounded continuous partial derivatives up
to order k (resp. the space of continuous functions on Rd with compact support that have
continuous partial derivatives up to order k). Recall that a stochastic process Y = (Yt,Px, x ∈
Rd) on Rd is called a (rotationally) symmetric α-stable process on Rd if it is a Lévy process
having

Ex

[
eiξ·(Yt−Y0)

]
= e−t|ξ|α for every x, ξ ∈ R

d.

∗Research partially supported by NSF Grant DMS-1206276, and NNSFC Grant 11128101.
†Corresponding author. Research partially supported by NNSFC Grant 11171024.
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Let f̂(ξ) :=
∫
Rd e

iξ·xf(x)dx denote the Fourier transform of a function f on Rd. The fractional

Laplacian ∆α/2 on Rd is defined as

∆α/2f(x) =

∫

Rd

(
f(x+ z)− f(x)−∇f(x) · z1{|z|≤1}

) A(d,−α)

|z|d+α
dz (1.1)

for f ∈ C2
b (R

d). Here A(d,−α) is the normalizing constant so that ∆̂α/2f(ξ) = −|ξ|αf̂(ξ).
Hence ∆α/2 is the infinitesimal generator for the symmetric α-stable process on Rd.

Throughout this paper, b(x, z) is a real-valued bounded function on Rd × Rd satisfying

b(x, z) = b(x,−z) for every x, z ∈ R
d. (1.2)

This paper is concerned with the existence, uniqueness and sharp estimates on the “fundamental
solution” of the following non-local operator on Rd,

Lbf(x) = ∆α/2f(x) + Sbf(x), f ∈ C2
b (R

d),

where

Sbf(x) := A(d,−β)

∫

Rd

(
f(x+ z)− f(x)−∇f(x) · z1{|z|≤1}

) b(x, z)
|z|d+β

dz. (1.3)

We point out that since b(x, z) satisfies condition (1.2), the truncation |z| ≤ 1 in (1.3) can be
replaced by |z| ≤ λ for any λ > 0; that is, for every λ > 0,

Sbf(x) = A(d,−β)

∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|≤λ}

) b(x, z)
|z|d+β

dz. (1.4)

In fact, under condition (1.2),

Sbf(x) = A(d,−β) p.v.

∫

Rd

(f(x+ z)− f(x))
b(x, z)

|z|d+β
dz

:= A(d,−β) lim
ε→0

∫

{z∈Rd:|z|>ε}
(f(x+ z)− f(x))

b(x, z)

|z|d+β
dz. (1.5)

Operator Lb is typically non-symmetric.
Condition (1.2) allows us to reduce general bounded measurable function b on Rd × Rd to

the situation where ‖b‖∞ is sufficient small through a scaling argument (see (3.18) and Lemma
3.5). The operator Lb is in general non-symmetric. Clearly, Lb = ∆α/2 when b ≡ 0 and
Lb = ∆α/2 +∆β/2 when b ≡ 1.

We are led to the study of this non-local operator Lb by the consideration of the following
stochastic differential equation (SDE) on Rd:

dXt = dYt + c(Xt−)dZt, (1.6)

where Y is a symmetric α-stable process on Rd and Z is an independent symmetric β-stable
process with 0 < β < α. Such SDE arises naturally in applications when there are more than
one sources of random noises. When c is a bounded Lipschitz function on Rd, it is easy to show
using Picard’s iteration method that for every x ∈ Rd, SDE (1.6) has a unique strong solution
with X0 = x. We denote the law of such a solution by Px. The collection of the solutions
(Xt,Px, x ∈ Rd) forms a strong Markov process X on Rd. Using Ito’s formula, one concludes
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that the infinitesimal generator of X is Lb with b(x, z) = |c(x)|β and so in this case X solves the
martingale problem for (Lb, C2

b (R
d)). The following questions arise naturally: does the Markov

process X have a transition density function? If so, what is its sharp two-sided estimates?
Is there a solution to the martingale problem for ∆α/2 + |c(x)|β∆β/2 when c is not Lipschitz
continuous? We will address these questions for the more general operator Lb in this paper.

For a ≥ 0, denote by pa(t, x, y) the fundamental function of ∆α/2 + a∆β/2 (or equivalently,
the transition density function of the Lévy process Yt+ a1/βZt). Clearly, pa(t, x, y) is a function
of t and x− y, so sometimes we also write it as pa(t, x− y). It is known (see (2.3) of Section 2
for details) that on (0,∞) × Rd × Rd,

p0(t, x, y) ≍ t−d/α ∧
t

|x− y|d+α
, (1.7)

pa(t, x, y) ≍
(
t−d/α ∧ (at)−d/β

)
∧

(
t

|x− y|d+α
+

at

|x− y|d+β

)
. (1.8)

Here for two non-negative functions f and g, the notation f ≍ g means that there is a constant
c ≥ 1 so that c−1f ≤ g ≤ cf on their common domain of definitions. For real numbers a, c ∈ R,
we use a ∨ c and a ∧ c to denote max{a, c} and min{a, c}, respectively. We point out that
the comparison constants in (1.8) is independent of a > 0; see (2.3) in Section 2. Using the
observation that a ∧ b ≍ ab

a+b , one concludes from (1.7) that

p0(t, x, y) ≍
t

(t1/α + |x− y|)d+α
on (0,∞)× R

d × R
d. (1.9)

Note that (at)−d/β ≥ t−d/α whenever 0 < t ≤ a−α/(α−β). Thus for every k > 0,

pa(t, x, y) ≍ t−d/α ∧

(
t

|x− y|d+α
+

at

|x− y|d+β

)
on (0, ka−α/(α−β)]× R

d × R
d, (1.10)

with the comparison constants depending only on d, α, β and k.

Since Lb = ∆α/2 + Sb is a lower order perturbation of ∆α/2 by Sb, heuristically the funda-
mental solution (or kernel) qb(t, x, y) of Lb should satisfy the following Duhamel’s formula:

qb(t, x, y) = p0(t, x, y) +

∫ t

0

∫

Rd

qb(t− s, x, z)Sb
zp0(s, z, y)dzds (1.11)

for t > 0 and x, y ∈ Rd. Here the notation Sb
zp0(s, z, y) means the non-local operator Sb is

applied to the function z 7→ p0(s, z, y). Similar notation will also be used for other operators, for

example, ∆
α/2
z . Applying (1.11) recursively, it is reasonable to conjecture that

∑∞
n=0 q

b
n(t, x, y),

if convergent, is a solution to (1.11), where qb0(t, x, y) := p0(t, x, y) and

qbn(t, x, y) :=

∫ t

0

∫

Rd

qbn−1(t− s, x, z)Sb
zp0(s, z, y)dzds for n ≥ 1. (1.12)

For each bounded function b(x, z) on Rd × Rd and λ > 0, define

mb,λ = essinfx,z∈Rd,|z|>λb(x, z) and Mb,λ = esssupx,z∈Rd,|z|>λ|b(x, z)|. (1.13)

The followings are the main results of this paper.
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Theorem 1.1. For every bounded function b on Rd × Rd satisfying condition (1.2), there is a

unique continuous function qb(t, x, y) on (0,∞)×Rd×Rd that satisfies (1.11) on (0, ε]×Rd×Rd

with |qb(t, x, y)| ≤ cp1(t, x, y) on (0, ε] × Rd × Rd for some ε, c > 0, and that

∫

Rd

qb(t, x, y)qb(s, y, z)dy = qb(t+ s, x, z) for every t, s > 0 and x, z ∈ R
d. (1.14)

Moreover, the following holds.

(i) There is a constant A0 = A0(d, α, β) > 0 so that qb(t, x, y) =
∑∞

n=0 q
b
n(t, x, y) on

(0, (A0/‖b‖∞)α/(α−β)]× Rd × Rd, where qbn(t, x, y) is defined by (1.12).

(ii) qb(t, x, y) satisfies the Duhamel’s formula (1.11) for all t > 0 and x, y ∈ Rd. Moreover,

Sb
xq

b(t, x, y) exists pointwise in the sense of (1.5) and

qb(t, x, y) = p0(t, x, y) +

∫ t

0

∫

Rd

p0(t− s, x, z)Sb
zq

b(s, z, y)dzds (1.15)

for t > 0 and x, y ∈ Rd.

(iii) For each t > 0 and x ∈ Rd,
∫
Rd q

b(t, x, y)dy = 1.

(iv) For every f ∈ C2
b (R

d),

T b
t f(x)− f(x) =

∫ t

0
T b
sL

bf(x)ds,

where T b
t f(x) =

∫
Rd q

b(t, x, y)f(y)dy.

(v) Let A > 0 and λ > 0. There is a positive constant C = C(d, α, β,A, λ) ≥ 1 so that for any

b satisfying (1.2) with ‖b‖∞ ≤ A,

|qb(t, x, y)| ≤ CeCtpMb,λ
(t, x, y) on (0,∞) × R

d × R
d. (1.16)

We remark that estimate (1.16) allows one to get sharper bound on |qb(t, x, y)| by selecting
optimal λ > 0. When Zt is the deterministic process t and c is an Rd-valued bounded Lipschitz
function on Rd, the solution of (1.6) is a symmetric α-stable process with drift. Its infinitesimal
generator is ∆α/2 + c(x)∇. Existence of integral kernel to ∆α/2 + c(x)∇ and its estimates have
been studied recently in [6] (in fact, c there can be an Rd-valued function in certain Kato class).

Unlike the gradient perturbation for ∆α/2, in general the kernel qb(t, x, y) in Theorem 1.1 can
take negative values. For example, this is the case when b ≡ −1, that is, when Lb = ∆α/2−∆β/2,
according to the next theorem. Observe that

Lbf(x) =

∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|≤1}

)
jb(x, z)dz,

where

jb(x, z) =
A(d,−α)

|z|d+α

(
1 +

A(d,−β)

A(d,−α)
b(x, z) |z|α−β

)
. (1.17)

The next result gives a necessary and sufficient condition for the kernel qb(t, x, y) in Theorem
1.1 to be non-negative when b(x, z) is continuous in x for a.e. z.
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Theorem 1.2. Let b be a bounded function on Rd × Rd that satisfies (1.2) and that

x 7→ b(x, z) is continuous for a.e. z ∈ R
d. (1.18)

Then qb(t, x, y) ≥ 0 on (0,∞) × Rd × Rd if and only if for each x ∈ Rd, jb(x, z) ≥ 0 for a.e.

z ∈ Rd; that is, if and only if

b(x, z) ≥ −
A(d,−α)

A(d,−β)
|z|β−α for a.e. z ∈ R

d. (1.19)

In particular, if b(x, z) = b(x) is a function of x only, then qb(t, x, y) ≥ 0 on (0,∞) × Rd × Rd

if and only if b(x) ≥ 0 on Rd.

Next theorem drops the assumption (1.18), gives lower bound estimates and refines upper
bound estimates on qb(t, x, y) for b(x, z) satisfying condition (1.19) and makes connections to
the martingale problem for Lb. To state it, we need first to recall some definitions.

Let D([0,∞),Rd) be the space of right continuous Rd-valued functions having left limits on
[0,∞), equipped with Skorokhod topology. Denote by Xt the projection coordinate map on
D([0,∞),Rd). Let C be a subspace of C2

b (R
d). A probability measure Q on the Skorokhod space

D([0,∞),Rd) is said to to be a solution to the martingale problem for (Lb, C) with initial value
x ∈ Rd if Q(X0 = x) = 1 and for every f ∈ C,

Mf
t := f(Xt)− f(X0)−

∫ t

0
Lbf(Xs)ds

is a Q-martingale. The martingale problem (Lb, C) with initial value x ∈ Rd is said to be
well-posed if it has a unique solution.

Let C∞(Rd) be the space of continuous functions on Rd that vanish at infinity, equipped
with supremum norm. Set

C2
∞(Rd) =

{
f ∈ C∞(Rd) : the first and second derivatives of f are all in C∞(Rd)

}
.

A Markov process on Rd is called a Feller process if its transition semigroup is a strongly
continuous semigroup in C∞(Rd). Feller processes is a class of nice strong Markov processes,
called Hunt processes (see [15]). Let p0(t, x, y) be the fundamental solution of the truncated
operator

∆
α/2

f(x) =

∫

|z|≤1

(
f(x+ z)− f(x)−∇f(x) · z1{|z|≤1}

) A(d,−α)

|z|d+α
dz;

or, equivalently, p0(t, x, y) is the transition density function for the finite range α-stable (Lévy)
process with Lév measure A(d,−α)|z|−(d+α)

1{|z|≤1}. It is established in [8] that p0(t, x, y) is
jointly continuous and enjoys the following two sided estimates:

p0(t, x, y) ≍ t−d/α ∧
t

|x− y|d+α
(1.20)

for t ∈ (0, 1] and |x− y| ≤ 1, and there are constants ck = ck(d, α) > 0, k = 1, 2, 3, 4 so that

c1

(
t

|x− y|

)c2|x−y|

≤ p0(t, x, y) ≤ c3

(
t

|x− y|

)c4|x−y|

(1.21)

for t ∈ (0, 1] and |x− y| > 1.

Define b+(x, z) = max{b(x, z), 0}.
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Theorem 1.3. For every A > 0 and λ > 0, there are positive constants Ck = Ck(d, α, β,A),
k = 1, 2, and C3 = C3(d, α, β,A, λ) such that for any bounded b satisfying (1.2) and (1.19) with
‖b‖∞ ≤ A,

C1p0(t, C2x,C2y) ≤ qb(t, x, y) ≤ C3pMb+,λ
(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d. (1.22)

Moreover, for every ε > 0, there is a positive constant C4 = C4(d, α, β,A, λ, ε) such that for any

b on Rd × Rd satisfying (1.2) with ‖b‖∞ ≤ A so that

jb(x, z) ≥ ε |z|−(d+α) for a.e. x, z ∈ R
d (1.23)

we have

C4pmb+,λ
(t, x, y) ≤ qb(t, x, y) ≤ C3pMb+,λ

(t, x, y) for t ∈ (0, 1] and x, y ∈ R
d. (1.24)

The kernel qb(t, x, y) uniquely determines a Feller process Xb = (Xb
t , t ≥ 0,Px, x ∈ Rd) on the

canonical Skorokhod space D([0,∞),Rd) such that

Ex

[
f(Xb

t )
]
=

∫

Rd

qb(t, x, y)f(y)dy

for every bounded continuous function f on Rd. The Feller process Xb is conservative and has

a Lévy system (Jb(x, y)dy, t), where Jb(x, y) = jb(x, y − x).

Jb(x, y) = jb(x, y − x) =
A(d,−α)

|x− y|d+α
+

A(d,−β) b(x, y − x)

|x− y|d+β
. (1.25)

Moreover, for each x ∈ Rd, (Xb,Px) is the unique solution to the martingale problem (Lb,S(Rd))
with initial value x. Here S(Rd) denotes the space of tempered functions on Rd.

Here we say (Jb(x, y)dy, t) is a Lévy system for Xb if for any non-negative measurable
function f on R+×Rd×Rd with f(s, y, y) = 0 for all y ∈ Rd, any stopping time T (with respect
to the filtration of Xb) and any x ∈ Rd,

Ex



∑

s≤T

f(s,Xb
s−,X

b
s)


 = Ex

[∫ T

0

(∫

Rd

f(s,Xb
s , y)J

b(Xb
s , y)dy

)
ds

]
. (1.26)

A Lévy system for Xb describes the jumps of the process Xb. A Markov process on Rd is said to
have strong Feller property if its transition semigroup maps bounded measurable functions on
Rd into bounded continuous functions on Rd. Since qb(t, x, y) is a continuous function, one has
by Theorem 1.1 and the dominated convergence theorem that the Feller process Xb of Theorem
1.3 has strong Feller property.

Condition (1.23) is always satisfied if b(x, z) is nonnegative. We emphasize the mb+,λ and
Mb+,λ terms appeared in the estimates in Theorem 1.3. Under condition (1.23) and the assump-
tion that ‖b‖∞ ≤ A, the value of b(x, z) on Rd ×{z ∈ Rd : |z| ≤ λ} is irrelevant in the estimates
of qb(t, x, y) in (1.24). By selecting suitable λ > 0 in (1.24), one can get optimal two-sided esti-
mates on qb(t, x, y). The following follows immediately from Theorem 1.3 by taking a suitable
λ > 0.
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Corollary 1.4. Let A ≥ 0 and ε > 0. There is a positive constant C = C(d, α, β,A, ε) ≥ 1 so

that for any bounded b satisfying (1.2) with ‖b‖∞ ≤ A and

jb(x, z) ≥ ε

(
1

|z|d+α
+

1

|z|d+β

)
for a.e. x, z ∈ R

d,

we have

C−1p1(t, x, y) ≤ qb(t, x, y) ≤ Cp1(t, x, y) for t ∈ (0, 1] and x, y ∈ R
d.

