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Abstract

In this paper, we derive explicit sharp two-sided estimates for the Dirichlet heat kernels,

in C1,1 open sets D in R
d, of a large class of subordinate Brownian motions with Gaussian

components. When D is bounded, our sharp two-sided Dirichlet heat kernel estimates hold

for all t > 0. Integrating the heat kernel estimates with respect to the time variable t, we

obtain sharp two-sided estimates for the Green functions, in bounded C1,1 open sets, of such

subordinate Brownian motions with Gaussian components.
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1 Introduction

It is well-known that, for a second order elliptic differential operator L on R
d satisfying some

natural conditions, there is a diffusion process X on R
d with L as its infinitesimal generator. The

fundamental solution p(t, x, y) of ∂tu = Lu (also called the heat kernel of L) is the transition density

of X. Such relationship is also true for a large class of Markov processes with discontinuous sample

paths, which constitute an important family of stochastic processes in probability theory that have

been widely used in various applications. Thus obtaining sharp two-sided estimates for p(t, x, y) is

a fundamental problem in both analysis and probability theory.

Two-sided heat kernel estimates for diffusions on R
d have a long history and many beautiful

results have been established. See [20, 22] and the references therein. But, due to the complication

near the boundary, two-sided estimates for the transition density (equivalently, the Dirichlet heat

kernels) of killed Brownian motion in a connected open set D have been established only recently.
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†This research was supported by Basic Science Research Program through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education, Science and Technology (0409-20120034).
‡Research supported in part by a grant from the Simons Foundation (208236).
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See [21, 22, 23] for upper bound estimates and [31] for the lower bound estimates of the Dirichlet heat

kernels in bounded C1,1 connected open sets. For discontinuous processes (or, non-local operators),

the study of their global heat kernel estimates started quite recently. See [5, 6, 14, 15, 16] and

the references therein. See also [3] for a recent survey on this topic. The study of sharp two-sided

Dirichlet heat kernel estimates for discontinuous processes is even more recent. In [7], we obtained

sharp two-sided estimates for the Dirichlet heat kernel of the fractional Laplacian ∆α/2 in any C1,1

open set D with zero exterior condition on Dc (or equivalently, the transition density function of

the killed α-stable process in D).

In the last few years, the approach developed in [7] has served as a road map for establishing

sharp two-sided Dirichlet heat kernel estimates for other purely discontinuous processes in open

subsets of Rd. In [8, 9, 11], the ideas of [7] were adapted and further developed to establish sharp

two-sided Dirichlet heat kernel estimates of censored stable-like processes, mixed stable processes

and relativistic stable processes in C1,1 open subsets of Rd. In [2], a Varopoulos type factorization

estimate in terms of surviving probabilities was obtained for the transition densities of symmetric

stable processes in κ-fat open sets. Very recently, we obtained, in [12], a Varopoulos type factor-

ization estimate for the Dirichlet heat kernels in non-smooth open sets for a large class of purely

discontinuous subordinate Brownian motions. We have also obtained in [12] explicit sharp two-

sided Dirichlet heat kernel estimates for a large class of subordinate Brownian motions in C1,1 open

sets.

Things become more complicated when one deals with Lévy processes having both Gaussian

and jump components. In [10], sharped two-sided heat kernel estimates in C1,1 open sets are

established for Lévy processes that can be written as the independent sum of a Brownian motion

and a symmetric α-stable process. A key ingredient is the boundary Harnack principle for ∆+∆α/2

in C1,1 open sets with explicit boundary decay rates, obtained in [13].

The purpose of this paper is to establish sharp two-sided Dirichlet heat kernel estimates, in

C1,1 open sets, for a large class of subordinate Brownian motions with Gaussian components.

Throughout this paper, we will always assume that S = (St : t ≥ 0) is a complete subordinator

with a positive drift and, without loss of generality, we shall assume that the drift of S is equal to

1. That is, the Laplace exponent of S is a complete Bernstein function which can be written as

φ(λ) := λ+ ψ(λ) with ψ(λ) :=

∫

(0,∞)
(1− e−λt)µ(dt), (1.1)

where µ is a measure on (0,∞) satisfying
∫∞
0 (1 ∧ t)µ(dt) < ∞. µ is called the Lévy measure of

the subordinator S (or of φ). We will exclude the trivial case of St = t, that is, the case of ψ ≡ 0.

By the definition of complete Bernstein functions, the Lévy measure µ has a complete monotone

density. By a slight abuse of notation we will denote the density by µ(t). For basic facts on complete

Bernstein functions, we refer the reader to [30]. In this paper, we will assume the following growth

condition on µ(t) near zero: For any K > 0, there exists c = c(K) > 1 such that

µ(r) ≤ cµ(2r), r ∈ (0,K). (1.2)

Suppose that B = (Bt : t ≥ 0) is a Brownian motion in R
d with infinitesimal generator ∆