Theorem 1.3 in particular implies that if b(x, ·) is a bounded function satisfying (1.2) and
(1.19) so that b(x, z) = 0 for every x ∈ Rd and |z| ≥ R for some R > 0; or, equivalently if Lb =
∆α/2 + Sb is a lower order perturbation of ∆α/2 by finite range non-local operator Sb, then the
upper bound of the kernel qb(t, x, y) is dominated by p0(t, x, y) for each (t, x, y) ∈ (0, 1]×Rd×Rd.
In fact, we have the following more general result.

Theorem 1.5. For every A > 0 and M ≥ 1, there is a constant C5 = C5(d, α, β,A,M) ≥ 1
such that for any bounded b satisfying (1.2) with ‖b‖∞ ≤ A and

M−1 |z|−(d+α) ≤ jb(x, z) ≤ M |z|−(d+α) for a.e. x, z ∈ R
d, (1.27)

or equivalently,

− (1−M−1)
A(d,−α)

A(d,−β)
|z|β−α ≤ b(x, z) ≤ (M − 1)

A(d,−α)

A(d,−β)
|z|β−α for a.e.x, z ∈ R

d, (1.28)

we have

C−1
5 p0(t, x, y) ≤ qb(t, x, y) ≤ C5p0(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d. (1.29)

Remark 1.6. (i) In general, we can not expect qb to have comparable lower and upper bound
estimates. The estimates in (1.22) and (1.24) are sharp in the sense that qb(t, x, y) = p0(t, x, y)
when b ≡ 0, qb(t, x, y) = p1(t, x, y) when b ≡ 1, and qb(t, x, y) = p0(t, x, y) when b(x, z) = 0 for

|z| ≤ 1 and b(x, z) = −A(d,−α)
A(d,−β) |z|

β−α for |z| ≥ 1. Clearly, by (1.7)-(1.8), p0(t, x, y) and p1(t, x, y)

are not comparable on (0, 1]×Rd ×Rd. We point out that it follows from (1.8) and (1.24) that
every A ≥ 1, there is a constant C̃ = C̃(d, α, β,A) ≥ 1 so that for any non-negative b on Rd×Rd

satisfying (1.2) with 1/A ≤ b(x, z) ≤ A a.e.

(1/C̃) p1(t, x, y) ≤ qb(t, x, y) ≤ C̃ p1(t, x, y) for t ∈ (0, 1] and x, y ∈ R
d. (1.30)

(ii) Heat kernel estimates for discontinuous Markov processes have been under intense study
recently. Most results obtained so far are mainly for symmetric Markov processes. See [7] for
a recent survey. Results of this paper can also be viewed as an attempt in establishing heat
kernel estimates for non-symmetric discontinuous Markov processes. For example, Theorem 1.5
and Corollary 1.4 can be viewed as the non-symmetric analogy, though in a restricted setting,
of the two-sided heat kernel estimates for symmetric stable-like processes and mixed stable-like
processes established in [11] and [12], respectively.

(iii) Heat kernel estimates for fractional Laplacian ∆α/2 under gradient perturbation and
(possibly non-local) Feynman-Kac perturbation have recently been studied in [6, 9, 10, 28]. In
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both of these cases, under a Kato class condition on the coefficients, the fundamental solution of
the perturbed operator is always strictly positive and is comparable to the fundamental solution
p0(t, x, y) of the fractional Laplacian ∆α/2 on (0, 1]×Rd ×Rd. Our Theorems 1.2 and 1.3 reveal
that the fractional Laplacian ∆α/2 under non-local perturbation Sb is in stark contrast with ∆α/2

under either gradient (local) perturbations or (possibly non-local) Feynman-Kac perturbations.
However, Theorem 1.5 in particular indicates that the heat kernel estimate for ∆α/2 is stable
under finite range lower order perturbation.

(iv) Martingale problem for non-local operators (with or without elliptic differential operator
component) has been studied by many authors. See, e.g., [4, 5, 18, 19, 21, 22, 25, 27] and the
references therein. In particular, Komatsu [19] and Mikulevicious-Pragarauskas [21] considered
martingale problem for a class of non-local operators that is directly related to Lb. In fact, the
uniqueness of the martingale problem for (Lb,S(Rd)) stated in Theorem 1.3 above is a direct
consequence of [19, Theorem 3], while it follows from [21, Theorem 5] that for any bounded b
satisfying (1.2) and (1.19), there is a unique solution to the martingale problem (Lb, C∞

c (Rd)).
We also refer the reader to [17, 23] for more information on the connection between pseudo-
differential operators and discontinuous Markov processes. The main contribution of Theorem
1.3 is on the two-sided transition density function estimates for the martingale problem solution
Xb

t . We also mention that the well-posedness of martingale problem for (∆α/2+b(x)·∇, C∞
c (Rd))

with b(x) an Rd-valued Kato class function has recently been established in [13].

We can restate some of results from Theorems 1.1, 1.2, 1.3 and 1.5 as follows.

Theorem 1.7. Let b(x, z) be a bounded function on Rd × Rd satisfying (1.2) and (1.19). For

each x ∈ Rd, the martingale problem for (Lb,S(Rd)) with initial value x is well-posed. These

martingale problem solutions {Px, x ∈ Rd} form a strong Markov process Xb, which has infinite

lifetime and possesses a jointly continuous transition density function qb(t, x, y) with respect to

the Lebesgue measure on Rd. Moreover, the following holds.

(i) The transition density function qb(t, x, y) can be explicitly constructed as follows. Define

qb0(t, x, y) := p0(t, x, y) and

qbn(t, x, y) :=

∫ t

0

∫

Rd

qbn−1(t− s, x, z)Sb
zp0(s, z, y)dzds for n ≥ 1.

There is ε > 0 so that
∑∞

n=0 q
b
n(t, x, y) converges absolutely on (0, ε] × Rd × Rd and

qb(t, x, y) =
∑∞

n=0 q
b
n(t, x, y) on (0, ε] × Rd × Rd.

(ii) qb(t, x, y) = p0(t, x, y) +

∫ t

0

∫

Rd

qb(t− s, x, z)Sb
zp0(s, z, y)dzds on (0,∞) × Rd × Rd.

(iii) For every A > 0 and λ > 0, there are positive constants ck = ck(d, α, β,A), k = 1, 2, 3 and

ck = ck(d, α, β,A, λ), k = 4, · · · , 9, such that for any bounded function b(x, z) on Rd × Rd

satisfying (1.2) and (1.19) with ‖b‖∞ ≤ A,

c1e
−c2tp0(t, c3x, c3y) ≤ qb(t, x, y) ≤ c4e

c5t pMb+,λ
(t, x, y) on (0,∞) × R

d × R
d

and for any non-negative function b(x, z) on Rd × Rd satisfying (1.2) with ‖b‖∞ ≤ A,

c6e
−c7t pmb,λ

(t, x, y) ≤ qb(t, x, y) ≤ c8e
c9t pMb,λ

(t, x, y) on (0,∞) × R
d × R

d.

8



(iv) For every A > 0 and M ≥ 1, there are positive constants ck = ck(d, α, β,A,M), k =
10, · · · , 13, such that for any bounded function b(x, z) on Rd × Rd satisfying (1.2) and

(1.27) with ‖b‖∞ ≤ A,

c10e
−c11tp0(t, x, y) ≤ qb(t, x, y) ≤ c12e

c13t p0(t, x, y) on (0,∞)× R
d ×R

d.

The rest of the paper is organized as follows. In Section 2, we derive some estimates on

∆
β/2
x p0(t, x, y) and ∆

β/2
x p0(t, x, y) that will be used in later. The existence and uniqueness of

the fundamental solution qb(t, x, y) of Lb are given in Section 3. This is done through a series
of lemmas and theorems, which provide more detailed information on qb(t, x, y) and qbn(t, x, y).
Theorem 1.1 then follows from these results. We show in Section 4 that the semigroup {T b

t ; t > 0}
associated with qb(t, x, y) is a strongly continuous semigroup in C∞(Rd). We then apply Hille-
Yosida-Ray theorem and Courrége’s first theorem to establish Theorem 1.2. When b satisfies
(1.2), (1.18) and (1.19), qb(t, x, y) determines a conservative Feller process Xb. We first derive a
Lévy system of Xb and also prove (Xb,Px) is the unique solution to the martingale problem for
(Lb,S(Rd)) in Section 5. We next establish, for any given A > 0, the equi-continuity of qb(t, x, y)
on each [1/M,M ] × Rd × Rd for any b that satisfies (1.2) with ‖b‖∞ ≤ A. Using this, we can
drop the condition (1.18) and establish the Feller process Xb with transition density qb(t, x, y)
for general bounded b that satisfies (1.2) and (1.19) by approximating it with a sequence of
{kn(x, z), n ≥ 1} that satisfy (1.2), (1.18) and (1.19). The upper bound estimate for qb(t, x, y)

in (1.22) and (1.24) can be obtained from that of qb̂λ(t, x, y) due to the Meyer’s construction of

X b̂λ fromXb, where b̂λ(x, z) = b(x, z)1{|z|≤λ}(z)+b+(x, z)1{|z|>λ}(z). The lower bound estimates

in (1.22) and (1.24) are established by the Lévy system of Xb and some probability estimates.
Finally, we use the estimates in (1.24) for b with support in {(x, z) ∈ Rd ×Rd : |z| ≤ 1} and the
non-local Feynman-Kac perturbation results from [10] to obtain Theorem 1.5.

Throughout this paper, we use the capital letters C1, C2, · · · to denote constants in the
statement of the results, and their labeling will be fixed. The lowercase constants c1, c2, · · ·
will denote generic constants used in the proofs, whose exact values are not important and
can change from one appearance to another. We will use “:=” to denote a definition. For a
differentiable function f on Rd, we use ∂if and ∂2

ijf to denote the partial derivatives ∂f
∂xi

and
∂2f

∂xi∂xj
.

2 Preliminaries

Suppose that Y is a symmetric α-stable process, and Z is a symmetric β-stable process on Rd

that is independent of Z. For any a ≥ 0, we define Y a by Y a
t := Yt + a1/βZt. We will call

the process Y a the independent sum of the symmetric α-stable process Y and the symmetric
β-stable process Z with weight a1/β . The infinitesimal generator of Y a is ∆α/2 + a∆β/2. Let
pa(t, x, y) denote the transition density of Y a (or equivalently the heat kernel of ∆α/2 + a∆β/2)
with respect to the Lebesgue measure on Rd. Recently it is proven in [12] that

p1(t, x, y) ≍
(
t−d/α ∧ t−d/β

)
∧

(
t

|x− y|d+α
+

t

|x− y|d+β

)
on (0,∞) ×R

d × R
d. (2.1)

Unlike the case of the symmetric α-stable process Y := Y 0, Y a does not have the stable
scaling for a > 0. Instead, the following approximate scaling property holds : for every λ > 0,
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{λ−1Y a
λαt, t ≥ 0} has the same distribution as {Y aλ(α−β)

t , t ≥ 0}. Consequently, for any λ > 0,
we have

paλ(α−β)(t, x, y) = λdpa(λ
αt, λx, λy) for t > 0 and x, y ∈ R

d. (2.2)

In particular, letting a = 1, λ = γ1/(α−β), we get

pγ(t, x, y) = γd/(α−β)p1(γ
α/(α−β)t, γ1/(α−β)x, γ1/(α−β)y) for t > 0 and x, y ∈ R

d.

So we deduce from (2.1) that there exists a constant C > 1 depending only on d, α and β such
that for every a > 0 and (t, x, y) ∈ (0,∞) × Rd × Rd

C−1ha(t, x, y) ≤ pa(t, x, y) ≤ Cha(t, x, y), (2.3)

where

ha(t, x, y) :=
(
t−d/α ∧ (at)−d/β

)
∧

(
t

|x− y|d+α
+

a t

|x− y|d+β

)
.

In fact, (2.3) also holds when a = 0. Observe (see (1.10)) that for every A > 0, there is a
constant c = c(d, α, β,A) ≥ 1 so that for every (t, x, y) ∈ (0, 1] × Rd × Rd and 0 ≤ a ≤ A,

c−1 t−d/α ∧

(
t

|x− y|d+α
+

a t

|x− y|d+β

)
≤ ha(t, x, y) ≤ c t−d/α ∧

(
t

|x− y|d+α
+

a t

|x− y|d+β

)

(2.4)

Recall that p0(t, x, y) = p0(t, x − y) is the transition density function of the symmetric
α-stable process Y 0.

Lemma 2.1. There exists a constant C6 = C6(d, α) > 0 such that for every t > 0, x ∈ Rd and

i, j = 1, . . . , d,
∣∣∣∣
∂

∂xi
p0(t, x)

∣∣∣∣ ≤ C6t
−(d+1)/α

(
1 ∧

t1/α

|x|

)d+1+α

,

∣∣∣∣
∂2

∂xi∂xj
p0(t, x)

∣∣∣∣ ≤ C6t
−(d+2)/α

(
1 ∧

t1/α

|x|

)d+2+α

.

Proof. By [6, Lemma 5], there is a positive constant c1 so that for all t > 0 and x, y ∈ Rd

|∇xp0(t, x)| ≤ c1|x|

(
t−(d+2)/α ∧

t

|x|d+2+α

)
≤ c1

(
t−(d+1)/α ∧

t

|x|d+1+α

)
.

That is, the first inequality holds. Let ηt(r) be the density function of the α/2-stable subordina-
tor at time t and g(t, x) = (4πt)−d/2e−|x|2/4t be the Gaussian kernel on Rd. There is a constant
c so that ηt(r) ≤ ctr−1−α/2 for all r, t > 0, see [6, Lemma 5]. Noting that

∣∣∣∣
∂2

∂xi∂xj
g(s, x)

∣∣∣∣ ≤
(
|x|2

s2
+

2

s

)
g(s, x) = (4π)2|x|2g(d+4)(s, x1) + 8πg(d+2)(s, x2),

where x1 ∈ Rd+4 and x2 ∈ Rd+2 with |x1| = |x2| = |x|, g(d+2)(s, x2) and g(d+4)(s, x1) are the
Gaussian kernels on Rd+2 and Rd+4, respectively. Since p0(t, x) =

∫∞
0 g(s, x)ηt(s)ds, we have
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by the dominated convergence theorem that there is a positive constant c2 so that for all t > 0
and x ∈ Rd ∣∣∣∣

∂2

∂xi∂xj
p0(t, x)

∣∣∣∣ ≤
∫ ∞

0

∣∣∣∣
∂2

∂xi∂xj
g(s, x)

∣∣∣∣ ηt(s) ds

≤ (4π)2|x|2p
(d+4)
0 (t, x1) + 8πp

(d+2)
0 (t, x2)

≤ c2

(
t−(d+2)/α ∧

t

|x|d+2+α

)
,

where p
(d+2)
0 (t, x2) and p

(d+4)
0 (t, x1) are the transition density functions of the symmetric α-

stable processes in Rd+2 and Rd+4, respectively. This establishes the second inequality in Lemma
2.1.

Define for t > 0 and x, y ∈ Rd, the function

|∆β/2
x |p0(t, x, y)





= A(d,−β)
( ∫

|z|≤t1/α

∣∣p0(t, x+ z, y)− p0(t, x, y)−
∂
∂xp0(t, x, y) · z

∣∣ 1

|z|d+β
dz

+
∫
|z|>t1/α |p0(t, x+ z, y)− p0(t, x, y)|

dz

|z|d+β

)
for |x− y|α ≤ t,

= A(d,−β)
( ∫

|z|≤|x−y|/2 |p0(t, x+ z, y)− p0(t, x, y) −
∂
∂xp0(t, x, y) · z|

1

|z|d+β
dz

+
∫
|z|>|x−y|/2 |p0(t, x+ z, y)− p0(t, x, y)|

dz

|z|d+β

)
for |x− y|α > t.

Let

f0(t, x, y) :=
(
t1/α ∨ |x− y|

)−(d+β)
= t−(d+β)/α

(
1 ∧

t1/α

|x− y|

)d+β

. (2.5)

Lemma 2.2. There exists a constant C7 = C7(d, α, β) > 0 such that

|∆β/2
x |p0(t, x, y) ≤ C7f0(t, x, y) on (0,∞)× R

d ×R
d. (2.6)

Proof. We only need to prove |∆
β/2
x |p0(t, x) ≤ C7f0(t, x, 0) for all t > 0 and x ∈ Rd.

(i) We first consider the case |x|α ≤ t. In this case,

|∆β/2
x |p0(t, x) = A(d,−β)

∫

|z|≤t1/α
|p0(t, x+ z)− p0(t, x)−

∂

∂x
p0(t, x) · z|

dz

|z|d+β

+A(d,−β)

∫

|z|≥t1/α
|p0(t, x+ z)− p0(t, x)|

dz

|z|d+β

= I + II.

Note that by Lemma 2.1,

sup
u∈Rd

∣∣∣∣
∂2

∂ui∂uj
p0(t, u)

∣∣∣∣ ≤ C6t
−(d+2)/α,

and so by Taylor’s formula,

I ≤ A(d,−β) sup
u∈Rd

∣∣∣∣
∂2

∂ui∂uj
p0(t, u)

∣∣∣∣
∫

|z|≤t1/α

|z|2

|z|d+β
dz ≤ c1t

−(d+2)/αt(2−β)/α ≤ c1t
−(d+β)/α.
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On the other hand, by (1.7)

II ≤ A(d,−β)

∫

|z|≥t1/α
(p0(t, x+ z) + p0(t, x))

dz

|z|d+β
≤ c2t

−d/α

∫

|z|≥t1/α

1

|z|d+β
dz ≤ c3t

−(d+β)/α.

(ii) Next, we consider the case |x|α ≥ t. In this case,

|∆β/2
x |p0(t, x) = A(d,−β)

∫

|z|≤|x|/2
|p0(t, x+ z)− p0(t, x)−

∂

∂x
p0(t, x) · z|

dz

|z|d+β

+A(d,−β)

∫

|z|≥|x|/2
|p0(t, x+ z)− p0(t, x)|

dz

|z|d+β

=: I + II.

Note that |x+ z| ≥ |x|/2 for |z| ≤ |x|/2. So by Lemma 2.1,

sup
|z|≤|x|/2

∣∣∣ ∂2

∂xi∂xj
p0(t, x+ z)

∣∣∣ ≤ C6 sup
|z|≤|x|/2

t|x+ z|−(d+2+α) ≤ 2(d+2+α)C6t|x|
−(d+2+α).

Hence, by Taylor’s formula

I ≤ A(d,−β) sup
|z|≤|x|/2

∣∣∣ ∂2

∂xi∂xj
p0(t, x+ z)

∣∣∣
∫

|z|≤|x|/2

|z|2

|z|d+β
dz

≤ c4t|x|
−(d+2+α)|x|2−β = c4t|x|

−(d+α+β).

(2.7)

Noting that |x|α ≥ t, thus I ≤ c4|x|
−(d+β). On the other hand, note that symmetric α-stable

process is a subordinate Brownian motion, so p0(t, x+z) ≤ p0(t, x) if |x+z| ≥ |x| and p0(t, x) ≤
p0(t, x+ z) if |x+ z| ≤ |x|. Hence, by (1.7) and the condition that |x|α ≥ t, we obtain

II ≤ A(d,−β)

∫

|z|≥|x|/2,|x+z|≥|x|
2p0(t, x)

dz

|z|d+β
+A(d,−β)

∫

|z|≥|x|/2,|x+z|≤|x|
2p0(t, x+ z)

dz

|z|d+β

≤ 2A(d,−β)p0(t, x)

∫

|z|≥|x|/2

dz

|z|d+β
+ 2d+1+βA(d,−β)|x|−(d+β)

∫

z∈Rd

p0(t, x+ z) dz

≤ c5t|x|
−(d+α)|x|−β + 2d+1+βA(d,−β)|x|−(d+β) ≤ c6|x|

−(d+β).
(2.8)

This establishes the lemma.

In order to get the upper bound estimates in (1.16) in terms of weight Mb,λ rather than
‖b‖∞, we define, for t > 0, λ > 0 and x, y ∈ Rd, the function

|∆
β/2
λ,x | p0(t, x, y)





= A(d,−β)
( ∫

|z|≤λ∧t1/α

∣∣p0(t, x+ z, y)− p0(t, x, y) −
∂
∂xp0(t, x, y) · z

∣∣ 1

|z|d+β
dz

+
∫
λ>|z|>(λ∧t1/α) |p0(t, x+ z, y) − p0(t, x, y)|

dz

|z|d+β

)
for |x− y|α ≤ t,

= A(d,−β)
( ∫

|z|≤λ∧|x−y|/2 |p0(t, x+ z, y)− p0(t, x, y)−
∂
∂xp0(t, x, y) · z|

1

|z|d+β
dz

+
∫
λ>|z|>(λ∧|x−y|/2) |p0(t, x+ z, y)− p0(t, x, y)|

dz

|z|d+β

)
for |x− y|α > t.

Observe that
|∆

β/2
λ,x | p0(t, x, y)| ≤ |∆β/2

x | p0(t, x, y).
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Set

f0,λ(t, x, y) =

{
t−(d+β)/α when |x− y| ≤ t1/α,

|x− y|−(d+β)
1{|x−y|≤λ} + |x− y|−(d+α)

1{|x−y|>λ} when |x− y| > t1/α.

Observe that when λ = ∞, f0,∞ is just the function f0 defined in (2.5).

Lemma 2.3. For each λ > 0 and T > 0, there exists a constant C8 = C8(d, α, β, λ, T ) > 0 such

that

|∆
β/2
λ,x | p0(t, x, y) ≤ C8f0,λ(t, x, y) on (0, T ] × R

d × R
d. (2.9)

Proof. (i) We first consider the case |x− y|α ≤ t. Note that

|∆
β/2
λ,x | p0(t, x, y) ≤ |∆β/2

x |p0(t, x, y).

Hence, by the first part (i) in the proof of Lemma 2.2, there exists a positive constant c1 so that

|∆
β/2
λ,x | p0(t, x, y) ≤ c1t

−(d+β)/α.

(ii) Next, we consider the case |x− y|α > t. In this case

|∆
β/2
λ,x | p0(t, x, y) ≤ A(d,−β)

∫

|z|≤|x−y|/2
|p0(t, x+ z, y)− p0(t, x, y) −

∂

∂x
p0(t, x, y) · z|

dz

|z|d+β

+A(d,−β)

∫

λ≥|z|≥(λ∧|x−y|/2)
|p0(t, x+ z, y)− p0(t, x, y)|

dz

|z|d+β

=: I + II.

By (2.7), there is a positive constant c2 so that

I ≤ c2t|x− y|−(d+α+β) ≤ c3

(
|x− y|−(d+β)

1{|x−y|≤2λ} + |x− y|−(d+α)
1{|x−y|>2λ}

)
.

Here the last inequality holds since t|x− y|−(d+α+β) ≤ T (2λ)−β |x− y|−(d+α) when |x− y| > 2λ
and t|x− y|−(d+α+β) ≤ |x− y|−(d+β) due to |x− y|α ≥ t.

It is clear that II = 0 if |x− y| > 2λ. On the other hand, if |x− y| ≤ 2λ, then there exists a
positive constant c4 so that II ≤ c4|x− y|−(d+β) by (2.8). Finally, noting that |x − y|−(d+β) ≍
|x− y|−(d+α) for λ < |x− y| ≤ 2λ. This establishes the lemma.

For each λ > 0 and a ≥ 0, we extend the definition of f0,λ(t, x, y) to define

fa,λ(t, x, y) :=





t−(d+β)/α when |x− y| ≤ t1/α,

|x− y|−(d+β)
1{|x−y|≤λ} +

(
|x− y|−(d+α) + a |x− y|−(d+β)

)
1{|x−y|>λ}

when |x− y| > t1/α.

(2.10)
Note that fa,∞(t, x, y) = f0(t, x, y).

Lemma 2.4. For each λ > 0, there is a constant C9 = C9(d, α, β, λ) > 0 such that for every

a ∈ [0, 1], ∫ t

0

∫

Rd

fa,λ(s, z, y)dzds ≤ C9 (t
1−β/α + t), t ∈ (0,∞), y ∈ R

d. (2.11)
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Proof. By the definition of fa,λ,

∫ t

0

∫

Rd

fa,λ(s, z, y) dz ds

≤

∫ t

0

∫

|y−z|≤s1/α
s−(d+β)/α dz ds+

∫ t

0

∫

λ≥|y−z|>s1/α

1

|y − z|d+β
dz ds

+

∫ t

0

∫

|y−z|≥λ
(|y − z|−(d+α) + |y − z|−(d+β)) dz ds

≤ c1

∫ t

0
(s−β/α + 1) ds ≤ c2(t

1−β/α + t).

For every a ≥ 0, define

ga(t, x, y) =

{
t−d/α when |x− y| ≤ t1/α,

t
|x−y|d+α + at

|x−y|d+β when |x− y| > t1/α.
(2.12)

Observe that ∫

Rd

ga(t, x, y)dy ≍ 1 + at1−β/α on (0,∞)× R
d. (2.13)

Recall that pa(t, x, y) is the heat kernel of the operator ∆α/2 + a∆β/2. Moreover, in view of
(1.10),

ga(t, x, y) ≍ pa(t, x, y) on (0, 1] × R
d × R

d. (2.14)

Lemma 2.5. For each λ > 0 and T > 0, there exists C10 = C10(d, α, β, λ, T ) > 0 such that for

every a ∈ [0, 1] and all t ∈ (0, T ], x, y ∈ Rd,

∫ t

0

∫

Rd

ga(t− s, x, z)fa,λ(s, z, y) dz ds ≤ C10ga(t, x, y).

Proof. Denote by I =
∫ t
0

∫
Rd ga(t− s, x, z)fa,λ(s, z, y) dz ds.

(i) Suppose that |x− y| ≤ t1/α. Then

I =

∫ t

0

∫

|x−z|≤2t1/α
ga(t− s, x, z)fa,λ(s, z, y) dz ds

+

∫ t

0

∫

|x−z|>2t1/α
ga(t− s, x, z)fa,λ(s, z, y) dz ds

=: I1 + I2.

We write I1 as

I1 =

∫ t/2

0

∫

|x−z|≤2t1/α
ga(t− s, x, z)fa,λ(s, z, y) dz ds

+

∫ t

t/2

∫

|x−z|≤2t1/α
ga(t− s, x, z)fa,λ(s, z, y) dz ds

= I11 + I12.
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If s ∈ (0, t/2), then t− s ∈ (t/2, t). In this case, ga(t− s, x, z) ≤ c1t
−d/α when |x− z| ≤ 2t1/α

by (2.12). Hence, by Lemma 2.4,

I11 ≤ c1t
−d/α

∫ t

0

∫

Rd

fa,λ(s, z, y) dz ds ≤ c2(T
1−β/α + T ) t−d/α.

When s ∈ [t/2, t], since |x− y| ≤ t1/α and |x − z| ≤ 2t1/α, |y − z| ≤ 3t1/α ≤ 3(2s)1/α. Thus
fa,λ(s, z, y) ≤ c3s

−(d+β)/α ≤ 2(d+β)/αc3t
−(d+β)/α. Hence,

I12 ≤ 2(d+β)/αc3t
−(d+β)/α

∫ t

0

∫

Rd

ga(t− s, x, z) dz ds ≤ c4T
1−β/α(1 + T 1−β/α) t−d/α.

Next we consider I2. Noting that |x− z| > 2t1/α, so we have by (2.12) and Lemma 2.4,

I2 ≤ c5

∫ t

0

∫

|x−z|>2t1/α

(
t− s

|x− z|d+α
+

t− s

|x− z|d+β

)
fa,λ(s, z, y) dz ds

≤ c6t
−d/α

(
1 + t1−β/α

)∫ t

0

∫

Rd

fa,λ(s, z, y) dz ds

≤ c7(1 + T 1−β/α)(T 1−β/α + T ) t−d/α.

We thus conclude from the above that there is a c8 = c8(d, α, β, λ, T ) > 0 such that I ≤ c8 t
−d/α

for every t ∈ (0, T ] whenever |x− y| ≤ t1/α.
(ii) Next assume that |x− y| > t1/α. Then

I =

∫ t

0

∫

|x−z|≤|x−y|/2
ga(t− s, x, z)fa,λ(s, z, y) dz ds

+

∫ t

0

∫

|x−z|>|x−y|/2
ga(t− s, x, z)fa,λ(s, z, y) dz ds

=: I1 + I2.

If |x− z| ≤ |x− y|/2, then |y− z| ≥ |x− y|/2 > t1/α/2. Hence, there is a constant c9 so that

fa,λ(s, z, y) ≤ c9

(
|x− y|−(d+α) + a|x− y|−(d+β)

)

for s ∈ (0, t). Therefore,

I1 ≤ c9(|x− y|−(d+α) + a|x− y|−(d+β)) ·

∫ t

0

∫

Rd

ga(t− s, x, z) dz ds

≤ c10(1 + T 1−β/α)

(
t

|x− y|d+α
+

at

|x− y|d+β

)
.

If |x− z| > |x− y|/2, then |x− z| > t1/α/2. Hence ga(t− s, x, z) ≤ c11

(
t

|x−y|d+α + at
|x−y|d+β

)

by (2.12). Thus by Lemma 2.4, we obtain

I2 ≤ c11

(
t

|x− y|d+α
+

at

|x− y|d+β

)∫ t

0

∫

Rd

fa,λ(s, z, y) dz ds

≤ c12(T
1−β/α + T )

(
t

|x− y|d+α
+

at

|x− y|d+β

)
.

This completes the proof of the Lemma.
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3 Fundamental solution

Throughout the rest of this paper, b(x, z) is a bounded function on Rd×Rd satisfying condition
(1.2). Recall the definition of the non-local operator Sb from (1.3). Let |qb|0(t, x, y) = p0(t, x, y),
and define for each n ≥ 1,

|qb|n(t, x, y) =

∫ t

0

∫

Rd

|qb|n−1(t− s, x, z)|Sb
zp0(s, z, y)| dzds.

For each λ > 0, define
bλ(x, z) = b(x, z)1{|z|>λ}(z).

In view of (1.7), there exists a constant C11 = C11(d, α, β) > 0 such that p0(t, x, y) ≤
C11ga(t, x, y) for all t > 0, a ∈ [0, 1] and x, y ∈ Rd, where ga is the function defined by (2.12).
On the other hand, note that

|Sbf(x)| =

∣∣∣∣A(d,−β)

∫

Rd

(
f(x+ z)− f(x)− 〈∇f(x), z〉1{|z|≤λ}

) b(x, z)
|z|d+β

dz

∣∣∣∣

≤

∣∣∣∣∣A(d,−β)

∫

|z|≤λ
(f(x+ z)− f(x)− 〈∇f(x), z〉)

b(x, z)

|z|d+β
dz

∣∣∣∣∣

+

∣∣∣∣A(d,−β)

∫

Rd

(f(x+ z)− f(x))
bλ(x, z)

|z|d+β
dz

∣∣∣∣

≤ ‖b‖∞ · |∆
β/2
λ,x |f(x) + ‖bλ‖∞ · |∆β/2

x |f(x)

Then by Lemma 2.2 and Lemma 2.3, for every A > 0, λ > 0 and T > 0 and every bounded
function b with ‖b‖∞ ≤ A,

|Sb
zp0(t, z, y)| ≤ ‖b‖∞ · |∆

β/2
λ,z |p0(t, z, y) + ‖bλ‖∞ · |∆β/2

z |p0(t, z, y)

≤ C8Af0,λ(t, z, y) + C7Mb,λ f0(t, z, y)

≤ (C7 + C8)AfMb,λ/A,λ(t, z, y), t ∈ (0, T ].

(3.1)

Here recall that Mb,λ = esssupx,z∈Rd,|z|>λ|b(x, z)|, fa,λ is the function defined in (2.10). The
above estimate is a refinement of Lemma 2.2. The latter corresponds to the case where λ = ∞.

Lemma 3.1. For each λ > 0, A > 0 and T > 0 and every bounded function b on Rd × Rd

satisfying condition (1.2) with ‖b‖∞ ≤ A,

|qb|n(t, x, y) ≤ C11 (A(C7 + C8)C10)
n gMb,λ/A(t, x, y) < ∞, t ∈ (0, T ], x, y ∈ R

d. (3.2)

Proof. We prove this lemma by induction. Since p0(t, x, y) ≤ C11gMb,λ/A(t, x, y) and Mb,λ/A ≤
1, in view of Lemma 2.5 and (3.1), (3.2) clearly holds for n = 1. Suppose that (3.2) holds for
n = j ≥ 1. Then by Lemma 2.5 and (3.1),

|qb|j+1(t, x, y)

≤ C11 (A(C7 + C8)C10)
j
∫ t

0

∫

Rd

gMb,λ/A(t− s, x, z)|Sb
zp0(s, z, y)| dz ds

≤ C11 (A(C7 + C8)C10)
j (C7 +C8)A

∫ t

0

∫

Rd

gMb,λ/A(t− s, x, z)fMb,λ/A,λ(s, z, y) dz ds

≤ C11 (A(C7 + C8)C10)
j+1 gMb,λ/A(t, x, y)
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for t ∈ (0, T ] and x, y ∈ Rd. This proves that (3.2) holds for n = j + 1 and thus for every
n ≥ 1.

Now we define qbn : (0,∞) × Rd × Rd → R as follows. For t > 0 and x, y ∈ Rd, let
qb0(t, x, y) = p0(t, x, y), and for each n ≥ 1, define

qbn(t, x, y) =

∫ t

0

∫

Rd

qbn−1(t− s, x, z)Sb
zp0(s, z, y) dz ds. (3.3)

Clearly by Lemma 3.1, each qbn(t, x, y) is well defined.

Lemma 3.2. For every n ≥ 0, qbn(t, x, y) is jointly continuous on (0,∞)× Rd ×Rd.

Proof. We prove it by induction. Clearly qb0(t, x, y) is continuous on (0,∞)×Rd×Rd. Suppose
that qbn(t, x, y) is continuous on (0,∞) × Rd × Rd. For every M ≥ 2 , it follows from (3.1) ,
Lemma 3.1 and the dominated convergence theorem that for ε < 1/(2M),

(t, x, y) 7→

∫ t−ε

ε

∫

Rd

qbn(t− s, x, z)Sb
zp0(s, z, y)dzds

is jointly continuous on [1/M,M ]×Rd×Rd. On the other hand, it follows from (3.1) and (2.13)
that

sup
t∈[1/M,M ]

sup
x,y

∫ t

t−ε

∫

Rd

gMb,λ
(t− s, x, z)|Sb

zp0(s, z, y)| dz ds

≤ c1A

(
sup

t∈[1/M,M ]
[(t− ε)−(d+β)/α + (t− ε)−(d+α)/α]

)
sup
x∈Rd

∫ t

t−ε

∫

Rd

gMb,λ
(t− s, x, z) dz ds

≤ c2A(2M)(d+α)/α

∫ ε

0
(1 + r1−β/α)dr

≤ c3A(2M)(d+α)/αε,

which goes to zero as ε → 0; while by (3.1) and (2.11),

sup
t∈[1/M,M ]

sup
x,y

∫ ε

0

∫

Rd

gMb,λ
(t− s, x, z)|Sb

zp0(s, z, y)| dz ds

≤ c4

(
sup

t∈[1/M,M ]
(t− ε)−d/α

)
sup
y∈Rd

∫ ε

0

∫

Rd

|Sb
zp0(s, z, y)| dz ds

≤ c5(2M)d/α ‖b‖∞ ε1−β/α → 0 (3.4)

as ε → 0. We conclude from Lemma 3.1 and the above argument that

qbn+1(t, x, y) =

∫ t

0

∫

Rd

qbn(t− s, x, z)Sb
zp0(s, z, y) dz ds

is jointly continuous in (t, x, y) ∈ [1/M,M ] × Rd × Rd and so in (t, x, y) ∈ (0,∞) × Rd × Rd.
This completes the proof of the lemma.

Recall f0(t, x, y) is the function defined in (2.5) and

|∆β/2
x |p0(t, x, y) ≤ C7f0(t, x, y) on (0,∞)× R

d × R
d.
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Lemma 3.3. There is a constant C12 = C12(d, α, β) > 0 so that for every A > 0 and every

bounded function b on Rd × Rd with ‖b‖∞ ≤ A and for every integer n ≥ 0 and ε > 0,

∣∣∣∣∣

∫

{z∈Rd:|z|>ε}

(
qbn(t, x+ z, y)− qbn(t, x, y)

) A(d,−β)b(x, z)

|z|d+β
dz

∣∣∣∣∣ ≤ (C12A)
n+1f0(t, x, y) (3.5)

for (t, x, z) ∈ (0, 1]×Rd ×Rd, and Sb
xq

b
n(t, x, y) exists pointwise for (t, x, z) ∈ (0, 1]×Rd ×Rd in

the sense of (1.5) with

Sb
xq

b
n+1(t, x, y) =

∫ t

0

∫

Rd

Sb
xq

b
n(t− s, x, z)Sb

zp0(s, z, y)dzds (3.6)

and

|Sb
xq

b
n(t, x, y)| ≤ (C12A)

n+1f0(t, x, y) on (0, 1] × R
d × R

d. (3.7)

Moreover,

qbn+1(t, x, y) =

∫ t

0

∫

Rd

p0(t− s, x, z)Sb
zq

b
n(s, z, y)dzds for (t, x, y) ∈ (0, 1] × R

d × R
d. (3.8)

Proof. Let q(t, x, y) denote the transition density function of the symmetric β-stable process
on Rd. Then by (1.7) but with β in place of α, we have

q(t, x, y) ≍ t−d/β

(
1 ∧

t1/β

|x− y|

)d+β

on (0,∞) × R
d × R

d. (3.9)

Observe that (2.5) and (3.9) yield

f0(t, x, y) ≍ t−β/αq(tβ/α, x, y) on (0,∞) × R
d × R

d. (3.10)

Hence on (0,∞) × Rd × Rd,

∫ t

0

∫

Rd

f0(t− s, x, z)f0(s, z, y)dsdz

≍

∫ t

0
(t− s)−β/αs−β/α

(∫

Rd

q((t− s)β/α, x, z)q(sβ/α, z, y)dz

)
ds

=

∫ t

0
(t− s)−β/αs−β/αq((t− s)β/α + sβ/α, x, y)ds

≍ q(tβ/α, x, y)

∫ t

0
(t− s)−β/αs−β/αds

= q(tβ/α, x, y) t1−(2β/α)

∫ 1

0
(1− u)−β/αu−β/αdu

≍ t1−β/αf0(t, x, y).

In the second ≍ above, we used the fact that

(t/2)β/α ≤ (t− s)β/α + sβ/α ≤ 2tβ/α for every s ∈ (0, t)
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and the estimate (3.9), while in the last equality, we used a change of variable s = tu. So there
is a constant c1 = c1(d, α, β) > 0 so that

∫ t

0

∫

Rd

f0(t− s, x, z)f0(s, z, y)dsdz ≤ c1 f0(t, x, y) for every t ∈ (0, 1] and x, y ∈ R
d. (3.11)

By increasing the value of c1 if necessary, we may and do assume that c1 is larger than 1.
We now proceed by induction. Let C12 := c1C7. Note that

|Sb
xp0(t, x, y)| ≤ A|∆β/2

x |p0(t, x, y) ≤ C7Af0(t, x, y). (3.12)

When n = 0, (3.8) holds by definition. By Lemma 2.2, (3.5) and (3.7) hold for n = 0. Suppose
that (3.5) and (3.7) hold for n = j. Then for every ε > 0, by the definition of qbj+1, Lemma 3.1,
(3.11) and Fubini’s theorem,

∫

{w∈Rd:|ω|>ε}

(
qbj+1(t, x+ w, y)− qbj+1(t, x, y)

) A(d,−β)b(x,w)

|w|d+β
dw (3.13)

=

∫ t

0

∫

Rd

(∫

{w∈Rd:|w|>ε}

(
qbj(t− s, x+ w, z) − qbj(t− s, x, z)

) A(d,−β)b(x,w)

|w|d+β
dw

)

×Sb
zp0(s, z, y) dzds

and so
∣∣∣∣∣

∫

{w∈Rd:|w|>ε}

(
qbj+1(t, x+ w, y)− qbj+1(t, x, y)

) A(d,−β)b(x,w)

|w|d+β
dw

∣∣∣∣∣

≤

∫ t

0

∫

Rd

(C12A)
j+1f0(t− s, x, z) |Sb

zp0(s, z, y)|dzds

≤

∫ t

0

∫

Rd

(C12A)
j+1f0(t− s, x, z)C7Af0(s, z, y)dzds

≤ (C12A)
j+2f0(t, x, y).

By (3.13) and Lebesgue dominated convergence theorem, we conclude that

Sb
xq

b
j+1(t, x, y)

:= lim
ε→0

∫

{w∈Rd:|w|>ε}

(
qbj+1(t, x+ w, y) − qbj+1(t, x, y)

) A(d,−β)b(x,w)

|w|d+β
dw

=

∫ t

0

∫

Rd

(
lim
ε→0

∫

{w∈Rd:|w|>ε}

(
qbj(t− s, x+ w, z)− qbj(t− s, x, z)

) A(d,−β)b(x,w)

|w|d+β
dw

)

×Sb
zp0(s, z, y) dzds

=

∫ t

0

∫

Rd

Sb
xq

b
j(t− s, x, z)Sb

zp0(s, z, y) dzds

exists and (3.6) as well as (3.7) holds for n = j +1. (The same proof verifies (3.6) when n = 0.)
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On the other hand, in view of (3.7) and (3.8) for n = j, we have by the Fubini theorem,

qbj+1(t, x, y)

=

∫ t

0

∫

Rd

qbj(s, x, z)S
b
zp0(t− s, z, y)dzds

=

∫ t

0

∫

Rd

(∫ s

0

∫

Rd

p0(r, x,w)S
b
wq

b
j−1(s − r, w, z)drdw

)
Sb
zp0(t− s, z, y)dzds

=

∫ t

0

∫

Rd

p0(r, x,w)

(∫ t

r

∫

Rd

Sb
wq

b
j−1(s − r, w, z)Sb

zp0(t− s, z, y)dsdz

)
dwdr

=

∫ t

0

∫

Rd

p0(r, x,w)S
b
wq

b
j(t− r, w, y)dwdr.

This verifies that (3.8) also holds for n = j+1. The lemma is now established by induction.

Recall that Mb,λ = esssupx,z∈Rd,|z|>λ|b(x, z)| = ‖bλ(x, z)‖∞.

Lemma 3.4. For each λ > 0, there are positive constants A0 = A0(d, α, β, λ) and C13 =
C13(d, α, β, λ) so that if ‖b‖∞ ≤ A0, then for every integer n ≥ 0,

|qbn+1(t, x, y)| ≤ C132
−n pMb,λ

(t, x, y) for t ∈ (0, 1] and x, y ∈ R
d, (3.14)

(3.5) holds and so Sb
xq

b
n(t, x, y) exists pointwise in the sense of (1.5) with

|Sb
xq

b
n(t, x, y)| ≤ 2−n f0(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d, (3.15)

and
∞∑

n=0

qbn(t, x, y) ≥
1

2
p0(t, x, y) for t ∈ (0, 1] and |x− y| ≤ 3t1/α. (3.16)

Proof. We take a positive constant A0 so that A0 ≤ 1∧ [2(C7 +C8)C10 +2C12]
−1. We have by

Lemma 3.1 and Lemma 3.3 that for every b with ‖b‖∞ ≤ A0,

|qbn+1(t, x, y)| ≤ C112
−ngMb,λ/A0

(t, x, y) ≤ C11A
−1
0 2−ngMb,λ

(t, x, y) and |Sb
xq

b
n(t, x, y)| ≤ 2−nf0(t, x, y)

for every t ∈ (0, 1] and x, y ∈ Rd. This together with (2.14) establishes (3.14) and (3.15).
On the other hand, by (2.12), there exists c = c(d, α, β) ≥ 1 so that ga(t, x, y) ≤ cp0(t, x, y)

for a ∈ [0, 1] and |x− y| ≤ 3t1/α and t ∈ (0, 1]. Take A0 small enough so that A0 ≤ 1 ∧ [2(C7 +
C8)C10 + 2C12]

−1 and
∑∞

n=1(A0(C7 + C8)C10)
n ≤ 1

2cC11
. Then for every b with ‖b‖∞ ≤ A0, we

have by Lemma 3.1 for |x− y| ≤ 3t1/α and t ∈ (0, 1] that

∞∑

n=1

|qb|n(t, x, y) ≤ cC11

∞∑

n=1

(A0(C7 + C8)C10)
np0(t, x, y) ≤

1

2
p0(t, x, y).

Consequently, for |x− y| ≤ 3t1/α and t ∈ (0, 1],

∞∑

n=0

qbn(t, x, y) ≥ p0(t, x, y)−

∞∑

n=1

|qbn(t, x, y)| ≥
1

2
p0(t, x, y).
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We now extend the results in Lemma 3.4 to any bounded b that satisfies condition (1.2). For
λ > 0, define

b(λ)(x, z) = λβ/α−1b(λ−1/αx, λ−1/αz). (3.17)

For a function f on Rd, set
f (λ)(x) := f(λ−1/αx).

By a change of variable, one has from (1.1) and (1.3) that

∆α/2f (λ)(x) = λ−1(∆α/2f)(λ−1/αx)

and
Sb(λ)f (λ)(x) = λ−1(Sbf)(λ−1/αx). (3.18)

We remark here that condition (1.2) used in establishing (3.18). Note that the transition density
function p0(t, x, y) of the symmetric α-stable process has the following scaling property:

p0(t, x, y) = λ−d/αp0(λ
−1t, λ−1/αx, λ−1/αy) (3.19)

Recall qbn(t, x, y) is the function defined inductively by (3.3) with qb0(t, x, y) := p0(t, x, y).

Lemma 3.5. Suppose that b is a bounded function on Rd×Rd satisfying (1.2). For every λ > 0
and for every integer n ≥ 0,

qb
(λ)

n (t, x, y) = λ−d/α qbn(λ
−1t, λ−1/αx, λ−1/αy), x, y ∈ R

d; (3.20)

or, equivalently,

qbn(t, x, y) = λd/α qb
(λ)

n (λt, λ1/αx, λ1/αy), x, y ∈ R
d. (3.21)

Proof. We prove it by induction. Clearly in view of (3.19), (3.20) holds when n = 0. Suppose
that (3.20) holds for n = j ≥ 0. Then by the definition (3.3), (3.18) and (3.19),

qb
(λ)

j+1(t, x, y) =

∫ t

0

∫

Rd

qb
(λ)

j (t− s, x, z)Sb(λ)
z p0(s, z, y) dzds

=

∫ t

0

∫

Rd

λ−d/αqbj(λ
−1(t− s), λ−1/αx, λ−1/αz)λ−d/α−1

(
Sb
zp0(λ

−1s, ·, λ−1/αy)
)
(λ−1/αz) dzds

= λ−d/α

∫ λ−1t

0

∫

Rd

qbj(λ
−1t− r, λ−1/αx,w)

(
Sb
wp0(r, ·, λ

−1/αy)
)
(w) dwdr

= λ−d/αqbj+1(λ
−1t, λ−1/αx, λ−1/αy).

This proves that (3.20) holds for n = j + 1 and so, by induction, it holds for every n ≥ 0.

Recall that A0 is the positive constant in Lemma 3.4.

Theorem 3.6. For every λ > 0 and A > 0, there is a positive constant C14 = C14(d, α, β,A, λ) >
0 so that for every bounded function b with ‖b‖∞ ≤ A, that satisfies condition (1.2) and n ≥ 0,

|qbn(t, x, y)| ≤ C142
−n

(
t−d/α ∧

(
t

|x− y|d+α
+

Mb,λ t

|x− y|d+β

))
(3.22)
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for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd, and

∞∑

n=0

qbn(t, x, y) ≥
1

2
p0(t, x, y) for 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and |x− y| ≤ 3t1/α. (3.23)

Moreover, for every n ≥ 0, (3.5) holds and so Sb
xq

b
n(t, x, y) exists pointwise in the sense of (1.5)

with

|Sb
xq

b
n(t, x, y)| ≤ 2−nf0(t, x, y) (3.24)

for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd. Moreover, (3.6) and (3.8) hold.

Proof. In view of Lemma 3.4, it suffices to prove the theorem for A0 < ‖b‖∞ ≤ A. Set
r = (‖b‖∞/A0)

α/(α−β). The function b(r) defined by (3.17) has the property ‖b(r)‖∞ = A0. Thus
by Lemma 3.4, there is a constant C14 = C14(d, α, β,A, λ) := C13(d, α, β, r

1/αλ) > 0 so that for
every integer n ≥ 0,

|qb
(r)

n (t, x, y)| ≤ C14 2
−n pM

b(r),r1/αλ
(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d, (3.25)

(3.5) holds and so Sb
xq

b(r)
n (t, x, y) exists pointwise in the sense of (1.5) with

|Sb
xq

b(r)
n (t, x, y)| ≤ 2−n f0(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d, (3.26)

and
∞∑

n=0

qb
(r)

n (t, x, y) ≥
1

2
p0(t, x, y) for t ∈ (0, 1] and |x− y| ≤ 3t1/α. (3.27)

Noting r1−β/αMb(r),r1/αλ = Mb,λ, we have by (3.21), (3.25) and (2.3) that for every 0 < t ≤

1/r = (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd,

|qbn(t, x, y)| = rd/α |qb
(r)

n (rt, r1/αx, r1/αy)|

≤ C142
−nrd/α pM

b(r),r1/αλ
(rt, r1/αx, r1/αy)

≤ 2C C14 2
−n

(
t−d/α ∧

(
t

|x− y|d+α
+

r1−β/αMb(r),r1/αλ t

|x− y|d+β

))

≤ 2C C14 2
−n

(
t−d/α ∧

(
t

|x− y|d+α
+

Mb,λ t

|x− y|d+β

))
,

which establishes (3.22). Similarly, (3.23) follows from (3.19), and (3.27), while the conclusion
of (3.24) is a direct consequence of (3.18), (3.21) and (3.26). That (3.6) and (3.8) hold follows
directly from Lemma 3.3 and Lemma 3.5.

Recall that qb(t, x, y) :=
∑∞

n=0 q
b
n(t, x, y), whenever it is convergent. The following theorem

follows immediately from Lemmas 3.2, 3.4 and Theorem3.6.

Theorem 3.7. For every λ > 0 and A > 0, let C14 = C14(d, α, β,A, λ) be the constant in

Theorem 3.6. Then for every bounded function b with ‖b‖∞ ≤ A that satisfies condition (1.2),
qb(t, x, y) is well defined and is jointly continuous in (0, 1∧ (A0/‖b‖∞)α/(α−β)]×Rd×Rd. More-

over,

|qb(t, x, y)| ≤ 2C14

(
t−d/α ∧

(
t

|x− y|d+α
+

Mb,λ t

|x− y|d+β

))
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and Sb
xq

b(t, x, y) exists pointwise in the sense of (1.5) with

|Sb
xq

b(t, x, y)| ≤ 2f0(t, x, y)

for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd, and

qb(t, x, y) ≥
1

2
p0(t, x, y) for 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and |x− y| ≤ 3t1/α. (3.28)

Moreover, for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd,

qb(t, x, y) = p0(t, x, y) +

∫ t

0

∫

Rd

qb(t− s, x, z)Sb
zp0(s, z, y)dzds (3.29)

= p0(t, x, y) +

∫ t

0

∫

Rd

p0(t− s, x, z)Sb
zq

b(s, z, y)dzds. (3.30)

Theorem 3.8. Suppose that b is a bounded function on Rd ×Rd satisfying (1.2). Let A0 be the

constant in Lemma 3.4. Then for every t, s > 0 with t+s ≤ 1∧(A0/‖b‖∞)α/(α−β) and x, y ∈ Rd,
∫

Rd

qb(t, x, z)qb(s, z, y)dz = qb(t+ s, x, y). (3.31)

Proof. In view of Theorem 3.6, we have

∫

Rd

qb(t, x, z)qb(s, z, y)dz =

∞∑

j=0

j∑

n=0

∫

Rd

qbn(t, x, z)q
b
j−n(s, z, y)dz.

So it suffices to show that for every j ≥ 0,

j∑

n=0

∫

Rd

qbn(t, x, z)q
b
j−n(s, z, y)dz = qbj(t+ s, x, y) (3.32)

Clearly, (3.32) holds for j = 0. Suppose that (3.32) holds for j = l ≥ 1. Then we have by
Fubini’s theorem and the estimates in (3.1) and Theorem 3.6,

l+1∑

n=0

∫

Rd

qbn(t, x, z)q
b
l+1−n(s, z, y)dz

=

∫

Rd

qbl+1(t, x, z)p0(s, z, y)dz +

l∑

n=0

∫

Rd

qbn(t, x, z)q
b
l+1−n(s, z, y)dz

=

∫

Rd

(∫ t

0

∫

Rd

qbl (t− r, x,w)Sb
wp0(r, w, z)dwdr

)
p0(s, z, y)dz

+

l∑

n=0

∫

Rd

qbn(t, x, z)

(∫ s

0

∫

Rd

qbl−n(s− r, z, w)Sb
wp0(r, w, y)dwdr

)
dz

=

∫ t

0

∫

Rd

qbl (t− r, x,w)Sb
wp0(r + s,w, y)dwdr

+

∫ s

0

∫

Rd

qbl (t+ s− r, x,w)Sb
wp0(r, w, y)dwdr

= qbl+1(t+ s, x, y).
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This proves that (3.32) holds for j = l + 1. So by induction, we conclude that (3.32) holds for
every j ≥ 0.

For notational simplicity, denote 1 ∧ (A0/‖b‖∞)α/(α−β) by δ0. In view of Theorem 3.8, we
can uniquely extend the definition of qb(t, x, y) to t > δ0 by using the Chapman-Kolmogorov
equation recursively as follows.

Suppose that qb(t, x, y) has been defined and satisfies the Chapman-Kolmogorov equation
(3.31) on (0, kδ0]×Rd × Rd. Then for t ∈ (kδ0, (k + 1)δ0], define

qb(t, x, y) =

∫

Rd

qb(s, x, z)qb(r, z, y) dz, x, y ∈ R
d (3.33)

for any s, r ∈ (0, kδ0] so that s + r = t. Such qb(t, x, y) is well defined on (0,∞) × Rd × Rd

and satisfies (3.31) for every s, t > 0. Moreover, since Chapman-Kolmogorov equation holds for
qb(t, x, y) for all t, s > 0, we have by Theorem 3.7 and (2.3)-(2.4) that for every A ≥ A0, there
are constants ci = ci(d, α, β,A), i = 1, 2, so that for every b(x, z) satisfying (1.2) with ‖b‖∞ ≤ A,

|qb(t, x, y)| ≤ c1 e
c2t pMb,λ

(t, x, y) for every t > 0 and x, y ∈ R
d. (3.34)

Theorem 3.9. qb(t, x, y) satisfies (3.29) and (3.30) for every t > 0 and x, y ∈ Rd.

Proof. Let δ0 := 1 ∧ (A0/‖b‖∞)α/(α−β). It suffices to prove that for every n ≥ 1, (3.29) and
(3.30) hold for all t ∈ (0, nδ0] and x, y ∈ Rd.

Clearly, (3.29) holds for t ∈ (0, nδ0] with n = 1. Suppose that (3.29) holds for t ∈ (0, nδ0]
with n = k. For t ∈ (kδ0, (k+1)δ0], take l, s ∈ (0, kδ0] so that l+s = t. Then we have by Fubini’s
theorem, Chapman-Kolmogorov equation of qb, Lemma 2.5, (3.1) and (3.34),

qb(l + s, x, y) =

∫

Rd

qb(l, x, z)qb(s, z, y) dz

=

∫

Rd

qb(l, x, z)

(
p0(s, z, y) +

∫ s

0

∫

Rd

qb(s− r, z, ω)Sb
ωp0(r, ω, y) dω dr

)
dz

=

∫

Rd

p0(l, x, z)p0(s, z, y) dz

+

∫

Rd

(∫ l

0

∫

Rd

qb(l − u, x, η)Sb
ωp0(u, η, z) dη du

)
p0(s, z, y) dz

+

∫ s

0

∫

Rd

qb(l + s− r, x, ω)Sb
ωp0(r, ω, y) dω dr

= p0(l + s, x, y) +

∫ l

0

∫

Rd

qb(l − u, x, η)Sb
ωp0(u+ s, η, y) dη du

+

∫ s

0

∫

Rd

qb(l + s− r, x, ω)Sb
ωp0(r, ω, y) dω dr

= p0(l + s, x, y) +

∫ l+s

0

∫

Rd

qb(l + s− r, x, z)Sb
zp0(r, z, y) dz dr.

By the similar procedure as above, we can also prove that (3.30) holds for every t > 0 and
x, y ∈ Rd.
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Theorem 3.10. Suppose that b is a bounded function on Rd ×Rd satisfying (1.2). qb(t, x, y) is
the unique continuous kernel that satisfies the Chapman-Kolmogorov equation (3.31) on (0,∞)×
Rd × Rd and that for some ε > 0,

|qb(t, x, y)| ≤ c p1(t, x, y) (3.35)

and (3.29) hold for (t, x, y) ∈ (0, ε] × Rd × Rd. Moreover, (3.34) holds for qb(t, x, y).

Proof. Suppose that q is any continuous kernel that satisfies, for some ε > 0, (3.29) and (3.35)
hold for (t, x, y) ∈ (0, ε] × Rd × Rd. Without loss of generality, we may and do assume that
ε < 1 ∧ (A0/‖b‖∞)α/(α−β). Using (3.29) recursively, one gets

q(t, x, y) =

n∑

j=1

qbj(t, x, y) +

∫ t

0

∫

Rd

q(t− s, x, z)(Sbp0)
∗,n
z (s, z, y)dsdz. (3.36)

Here (Sbp0)
∗,n
z (s, z, y) denotes the nth convolution operation of the function Sb

zp0(s, z, y); that
is, (Sbp0)

∗,1
z (s, z, y) = Sb

zp0(s, z, y) and

(Sbp0)
∗,n
z (s, z, y) =

∫ s

0

∫

Rd

Sb
zp0(r, z, w) (S

bp0)
∗,n−1
w (s− r, w, y)dwdr for n ≥ 2. (3.37)

It follows from Lemma 2.2, (3.12) and (3.11) that for every A > 0 so that ‖b‖∞ ≤ A,

|(Sbp0)
∗,n
z (s, z, y)| ≤ (C12A)

nf0(t, x, y),

where C12 is the constant in Lemma 3.3. Noting that the constant A0 defined in Lemma 3.4
satisfies that A0 ≤ 1/2C12. So for every bounded function b with ‖b‖∞ ≤ A0, we have

|(Sbp0)
∗,n
z (s, z, y)| ≤ 2−nf0(s, z, y), s ∈ (0, 1). (3.38)

Then by the scale change formulas (3.18) and (3.19), when ‖b‖∞ > A0,

|(Sbp0)
∗,n
z (s, z, y)| ≤ 2−nf0(s, z, y), s ∈ (0, (A0/‖b‖∞)α/(α−β)).

By the condition (3.35), there is a constant c1 > 0 so that for every n ≥ 1,
∣∣∣∣
∫ t

0

∫

Rd

q(t− s, x, z)(Sbp0)
∗,n
z (s, z, y)dsdz

∣∣∣∣ ≤ c12
−n

∫ t

0

∫

Rd

p1(t− s, x, z)f0(s, z, y)dsdz.

Noting that p1(t, x, y) ≍ g1(t, x, y) on (0, 1] × Rd × Rd and
∫ t

0

∫

Rd

f0(s, z, y) dz ds ≤

∫ t

0

∫

|y−z|≤s1/α
s−(d+β)/α dz ds+

∫ t

0

∫

|y−z|>s1/α

1

|y − z|d+β
dz ds

= c2t
1−β/α. (3.39)

Then by the similar proof in Lemma 2.5, we can get
∫ t

0

∫

Rd

p1(t− s, x, z)f0(s, z, y)dsdz ≤ c3p1(t, x, y).

It follows that

q(t, x, y) =

∞∑

n=0

qbn(t, x, y) = qb(t, x, y)

for every t ∈ (0, ε] and x, y ∈ Rd. Since both q and qb satisfy the Chapman-Kolmogorov equation
(3.31), q = qb on (0,∞)× Rd ×Rd.
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Remark 3.11. It follows from the definition of qbn(t, x, y) and Lemma 3.3 that (Sbp0)
∗,n+1(s, z, y) =

Sb
zq

b
n(s, z, y).

In view of Lemma 3.5 and Chapman-Kolmogorov equation, we have

Theorem 3.12. Suppose that b is a bounded function on Rd×Rd satisfying (1.2). qb(t, x, y) =

λd/αqb
(λ)

(λt, λ1/αx, λ1/αy) on (0,∞) × Rd × Rd, where b(λ)(x, z) := λβ/α−1b(λ−1/αx, λ−1/αz).

For a bounded function f on Rd, t > 0 and x ∈ Rd, we define

T b
t f(x) =

∫

Rd

qb(t, x, y)f(y) dy and Ptf(x) =

∫

Rd

p0(t, x, y)f(y)dy.

The following lemma follows immediately from (3.31) and (3.33).

Lemma 3.13. Suppose that b is a bounded function on Rd×Rd satisfying (1.2). For all s, t > 0,
we have T b

t+s = T b
t T

b
s .

Theorem 3.14. Let b be a bounded function on Rd × Rd satisfying (1.2). Then for every

f ∈ C2
b (R

d),

T b
t f(x)− f(x) =

∫ t

0
T b
sL

bf(x)ds for every t > 0, x ∈ R
d.

Proof. Note that by Theorem 3.9, for f ∈ C2
b (R

d),

T b
t f(x) = Ptf(x) +

∫ t

0
T b
t−sS

bPsf(x)ds = Ptf(x) +

∫ t

0
T b
sS

bPt−sf(x)ds. (3.40)

Hence

T b
t f(x)− f(x)

= Ptf(x)− f(x) +

∫ t

0
T b
sS

bf(x)ds+

∫ t

0
T b
sS

b(Pt−sf − f)(x)ds

=

∫ t

0
Ps∆

α/2f(x)ds+

∫ t

0
T b
sS

bf(x)ds+

∫ t

0
T b
sS

b(Pt−sf − f)(x)ds

=

∫ t

0
T b
s∆

α/2f(x)ds−

∫ t

0

(∫ s

0
T b
rS

bPs−r(∆
α/2f)(x)dr

)
ds

+

∫ t

0
T b
sS

bf(x)ds +

∫ t

0
T b
sS

b(Pt−sf − f)(x)ds

=

∫ t

0
T b
s

(
∆α/2 + Sb

)
f(x)ds−

∫ t

0

(∫ t

r
T b
rS

bPs−r(∆
α/2f)(x)ds

)
dr

+

∫ t

0
T b
sS

b(Pt−sf − f)(x)ds

=

∫ t

0
T b
sL

bf(x)ds −

∫ t

0
T b
rS

b(Pt−rf − f)(x)dr +

∫ t

0
T b
sS

b(Pt−sf − f)(x)ds

=

∫ t

0
T b
sL

bf(x)ds.
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Here in the third inequality, we used (3.40); while in the fifth inequality we used Lemma 2.2 and
(3.34), which allow the interchange of the integral sign

∫ t
r with T b

rS
b, and the fact that

∫ t

r
Ps−r(∆

α/2f)(x)ds =

∫ t

r

(
d

ds
Ps−rf(x)

)
ds = Pt−rf(x)− f(x).

Theorem 3.15. Let b be a bounded function on Rd × Rd satisfying (1.2). Then qb(t, x, y) is

jointly continuous in (0,∞)× Rd ×Rd and
∫
Rd q

b(t, x, y) dy = 1 for every x ∈ Rd and t > 0.

Proof. By Lemma 3.13, we have

qb(t+ s, x, y) =

∫

Rd

qb(t, x, z)qb(s, z, y) dz, x, y ∈ R
d, s, t > 0. (3.41)

Continuity of qb(t, x, y) in (t, x, y) ∈ (0,∞)×Rd ×Rd follows from Theorem 3.7, (3.41) and the
dominated convergence theorem. For n ≥ 1 and t ∈ (0, T ], it follows from (3.1), Lemma 2.5,
Theorem 3.6 and Fubini’s Theorem that for every t ∈ (0, 1 ∧ (A0/‖b‖∞)α/(α−β)],

∫

Rd

qbn(t, x, y) dy =

∫

Rd

∫

Rd

∫ t

0
qbn−1(t− s, x, z)Sb

zp0(s, z, y) ds dz dy

=

∫

Rd

∫ t

0
qbn−1(t− s, x, z)Sb

z

(∫

Rd

p0(s, z, y) dy

)
ds dz = 0.

Hence we have by Lemma 3.4,

∫

Rd

qb(t, x, y) dy =

∫

Rd

p0(t, x, y) dy = 1

for t ∈ (0, 1 ∧ (A0/‖b‖∞)α/(α−β)]. This conservativeness property extends to all t > 0 by
(3.41).

Theorem 1.1 now follows from (2.3)-(2.4), Theorems 3.7, 3.9, 3.10, 3.14 and 3.15.

4 C∞-Semigroups and Positivity

Recall that A0 is the positive constant in Lemma 3.4.

Lemma 4.1. Suppose that b is a bounded function on Rd ×Rd satisfying condition (1.2). Then

{T b
t , t > 0} is a strongly continuous semigroup in C∞(Rd).

Proof. The following proof is a minor modification of that for [9, Proposition 2.3]. For reader’s
convenience, we spell out the details. Since qb(t, x, y) is continuous by Theorem 3.15, it follows
that T b

t maps bounded continuous functions to continuous function for every t > 0. Moreover,
by (3.34) and the semigroup of qb(t, x, y), there are constants c1 and c2 so that

|qb(t, x, y)| ≤ c1e
c2tpMb,λ

(t, x, y) for every t > 0 and x, y ∈ R
d. (4.1)
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Thus, for every f ∈ C∞(Rd) and t > 0,

lim
x→∞

|T b
t f(x)| ≤ lim

x→∞
c1e

c2t

∫

Rd

pMb,λ
(t, x, y)|f(y)| dy = 0

and so T b
t f ∈ C∞(Rd). On the other hand, given f ∈ C∞(Rd), for every ε > 0, there is δ > 0 so

that |f(x)− f(y)| ≤ ε whenever |x− y| ≤ δ. Since

lim
t0→0

sup
t≤t0

sup
x∈Rd

∫

|y−x|≥δ
|qb(t, x, y)| dy ≤ lim

t0→0
cec2t0 sup

t≤t0

sup
x∈Rd

∫

|y−x|≥δ
pMb,λ

(t, x, y) dy = 0,

we have

lim
t→0

sup
x∈Rd

|T b
t f(x)− f(x)|

= lim
t→0

sup
x∈Rd

∣∣∣∣
∫

Rd

qb(t, x, y)(f(y)− f(x)) dy

∣∣∣∣

≤ lim
t→0

sup
x∈Rd

∫

|y−x|<δ
|qb(t, x, y)| |f(y) − f(x)| dy + 2‖f‖∞ lim

t→0
sup
x∈Rd

∫

|y−x|≥δ
|qb(t, x, y)| dy

≤ ε lim
t→0

sup
x∈Rd

∫

Rd

c1e
c2tp1(t, x, y)dy = c1ε.

Thus limt→0 supx∈Rd |T b
t f(x)−f(x)| = 0. This proves that T b

t is a strongly continuous semigroup
in C∞(Rd).

Lemma 4.2. Let b be a bounded function on Rd ×Rd satisfying (1.18). For each f ∈ C2
∞(Rd),

Lbf(x) exists pointwise and is in C∞(Rd).

Proof. Suppose that γ ∈ (0, 2) and f ∈ C2
∞(Rd). Denote

∑d
i,j=1 |∂

2
ijf(x)| by |D2f(x)|. Let

R > 1 to be chosen later. Then for each x ∈ Rd, we have by Taylor expansion,

Φf (x) :=

∫

Rd

∣∣f(x+ z)− f(x)−∇f(x) · z1{|z|≤1}

∣∣ 1

|z|d+γ
dz

≤

∫

|z|≤1

∣∣f(x+ z)− f(x)−∇f(x) · z1{|z|≤1}

∣∣ 1

|z|d+γ
dz

+

∫

1<|z|≤R
|f(x+ z)− f(x)|

1

|z|d+γ
dz +

∫

|z|>R
|f(x+ z)− f(x)|

1

|z|d+γ
dz

≤ sup
|y|≤1

|D2f(x+ y)|

∫

|z|≤1
|z|2−d−γdz +

∫

1<|z|≤R
|f(x+ z)− f(x)|

1

|z|d+γ
dz

+2‖f‖∞

∫

|z|>R
|z|−d−γdz

= cR2−γ sup
|y|≤1

|D2f(x+ y)|+

∫

1<|z|≤R
|f(x+ z)− f(x)|

1

|z|d+γ
dz + cR−γ‖f‖∞.

For any given ε > 0, we can take R large so that cR−γ‖f‖∞ < ε/2 to conclude that

lim
|x|→∞

∫

Rd

∣∣f(x+ z)− f(x)−∇f(x) · z1{|z|≤1}

∣∣ 1

|z|d+γ
dz = 0. (4.2)
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By the same reason, applying the above argument to function x 7→ f(x+ y)− f(x) in place of
f yields that for every ε > 0 and x0 ∈ Rd, there is δ > 0 so that

Φf(·+y)−f (x0) < ε for every |y| < δ. (4.3)

It follows from the last two displays, the definition of Lb and (1.4) that Lbf(x) exists for every
x ∈ Rd and Lbf ∈ C∞(Rd).

Proof of Theorem 1.2. Since b satisfies condition (1.18), it is easy to verify that Lbf ∈ C∞(Rd)
for every f ∈ C2

c (R
d). Let L̂b denote the infinitesimal generator of the strongly continuous

semigroup {T b
t ; t ≥ 0} in C∞(Rd), which is a closed linear operator. It follows from Theorem

3.14, Lemmas 4.1 and 4.2 that for every f ∈ C2
∞(Rd), (T b

t f(x)− f(x))/t converges uniformly to
Lbf(x) as t → 0. So

C2
∞(Rd) ⊂ D(L̂b) and L̂bf = Lbf for f ∈ C2

∞(Rd). (4.4)

In view of Theorem 3.7, there are constants c1, c2 > 0 so that (4.1) holds. This implies that

sup
x∈Rd

∫ ∞

0
e−λt|T b

t f |(x)dt ≤ cλ‖f‖∞, f ∈ C∞(Rd),

for every λ > c2. Observe that e−c2tT b
t is a strongly continuous semigroup in C∞(Rd) whose

infinitesimal generator is L̂b − c2. The above display implies that (0,∞) is contained in the
residual set ρ(L̂b− c2) of L̂

b− c2. Therefore by Theorem 3.15 and the Hille-Yosida-Ray theorem
[16, p165], {e−c2tT b

t ; t ≥ 0} is a positive preserving semigroup on C∞(Rd) if and only if L̂b − c2
satisfies the positive maximum principle. On the other hand, Courrége’s first theorem (see [1,
p158]) tells us that L̂b−c2 satisfies the positive maximum principle if and only if for each x ∈ Rd,

A(d,−α)

|z|d+α
+

A(d,−β)b(x, z)

|z|d+β
≥ 0 for a.e. z ∈ R

d.

Since e−c2tT b
t has a continuous integral kernel e−c2tqb(t, x, y), it follows that qb(t, x, y) ≥ 0 on

(0,∞)×Rd ×Rd if and only if for each x ∈ Rd, (1.19) holds. If b(x, z) = b(x) is a function of x
only, then by taking |z| → ∞, one concludes that (1.19) holds if and only if b(x) ≥ 0 on Rd.

5 Feller process and heat kernel estimates

Throughout this section, b is a bounded function satisfying condition (1.2) and (1.19). We
will show that qb(t, x, y) > 0 and so it generates a Feller process Xb that has strong Feller
property. We further derive the upper and lower bound estimates on qb(t, x, y). We will first
establish the Feller process Xb and its connection to the martingale problem for (Lb,S(Rd))
under an additional assumption (1.18). We will then remove this additional assumption using
an approximation method and the uniqueness result on qb(t, x, y) from Theorem 3.10.

Suppose that b is a bounded function satisfying conditions (1.2), (1.18) and (1.19). Then it
follows from Theorem 1.2, Theorem 3.15, Lemma 4.1 and Theorem 3.8, T b is a Feller semigroup.
So it uniquely determines a conservative Feller process Xb = {Xb

t , t ≥ 0,Px, x ∈ Rd} having
qb(t, x, y) as its transition density function. Since, by Theorem 3.10, qb(t, x, y) is continuous and
qb(t, x, y) ≤ c1e

c2tpMb,λ
(t, x, y) for some positive constants c1 and c2, X

b enjoys the strong Feller
property.

29



Proposition 5.1. Suppose that b is a bounded function satisfying conditions (1.2), (1.18) and

(1.19). For each x ∈ Rd and f ∈ C2
b (R

d),

Mf
t := f(Xb

t )− f(Xb
0)−

∫ t

0
Lbf(Xb

s) ds

is a martingale under Px. So in particular, the Feller process (Xb,Px, x ∈ Rd) solves the mar-

tingale problem for (Lb, C2
∞(Rd)).

Proof. This follows immediately from Theorem 3.14 and the Markov property of Xb.
We next determine the Lévy system of Xb. Recall that

Jb(x, y) =
A(d,−α)

|x− y|d+α
+

A(d,−β) b(x, y − x)

|x− y|d+β
. (5.1)

Proposition 5.2. Suppose that b is a bounded function satisfying conditions (1.2), (1.18) and

(1.19). Assume that A and B are disjoint compact sets in Rd. Then

∑

s≤t

1{Xb
s−∈A,Xb

s∈B} −

∫ t

0
1A(X

b
s)

∫

B
Jb(Xb

s , y)dy ds

is a Px-martingale for each x ∈ Rd.

Proof. The proof is similar to that for [9, Theorem 2.6]. For reader’s convenience, we give the
details here. Let f ∈ C∞(Rd) with f = 0 in an open neighborhood of A and f = 1 in an open
neighborhood of B. Define

Mf
t := f(Xb

t )− f(Xb
0)−

∫ t

0
Lbf(Xb

s) ds.

Then Mf
t is a martingale under Px by Proposition 5.1, and so is Nf

t :=
∫ t
0 1A(X

b
s−)dM

f
s .

Proposition 5.1 in particular implies that Xb
t = (Xb,1

t , . . . ,Xb,d
t ) is a semi-martingale. So by

Ito’s formula, we have that,

f(Xb
t )− f(Xb

0) =

d∑

i=1

∫ t

0
∂if(X

b
s−)dX

b,i
s +

∑

s≤t

ηs(f) +
1

2
At(f), (5.2)

where

ηs(f) = f(Xb
s)− f(Xb

s−)−

d∑

i=1

∂if(X
b
s−)(X

b,i
s −Xb,i

s−) (5.3)

and

At(f) =
d∑

i,j=1

∫ t

0
∂i∂jf(X

b
s−)d〈(X

b,i)c, (Xb,j)c〉s. (5.4)

Since f vanishes in an open neighborhood of A, we have by (5.2)–(5.4), (1.1) and (1.3) that

Nf
t =

∑

s≤t

1A(X
b
s−)f(X

b
s)−

∫ t

0
1A(X

b
s)
(
Lbf(Xb

s)
)
ds

=
∑

s≤t

1A(X
b
s−)f(X

b
s)−

∫ t

0
1A(X

b
s)

∫

Rd

f(y)Jb(Xb
s , y)dyds.
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By taking a sequence of functions fn ∈ C∞
c (Rd) with fn = 0 on A, fn = 1 on B and fn ↓ 1B ,

we get that, for any x ∈ Rd,

∑

s≤t

1A(X
b
s−)1B(X

b
s)−

∫ t

0
1A(X

b
s)

∫

B
Jb(Xb

s , y)dyds

is a Px-martingale for every x ∈ Rd.
Proposition 5.2 implies that

Ex


∑

s≤t

1A(X
b
s−)1B(X

b
s)


 = Ex

[∫ t

0

∫

Rd

1A(X
b
s)1B(y)J

b(Xb
s , y)dyds

]
.

Using this and a routine measure theoretic argument, we get

Ex


∑

s≤t

f(s,Xb
s−,X

b
s)


 = Ex

[∫ t

0

∫

Rd

f(s,Xb
s , y)J

b(Xb
s , y)dyds

]

for any non-negative measurable function f on (0,∞)×Rd×Rd vanishing on {(x, y) ∈ Rd×Rd :
x = y}. Finally, following the same arguments as in [11, Lemma 4.7] and [12, Appendix A], we
get

Proposition 5.3. Suppose that b is a bounded function satisfying conditions (1.2), (1.18) and

(1.19). Let f be a nonnegative function on R+ × Rd × Rd vanishing on the diagonal. Then for

stopping time T with respect to the minimal admissible filtration generated by Xb,

Ex


∑

s≤T

f(s,Xb
s−,X

b
s)


 = Ex

[∫ T

0

∫

Rd

f(s,Xb
s , u)J

b(Xb
s , u) du ds

]
.

To remove the assumption (1.18) on b, we approximate a general measurable function b(x, z)
by continuous kn(x, z). To show that qkn(t, x, y) converges to qb(t, x, y), we establish equi-
continuity of qb(t, x, y) and apply the uniqueness result, Theorem 3.10.

Proposition 5.4. For each 0 < t0 < T < ∞ and A > 0, the function qb(t, x, y) is uniform

continuous in (t, x) ∈ (t0, T ) × Rd for every b with ‖b‖∞ ≤ A that satisfies (1.2) and for all

y ∈ Rd.

Proof. In view of Theorem 3.12, it suffices to prove the theorem for A = A0, where A0 is
the constant in Lemma 3.4 (or in Theorem 1.1). Using the Chapman-Kolmogorov equation for
qb(t, x, y) (see Lemma 3.13) and (3.34), it suffices to prove the Proposition for T = 1.

Noting that qbn can also be rewritten in the following form:

qbn(t, x, y) =

∫ t

0

∫

Rd

p0(t− r, x, z)(Sbp0)
∗,n
z (r, z, y) dz dr.
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Here (Sbp0)
∗,n
z (r, z, y) is defined in (3.37). Hence, for T > t > s > t0, x1, x2 ∈ Rd and y ∈ Rd,

we have
|qbn(s, x1, y)− qbn(t, x2, y)|

≤

∫ s

0

∫

Rd

|p0(s− r, x1, z)− p0(t− r, x2, z)||(S
bp0)

∗,n
z (r, z, y)| dz dr

+

∫ t

s

∫

Rd

p0(t− r, x2, z)|(S
bp0)

∗,n
z (r, z, y)| dz dr

=:I + II.

It is known (see [11]) that there are positive constants c1 and θ so that for any t, s ∈ [t0, T ] and
xi ∈ Rd with i = 1, 2,

|p0(s, x1, y)− p0(t, x2, y)| ≤ c1 t
−(d+θ)/α
0

(
|t− s|1/α + |x1 − x2|

)θ
, y ∈ R

d,

we have by (2.5), (3.38) and (3.39), for ρ ∈ (0, s/2),

I =

∫ s−ρ

0

∫

Rd

|p0(s− r, x1, z)− p0(t− r, x2, z)||(S
bp0)

∗,n
z (r, z, y)| dz dr

+

∫ s

s−ρ

∫

Rd

|p0(s− r, x1, z) − p0(t− r, x2, z)||(S
bp0)

∗,n
z (r, z, y)| dz dr

≤c22
−(n−1)ρ−(d+θ)/α

(
|t− s|1/α + |x1 − x2|

)θ ∫ s−ρ

0

∫

Rd

f0(r, z, y) dz dr

+ c22
−(n−1)

∫ s

s−ρ

∫

Rd

(p0(s − r, x1, z) + p0(t− r, x2, z))f0(r, z, y) dz dr

≤c32
−(n−1)ρ−(d+θ)/α

(
|t− s|1/α + |x1 − x2|

)θ
s1−β/α + c32

−(n−1)(s− ρ)−(d+β)/αρ.

(5.5)

Moreover, by (2.5) and (3.38),

II ≤ 2−(n−1)

∫ t

s

∫

Rd

p0(t− r, x2, z)f0(r, z, y) dz dr ≤ 2−(n−1)s−(d+β)/α|t− s|. (5.6)

Therefore, noting that

|qb(s, x1, y)− qb(t, x2, y)| ≤ |p0(s, x1, y)− p0(t, x2, y)|+

∞∑

n=1

|qbn(s, x1, y)− qbn(t, x2, y)|,

then first taking |t − s| and |x1 − x2| small, and then making ρ small in (5.5) and (5.6) yields
the conclusion of this Proposition.

Proposition 5.5. For each 0 < t0 < T < ∞ and A > 0, the function qb(t, x, y) is uniform

continuous in y for every b with ‖b‖∞ ≤ A that satisfies (1.2) and for all (t, x) ∈ (t0, T )× Rd.

Proof. In view of Theorem 3.12, it suffices to prove the theorem for A = A0, where A0 is
the constant in Lemma 3.4 (or in Theorem 1.1). Using the Chapman-Kolmogorov equation for
qb(t, x, y) (see Lemma 3.13) and (3.34), it suffices to prove the Proposition for T = 1.
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Define P (s, x, y) = p0(s, x)− p0(s, y). For s > 0, we have

|Sbp0(s, y1)− Sbp0(s, y2)|

≤c1

∫

Rd

|P (s, y1 + h, y2 + h)− P (s, y1, y2)− 〈∇(y1,y2)P (s, y1, y2), h1|h|≤1〉|
dh

|h|d+β

≤c1

∫

|h|≤1
|h|2 sup

θ∈(0,1)
|
∂2

∂y21
p0(s, y1 + θh)−

∂2

∂y22
p0(s, y2 + θh)|

dh

|h|d+β

+ c1

∫

|h|>1
|p0(s, y1 + h)− p0(s, y2 + h)− p0(s, y1) + p0(s, y2)|

dh

|h|d+β

≤c2 sup
y

|
∂3

∂y3
p0(s, y)||y1 − y2|

∫

|h|≤1
|h|2

dh

|h|d+β
+ c2 sup

y
|
∂

∂y
p0(s, y)||y1 − y2|

∫

|h|>1

dh

|h|d+β

≤c3|y1 − y2|[s
−(d+3)/α + s−(d+1)/α],

(5.7)

where in the fourth inequality, | ∂3

∂y3
p0(s, y)| ≤ c3s

−(d+3)/α can be proved similarly by the argu-

ment in Lemma 2.1. Take ρ ∈ (0, t0/2). Then for each n ≥ 1, we have by (1.8), (3.39), Lemma
2.4, Lemma 3.4 and (5.7), that for (t, x, y) ∈ (t0, 1)× Rd × Rd,

|qbn(t, x, y1)− qbn(t, x, y2)|

≤

∫ ρ

0

∫

Rd

qbn−1(t− s, x, z)|Sb
zp0(s, z, y1)− Sb

zp0(s, z, y2)| dz ds

+

∫ t

ρ

∫

Rd

qbn−1(t− s, x, z)|Sb
zp0(s, z, y1)− Sb

zp0(s, z, y2)| dz ds

≤ c42
−(n−1)

∫ ρ

0

∫

Rd

p1(t− s, x, z)|Sb
zp0(s, z, y1)− Sb

zp0(s, z, y2)| dz ds

+c42
−(n−1)

∫ t

ρ

∫

Rd

p1(t− s, x, z)
∣∣∣Sb

zp0(s, z − y1)− Sb
zp0(s, z − y2)

∣∣∣ dz ds

≤ c52
−(n−1)t

−d/α
0

∫ ρ

0

∫

Rd

(
|Sb

zp0(s, z, y1)|+ |Sb
zp0(s, z, y2)|

)
dz ds

+c52
−(n−1)ρ−(d+3)/α|y1 − y2|

∫ t

ρ

∫

Rd

p1(t− s, x, z) dz ds

≤ c6 2
−(n−1) t

−d/α
0 ρ1−β/α + c62

−(n−1)ρ−(d+3)/α|y1 − y2|.

Therefore we have

|qb(t, x, y1)− qb(t, x, y2)|

≤|p0(t, x, y1)− p0(t, x, y2)|+

∞∑

n=1

c62
−(n−1) t

−d/α
0 ρ1−β/α +

∞∑

n=1

c62
−(n−1)ρ−(d+3)/α|y1 − y2|.

By first taking |y1 − y2| small and then making ρ small yields the desired uniform continuity of
qb(t, x, y).

Theorem 5.6. Suppose b is a bounded function on Rd × Rd satisfying (1.2) and (1.19). The

kernel qb(t, x, y) uniquely determines a Feller process Xb = (Xb
t , t ≥ 0,Px, x ∈ Rd) on the

canonical Skorokhod space D([0,∞),Rd) such that

Ex

[
f(Xb

t )
]
=

∫

Rd

qb(t, x, y)f(y)dy
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for every bounded continuous function f on Rd. The Feller process Xb is conservative and has

a Lévy system (Jb(x, y)dy, t), where

Jb(x, y) =
A(d,−α)

|x− y|d+α
+

A(d,−β) b(x, y − x)

|x− y|d+β
.

Moreover, for each x ∈ Rd, (Xb,Px) is the unique solution to the martingale problem (Lb,S(Rd))
with initial value x. Here S(Rd) denotes the space of tempered functions on Rd.

Proof. When b is a bounded function satisfying (1.2), (1.18) and (1.19), the theorem has already
been established via Propositions 5.1-5.3. We now remove the assumption (1.18). Suppose
that b(x, z) is a bounded function that satisfies (1.2) and (1.19). Let ϕ be a non-negative
smooth function with compact support in Rd so that

∫
Rd ϕ(x)dx = 1. For each n ≥ 1, define

ϕn(x) = ndϕ(nx) and

kn(x, z) :=

∫

Rd

ϕn(x− y)b(y, z)dy.

Then kn is a function that satisfies (1.2), (1.18) and (1.19) with ‖kn‖∞ ≤ ‖b‖∞. By Theorem
1.1, Proposition 5.4 and Proposition 5.5, qkn(t, x, y) is uniformly bounded and equi-continuous
on [1/M,M ] × Rd × Rd for each M ≥ 1, then there is a subsequence {nj} of {n} so that

qknj (t, x, y) converges boundedly and uniformly on compacts of (0,∞) × Rd × Rd, to some
continuous function q(t, x, y), which again satisfies (1.16). Obviously, q(t, x, y) also satisfies the
Chapman-Kolmogorov equation and

∫
Rd q(t, x, y) dy = 1. By (3.29) and Theorem 3.7,

qknj (t, x, y) = p0(t, x, y) +

∫ t

0

∫

Rd

qknj (t− s, x, z)S
knj
z p0(s, z, y)dzds

and
qknj (t, x, y) ≤ c gMb,λ

(t, x, y)

for every 0 < t ≤ 1∧(A0/‖b‖∞)α/(α−β) and x, y ∈ Rd, where c is a positive constant that depends
only on d, α, β and ‖b‖∞. Letting j → ∞, we have by (3.1), Lemma 2.5 and the dominated
convergence theorem that

q(t, x, y) = p0(t, x, y) +

∫ t

0

∫

Rd

q(t− s, x, z)Sb
zp0(s, z, y)dyds

and q(t, x, y) ≤ c gMb,λ
(t, x, y) for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd. Hence

we conclude from Theorem 3.10 that q(t, x, y) = qb(t, x, y). This in particular implies that
qb(t, x, y) ≥ 0. So there is a Feller process Xb having qb(t, x, y) as its transition density function.
The proof of Propositions 5.1-5.3 only uses the condition (1.18) through its implication that
qb(t, x, y) ≥ 0. So in view of what we just established, Propositions 5.1-5.3 continue to hold for
Xb under the current setting without the additional assumption (1.18). The non-local operator
Lb satisfies the assumptions [A1] and [A2] of [19]. So by [19, Theorem 3], solution to the
martingale problem (Lb,S(Rd)) is unique. Since S(Rd) ⊂ C2

∞(Rd), the proof of the theorem is
now complete.

For each λ > 0, define

b̂λ(x, z) = b(x, z)1{|z|≤λ}(z) + b+(x, z)1{|z|>λ}(z). (5.8)
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In the following, we use a method of Meyer [20] to construct from Xb, by adding suitable jumps,

a strong Markov process Y corresponding to the jumping kernel J b̂λ defined by (1.25) but with
b̂λ in place of b. Define

J (x) =

∫

Rd

(J b̂λ(x, y) − Jb(x, y)) dy.

Then there exists a positive constant c1 so that 0 ≤ J (x) ≤ c1 for all x ∈ Rd. Let

q(x, y) =
J b̂λ(x, y)− Jb(x, y)

J (x)
.

Let S1 be an exponential random variable of parameter 1 independent of Xb. Set

Ct =

∫ t

0
J (Xb

s) ds, U1 = inf{t ≥ 0 : Ct ≥ S1}. (5.9)

We let Yt = Xb
t for 0 ≤ t < U1 and define YU1 with law q(YU1− , ·) = q(Xb

U1−
, ·), and then repeat

using an independent exponential random variable S2 to define U2, etc. So the construction
proceeds now in the same way from the new starting point (U1, YU1). Since J (x) is bounded,
only finitely many new jumps are introduced in any bounded time interval. In [20], it is proved
that the resulting process Y is a strong Markov process. By slightly abusing the notation, we
still use Px and Ex to denote the above constructed probability law and expectation induced on
such enlarged probability space under which Y0 = x.

Lemma 5.7. For each x ∈ Rd and f ∈ C2
b (R

d),

Ex [f(Yt); t < U1] = f(x) + Ex

[∫ t

0

(
Lb − J (Ys)

)
f(Ys)1{s<U1}ds

]
,

Proof. By the definition of U1 and Ito’s formula, for each function f ∈ C2
b (R

d),

Ex [f(Yt); t < U1] = Ex

[
f(Xb

t )1{U1>t}

]
= Ex

[
f(Xb

t )e
−Ct

]

= f(x) + Ex

[∫ t

0
(Lb − J (Xb

s))f(X
b
s)e

−Cs ds

]

= f(x) + Ex

[∫ t

0

(
Lb − J (Ys)

)
f(Ys)1{s<U1}ds

]
.

Proposition 5.8. For each x ∈ Rd and f ∈ C2
b (R

d),

Mf
t := f(Yt)− f(Y0)−

∫ t

0
Lb̂λf(Ys) ds

is a martingale under Px. So in particular, the strongly Markov process (Y,Px, x ∈ Rd) solves

the martingale problem for (Lb̂λ , C2
∞(Rd)).
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Proof. Note that Mf
t is an additive function of Y . So by the Markov property of Y , it suffices

to show that Ex

[
Mf

t

]
= 0 for every x ∈ Rd and t > 0.

Recall that U1 is defined in (5.9), and denote by {Un, n ≥ 2} the subsequent jump adding
times inductively defined according to the construction of Meyer [20]. For every α > 0, set

uα(x) = Ex

[∫ U1

0 e−αtf(Yt)dt
]
. Since by Lemma 5.7,

Ex [f(Yt); t < U1] = f(x) + Ex

[∫ t

0

(
Lb − J (Ys)

)
f(Ys)1{s<U1}ds

]
,

we have by Fubini theorem that

uα(x) =
f(x)

α
+

1

α
Ex

[∫ U1

0
e−αs(Lb − J (Ys))f(Ys)ds

]
.

Observe that in view of [24, p.286] (see, for example, the proof of [14, Proposition 2.2]), for any
non-negative function ϕ on Rd and x ∈ Rd,

Ex

[
e−αU1ϕ(YU1−)

]
= Ex

[∫ U1

0
e−αsJ (Ys)ϕ(Ys)ds

]
.

Set U0 = 0 and let θt to denote the time shift operator for the Markov process Y . Then we have
from above and the strong Markov property of Y that

Ex

[∫ ∞

0
e−αtf(Yt)dt

]
=

∞∑

j=0

Ex

[∫ Uj+1

Uj

e−αtf(Yt)dt

]
=

∞∑

j=0

Ex

[
e−αUjuα(YUj )

]

=
f(x)

α
+

1

α

∞∑

j=1

Ex

[
e−αUjf(YUj)

]
+

1

α

∞∑

j=0

Ex

[∫ Uj+1

Uj

e−αs(Lb − J (Ys))f(Ys)ds

]

=
f(x)

α
+

1

α

∞∑

j=1

Ex

[
e−αUj

∫

Rd

f(y)q(YUj−, y)dy

]
+

1

α
Ex

[∫ ∞

0
e−αs(Lb − J (Ys))f(Ys)ds

]

=
f(x)

α
+

1

α

∞∑

j=1

Ex

[
e−αUj−1

∫

Rd

f(y)
(
e−αU1q(YU1−, y)

)
◦ θUj−1dy

]

+
1

α
Ex

[∫ ∞

0
e−αs(Lb − J (Ys))f(Ys)ds

]

=
f(x)

α
+

1

α

∞∑

j=1

Ex

[
e−αUj−1

∫

Rd

f(y)

(∫ U1

0
e−αsJ (Ys)q(Ys, y)ds

)
◦ θUj−1dy

]

+
1

α
Ex

[∫ ∞

0
e−αs(Lb − J (Ys))f(Ys)ds

]

=
f(x)

α
+

1

α
Ex

[∫

Rd

f(y)

(∫ ∞

0
e−αsJ (Ys)q(Ys, y)ds

)
dy

]

+
1

α
Ex

[∫ ∞

0
e−αs(Lb − J (Ys))f(Ys)ds

]

=
f(x)

α
+

1

α
Ex

[∫ ∞

0
e−αs

(
Lbf(Ys) +

∫

Rd

J (Ys)q(Ys, y)(f(y)− f(Ys))dy

)
ds

]

=
f(x)

α
+

1

α
Ex

[∫ ∞

0
e−αsLb̂λf(Ys)ds

]
.
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By the uniqueness of the Laplace transform, we conclude from above that Ex

[
Mf

t

]
= 0 for all

t ≥ 0 and x ∈ Rd.

Note that b̂λ defined by (5.8) is a bounded function on Rd × Rd satisfying (1.2) and (1.19).

By Theorem 5.6, the kernel qb̂λ(t, x, y) uniquely determines a Feller process X b̂λ = (X b̂λ
t , t ≥

0,Px, x ∈ Rd) on the canonical Skorokhod space D([0,∞),Rd), and (X b̂λ ,Px) is the unique

solution to the martingale problem for (Lb̂λ ,S(Rd)) with initial value x. This, together with

Proposition 5.8 implies that the process Y coincides with X b̂λ in the sense of distribution.

Theorem 5.9. For every λ > 0 and A > 0, there is a positive constant C15 = C15(d, α, β,A, λ)
such that for any bounded b satisfying (1.2) and (1.19) with ‖b‖∞ ≤ A,

qb(t, x, y) ≤ C15pMb+,λ
(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d.

Proof. Noting that b̂λ is a bounded function on Rd × Rd with ‖b̂λ‖∞ ≤ ‖b‖∞ satisfying (1.2)
and (1.19), then by Theorem 1.1, there is a positive constant C = C(d, α, β,A, λ) so that

qb̂λ(t, x, y) ≤ CpMb+,λ
(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d. (5.10)

Let {Mt}t≥0 be the filtration generated by Xb. Note that X b̂λ has the same distribution as Y.
Then by Lemma 3.6 in [2], for any A ∈ Mt,

P
x(X b̂λ

t ∈ A) = P
x(Yt ∈ A) ≥ P

x({Ys = Xb
s for all 0 ≤ s ≤ t} ∩A) ≥ e−t‖J ‖∞P

x(Xb
t ∈ A).

Hence, by (5.10)

qb(t, x, y) ≤ e‖J ‖∞qb̂λ(t, x, y) ≤ Ce‖J ‖∞pMb+,λ
(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d.

For a Borel set B ⊂ Rd, we define τ bB = inf{t > 0 : Xb
t /∈ B} and σb

B := inf{t ≥ 0 : Xb
t ∈ B}.

Proposition 5.10. For each A > 0 and R0 > 0, there exists a positive constant

κ = κ(d, α, β,A,R0) < 2α (1− (1/3)α)

so that for every b satisfying (1.2) and (1.19) with ‖b‖∞ ≤ A, r ∈ (0, R0] and x ∈ Rd,

Px

(
τ bB(x,r) ≤ κrα

)
≤

1

2
.

Proof. Let f be a C2 function taking values in [0, 1] such that f(0) = 0 and f(u) = 1 if |u| ≥ 1.
Set fx,r(y) = f(y−x

r ). Note that fx,r is a C2 function taking values in [0, 1] such that fx,r(x) = 0
and fx,r(y) = 1 if y /∈ B(x, r). Moreover,

sup
y∈Rd

∣∣∣∣
∂2fx,r(y)

∂yi∂yj

∣∣∣∣ ≤ r−2 sup
y∈Rd

∣∣∣∣
∂2f(y)

∂yi∂yj

∣∣∣∣ .
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Denote
∑d

i,j=1 |∂
2
ijf(x)| by |D2f(x)|. By Taylor’s formula, it follows that

|Lbfx,r(u)| ≤ c1

∫ ∣∣fx,r(u+ h)− fx,r(u)− 〈∇fx,r(u), h〉1{|h|≤r}

∣∣
(

1

|h|d+α
+

1

|h|d+β

)
dh

= c1

∫

{|h|≤r}
|fx,r(u+ h)− fx,r(u)− 〈∇fx,r(u), h〉|

(
1

|h|d+α
+

1

|h|d+β

)
dh

+ c1

∫

{|h|>r}
|fx,r(u+ h)− fx,r(u)|

(
1

|h|d+α
+

1

|h|d+β

)
dh

≤ c2‖D
2f‖∞r−2

∫

|h|≤r
|h|2

(
1

|h|d+α
+

1

|h|d+β

)
dh

+ c2‖f‖∞

∫

{|h|>r}

(
1

|h|d+α
+

1

|h|d+β

)
dh

≤ c3(r
−α + r−β) ≤ c3(1 +Rα−β

0 )r−α,

(5.11)

where ci = ci(d, α, β,A), i = 1, 2, 3 are positive constants. Therefore, for each t > 0,

Px(τ
b
B(x,r) ≤ t) ≤ Ex

[
fx,r(X

b
τb
B(x,r)

∧t
)

]
− fx,r(x)

= Ex

[∫ τb
B(x,r)

∧t

0
Lbfx,r(X

b
s) ds

]
≤ c3

(
1 +Rα−β

0

) t

rα
.

Set κ = (2α[1− (1/3)α]) ∧ (2c3(1 +Rα−β
0 ))−1, then

Px(τ
b
B(x,r) ≤ κrα) ≤

1

2
.

Recall that mb,λ = essinfx,z∈Rd,|z|>λb(x, z).

Proposition 5.11. For every A > 0, λ > 0, 0 < ε < 1 and R0 > 0, there exists a constant

C16 = C16(d, α, β,A, λ, ε,R0) > 0 so that for every b satisfying (1.2) and (1.23) with ‖b‖∞ ≤ A,
r ∈ (0, R0] and x, y ∈ Rd with |x− y| ≥ 3r,

Px

(
σb
B(y,r) < κrα

)
≥ C16 r

d+α

(
1

|x− y|d+α
+

mb+,λ

|x− y|d+β

)
.

Proof. By Proposition 5.10 ,

Ex

[
κrα ∧ τ bB(x,r)

]
≥ κrα Px

(
τ bB(x,r) ≥ κrα

)
≥

1

2
κrα.

Since Jb(x, y) ≥ mb+,λA(d,−β)|x− y|−d−β
1{|x−y|>λ}, (1.23) implies that

Jb(x, y) ≥
1

2

(
ε|x− y|−(d+α) +mb+,λA(d,−β)|x− y|−(d+β)

1{|x−y|>λ}

)

38



Thus by Proposition 5.3, there are positive constants c1 = c1(d, α, β) and
c2 = c2(d, α, β,A, λ, ε,R0) so that

Px(σ
b
B(y,r) < κrα) ≥ Px(X

b
κrα∧τb

B(x,r)
∈ B(y, r))

= Ex

∫ κrα∧τb
B(x,r)

0

∫

B(y,r)
Jb(Xb

s , u) du ds

≥ c1Ex

[
κrα ∧ τ bB(x,r)

] ∫

B(y,r)

(
ε

|x− y|d+α
+

mb+,λ

|x− y|d+β
1{|x−y|>λ}

)
du

≥ c2εκr
d+α

(
1

|x− y|d+α
+

mb+,λ

|x− y|d+β

)
.

Here in the last inequality, we used the fact that |x− y|−(d+α) ≥ (1 + λα−βA)−1[|x− y|−(d+α) +
mb,λ · |x− y|−(d+β)] for |x− y| ≤ λ.

Proposition 5.12. For every A > 0, there exists a constant C17 = C17(d, α, β,A) > 0 so that

for every bounded b that satisfies (1.2) and (1.19) with ‖b‖∞ ≤ A, and 3r ≤ |x − y| ≤ R∗ :=

1
3

(
2AA(d,−β)

A(d,−α)

)1/(β−α)
,

Px

(
σb
B(y,r) < κrα

)
≥ C17

rd+α

|x− y|d+α
.

Proof. Note that when |x− u| ≤ 3R∗,
1
2
A(d,−α)
A(d,−β) |x− u|β−α ≥ A and so

Jb(x, u) =
A(d,−α)

|x− u|d+α
+

A(d,−β) b(x, u − x)

|x− u|d+β

≥
A(d,−α)

|x− u|d+α
−A

A(d,−β)

|x− u|d+β
≥

1

2

A(d,−α)

|x− u|d+α
.

(5.12)

By Propositions 5.3 and 5.10, we have

Px

(
σb
B(y,r) < κrα

)
≥ Px

(
Xb

κrα∧τb
B(x,r)

∈ B(y, r)

)

= Ex

∫ κrα∧τb
B(x,r)

0

∫

B(y,r)
Jb(Xb

s , u) du ds

≥ c1Ex

[
κrα ∧ τ bB(x,r)

] ∫

B(y,r)

1

|x− y|d+α
du

≥ c2κr
d+α 1

|x− y|d+α
,

where the second inequality holds due to |Xb
s − u| ≤ 3|x− y| ≤ 3R∗ and (5.12).

Theorem 5.13. For every λ > 0, ε ∈ (0, 1) and A > 0, there are positive constants C18 =
C18(d, α, β,A, λ, ε) and C19 = C19(d, α, β,A, λ) such that for any b with ‖b‖∞ ≤ A that satisfies

(1.2) and (1.23),

C18 pmb+,λ
(t, x, y) ≤ qb(t, x, y) ≤ C19 pMb+,λ

(t, x, y), t ∈ (0, 1], x, y ∈ R
d. (5.13)
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Proof. Noting that the condition (1.23) in particular implies (1.19), so the upper bound estimate
follows immediately from Theorem 5.9. We only need to prove the lower bound. Let δ0 :=
1 ∧ (A0/A)

α/(α−β). (3.28) together with (1.7) also yields that for any ‖b‖∞ ≤ A,

qb(t, x, y) ≥ c0t
−d/α for t ∈ (0, δ0] and |x− y| ≤ 3t1/α. (5.14)

Here c0 = c0(d, α, β) is a positive constant. For every t ∈ (0, δ0], by Proposition 5.10 and
Proposition 5.11 with R0 = 1, r = t1/α/2 and the strong Markov property of the process Xb,
we get for |x− y| > 3t1/α,

Px(X
b
2−ακt ∈ B(y, t1/α))

≥ Px

(
Xb hitsB(y, t1/α/2) before 2−ακt and stays there for at least 2−ακt units of time

)

≥ Px

(
σb
B(y,t1/α/2)

< 2−ακt
)

inf
z∈B(y,t1/α/2)

Pz

(
τ b
B(y,t1/α)

≥ 2−ακt
)

≥ Px

(
σb
B(y,t1/α/2)

< 2−ακt
)

inf
z∈B(y,t1/α/2)

Pz

(
τ b
B(z,t1/α/2)

≥ 2−ακt
)

≥ c1 t
(d+α)/α

(
1

|x− y|d+α
+

mb+,λ

|x− y|d+β

)
. (5.15)

Here c1 = c1(d, α, β,A, λ, ε) is a positive constant. Hence, by (5.14) and (5.15), for |x−y| > 3t1/α

and t ∈ (0, δ0],

qb(t, x, y) ≥

∫

B(y,t1/α)
qb(2−ακt, x, z)qb((1 − 2−ακ)t, z, y) dz

≥ inf
z∈B(y,t1/α)

qb((1 − 2−ακ)t, z, y)Px(X
b
2−ακt ∈ B(y, t1/α))

≥ c2t
−d/α t(d+α)/α

(
1

|x− y|d+α
+

mb+,λ

|x− y|d+β

)

≥ c2

(
t

|x− y|d+α
+

tmb+,λ

|x− y|d+β

)
,

(5.16)

where c2 = c2(d, α, β,A, λ, ε) > 0, the third inequality holds due to |z − y| ≤ t1/α ≤ 3((1 −
2−ακ)t)1/α when κ ≤ 2α(1− 3−α) and (5.14)-(5.15). Finally, (5.14), (5.16) together with (1.10)
and the Chapman-Kolmogorov equation yields the desired lower bound estimate.

Theorem 5.14. For every λ > 0 and A > 0, there are positive constants Ck = Ck(d, α, β,A), k =
20, 21 and C22 = C22(d, α, β,A, λ) such that for any bounded b satisfying (1.2) and (1.19) with

‖b‖∞ ≤ A,

C20p0(t, C21x,C21y) ≤ qb(t, x, y) ≤ C22pMb+,λ
(t, x, y) for t ∈ (0, 1] and x, y ∈ R

d. (5.17)

Proof. By Theorem 5.9, it suffices to prove the lower bound of qb. Let δ0 := 1∧ (A0/A)
α/(α−β).

By Chapman-Kolmogorov equation, we only need to consider (5.17) for t ∈ (0, δ0]. By (1.20),
(1.21) and (3.28), it suffices to prove (5.17) when |x− y| > 3t1/α and t ∈ (0, δ0]. Let R∗ be the
constant defined in Proposition 5.12.

(i) First, we consider the case R∗ ≥ |x− y| > 3t1/α. For every t ∈ (0, δ0], by Proposition 5.10
and Proposition 5.12 with r = t1/α/2 and the strong Markov property of the process Xb, we
get, by the similar procedure in (5.15), for R∗ ≥ |x− y| > 3t1/α,

Px

(
Xb

2−ακt ∈ B(y, t1/α)
)
≥ c1 t

(d+α)/α 1

|x− y|d+α
. (5.18)
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Here c1 = c1(d, α, β,A) is a positive constant. Hence, for R∗ ≥ |x − y| > 3t1/α, by (5.14) and
(5.18), we have

qb(t, x, y) ≥

∫

B(y,t1/α)
qb(2−ακt, x, z)qb((1− 2−ακ)t, z, y) dz

≥ inf
z∈B(y,t1/α)

qb((1− 2−ακ)t, z, y)Px

(
Xb

2−ακt ∈ B(y, t1/α)
)

≥ c2t
−d/α t(d+α)/α 1

|x− y|d+α

≥ c2
t

|x− y|d+α

(5.19)

where c2 = c2(d, α, β,A) > 0.
(ii) Next, we consider the case |x− y| > R∗ > 3t1/α. Take C∗ = R−1

∗ . Then |x− y| > R∗ =
C−1
∗ ≥ t/C∗ for t ∈ (0, δ0]. The following proof is similar to [8, Theorem 3.6]. For the reader’s

convenience, we spell out the details here.
Let R := |x−y| and c+ = R−1

∗ ∨1. Let l ≥ 2 be a positive integer such that c+R ≤ l ≤ c+R+1
and let x = x0, x1, · · · , xl = y be such that |xi − xi−1| ≍ R/l ≍ 1/c+ for i = 1, · · · , l − 1. Since
t/l ≤ C∗R/l ≤ C∗/c+ ≤ 1 and R/l ≤ 1/c+ ≤ R∗, we have by (5.14) and (5.19),

qb(t/l, xi, xi+1) ≥ c2

(
(t/l)−d/α ∧

t/l

(R/l)d+α

)
≥ c2

(
(t/l)−d/α ∧ (t/l)

)
≥ c3t/l. (5.20)

Let Bi = B(xi, R∗), by (5.20),

qb(t, x, y) ≥

∫

B1

· · ·

∫

Bl−1

qb(t/l, x, x1) · · · q
b(t/l, xl−1, y) dx1 · · · dxl−1

≥ (c4t/l)
l ≥ (c5t/R)c+R+1 ≥ c6(t/R)c7R

≥ c6

(
t

|x− y|

)c7|x−y|

.

(5.21)

By (5.19), (5.21) and together with the estimates of p0 in (1.20)-(1.21), we get the desired
conclusion.

Proof of Theorem 1.3. Theorem 1.3 now follows from Theorems 5.6, 5.13 and 5.14.

To prove theorem 1.5, we use the main result in [10] of the heat kernel estimates for non-local
operators under the non-local Feynman-Kac perturbation. For each Borel function q(x) on Rd

and Borel function F (x, y) on Rd × Rd that vanishes along the diagonal, we define a non-local
Feynman-Kac transform for the process Xb as follows:

T b,F
t f(x) = Ex


exp



∫ t

0
q(Xb

s) ds +
∑

s≤t

F (Xb
s−,X

b
s)


 f(Xb

t )


 . (5.22)

Proposition 5.15. Suppose b is a bounded function on Rd × Rd satisfying (1.2) and (1.19), q
is a bounded function on Rd and |F (x, y)| ≤ c(|x − y|2 ∧ 1) for some constant c. Then for each

f in C2
b (R

d),

T b,F
t f(x) = f(x) +

∫ t

0
T b,F
s Lb,F f(x) ds,
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where

Lb,F f(x) = Lbf(x) +

∫

Rd

(eF (x,y) − 1)f(y)Jb(x, y) dy + q(x)f(x).

Proof. First note that since Xb is a semimartingale and |F (x, y)| ≤ c(|x− y|2 ∧ 1),

∑

s≤t

|F (Xb
s−,X

b
s)| ≤ c

∑

s≤t

|Xb
s −Xb

s−|
2 = c

[
Xb,Xb

]
t
< ∞.

Let F1 = eF − 1 and define

Kt =

∫ t

0
q(Xb

s) ds+
∑

s≤t

F1(X
b
s−,X

b
s).

Then by [24, A4.17], the Stieljes exponential

At := Exp(K)t = eK
c
t

∏

0<s≤t

(1 +Ks −Ks−) = exp



∫ t

0
q(Xb

s) ds +
∑

s≤t

F (Xb
s−,X

b
s)


 (5.23)

is the unique solution to

At = 1 +

∫ t

0
As− dKs. (5.24)

For each function f in C2
b (R

d), by Ito’s formula, Proposition 5.1 and (5.24), we have

Atf(X
b
t ) = f(Xb

0) +

∫ t

0
f(Xb

s−)As− dKs +

∫ t

0
As− df(Xb

s) +
∑

s≤t

(As −As−)(f(X
b
s)− f(Xb

s−))

= f(Xb
0) +

∫ t

0
Asf(X

b
s)q(X

b
s) ds+

∑

s≤t

f(Xb
s−)As−F1(X

b
s−,X

b
s) (5.25)

+

∫ t

0
AsL

bf(Xb
s) ds +

∫ t

0
As− dMf

s +
∑

s≤t

As−F1(X
b
s−,X

b
s)(f(X

b
s)− f(Xb

s−)).

By taking expectation on both sides and using the Lévy system formula in Proposition 5.3, we
get

T b,F
t f(x) = Ex

[
Atf(X

b
t )
]

= f(Xb
0) + Ex

[∫ t

0
Asf(X

b
s)q(X

b
s) ds+

∫ t

0
AsL

bf(Xb
s) ds

]

+Ex

[∫ t

0

∫

Rd

As

(
f(Xb

s) +
(
f(y)− f(Xb

s)
))

F1(X
b
s , y)J

b(Xb
s , y) dy ds

]

= f(Xb
0) + Ex

[∫ t

0
AsL

b,F f(Xb
s)ds

]

= f(x) +

∫ t

0
T b,F
s Lb,F f(x)ds.

That completes the proof.
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Proof of Theorem 1.5. Let b0(x, z) = b(x, z)1|z|≤1(z), which is a bounded function on Rd×Rd

satisfying (1.2) and (1.19). By Theorem 1.3, qb0(t, x, y) is continuous on (0,∞)× Rd ×Rd and

C4p0(t, x, y) ≤ qb0(t, x, y) ≤ C3p0(t, x, y) (5.26)

for all (t, x, y) ∈ (0, 1]×Rd×Rd. In addition, by Proposition 5.3 and (1.25), for each non-negative
function f on Rd × Rd that vanishes along the diagonal,

Ex

[∑

s≤T

f(Xb0
s−,X

b0
s )
]
= Ex

[∫ T

0

∫

Rd

f(Xb0
s , u)Jb0(Xb0

s , u) du ds

]
. (5.27)

and there exist two positive constants c1 and c2 so that

c1|x− y|−(d+α) ≤ Jb0(x, y) ≤ c2|x− y|−(d+α). (5.28)

Set F (x, y) = ln Jb(x,y)

Jb0 (x,y)
and q(x) =

∫
Rd(J

b0(x, y) − Jb(x, y)) dy. It is easy to see that q is

a bounded function on Rd and Jb(x, y) = Jb0(x, y) for |x − y| ≤ 1. Moreover, by the (1.27)

and (5.28), there exist two positive constants c3 and c4 so that c3 ≤ Jb(x,y)

Jb0 (x,y)
≤ c4 for all

|x − y| > 1 and any bounded b with ‖b‖∞ ≤ A. Hence, there is a positive constant c5 so that

|F (x, y)| ≤ c5(|x − y|2 ∧ 1). Let T b0,F
t be the semigroup T b,F

t defined by (5.22) but with b0 in
place of b. By (5.26)-(5.28) above and [10, Theorem 1.3], the non-local Feynman-Kac semigroup

(T b0,F
t , t ≥ 0) has a continuous density q̃(t, x, y) and there is a positive constant c6 so that for

all (t, x, y) ∈ (0, 1] × Rd × Rd,

c−1
6 p0(t, x, y) ≤ q̃(t, x, y) ≤ c6p0(t, x, y). (5.29)

On the other hand, for each f in C2
b (R

d),

Lb0,F f(x) = Lb0f(x) +

∫

Rd

(eF (x,y) − 1)f(y)Jb0(x, y) dy + q(x)f(x)

= Lb0f(x) +

∫

Rd

(
Jb(x, y)− Jb0(x, y)

)
(f(y)− f(x)) dy

= Lbf(x).

By taking f = 1 in Proposition 5.15, we get T b0,F
t 1 = 1. Hence q̃(t, x, y) uniquely determines a

conservative Feller process Ỹ with {T b0,F
t ; t ≥ 0} as its transition semigroup. Proposition 5.15

implies that the distribution of Ỹ on the canonical Skorokhod space D([0,∞),Rd) is a solution
to the martingale problem (Lb, C2

b (R
d)) and in particular to the martingale problem (Lb,S(Rd)).

However by Theorem 1.3, martingale solution to the operator (Lb,S(Rd)) is unique. This yields
that q̃ = qb and so we get the desired conclusion from (5.29).
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mates for finite range jump processes. Math. Ann. 342 (2008), 833-883.

[9] Z.-Q. Chen, P. Kim and R. Song, Dirichlet heat kernel estimates for fractional Laplacian
under gradient perturbation. Ann. Probab. 40 (2012), 2483-2538.

[10] Z.-Q. Chen, P. Kim and R. Song, Stability of Dirichlet heat kernel estimates for non-local
operators under Feynman-Kac perturbation. Preprint 2012.

[11] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets. Stoch.
Process Appl., 108 (2003), 27-62.

[12] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of mixed types on
metric measure spaces. Probab. Theory Relat. Fields, 140 (2008), 270-317.

[13] Z.-Q. Chen and L. Wang, Uniqueness of stable processes with drift. Preprint, 2013.

[14] Z.-Q. Chen and Z. Zhao, Potential theory for elliptic systems. Ann. Probab. 24 (1996),
293-319.

[15] K. L. Chung, Lectures from Markov Processes to Brownian Motion. Springer-Verlag, Berlin
and Heidelberg, 1982.

[16] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence. Wiley,
New York 1986.

[17] N. Jacob, Pseudo Differential Operators and Markov Processes. I, II and III. Imperial
College Press, London, 2001, 2002 and 2005.

[18] T. Komatsu, Markov processes associated with certain integro-differential operators. Osaka

J. Math. 10 (1973), 271-303.

44



[19] T. Komatsu, On the martingale problem for generators of stable processes with perturba-
tions. Osaka J. Math. 21 (1984), 113-132.

[20] P.-A. Meyer, Renaissance, recollements, mélanges, raletissement de processus de Markov.
Ann. Inst. Fourier 25 (1975), 464-497.

[21] R. Mikulevicious and G. Pragarauskas, On the martingale problem associated with nonde-
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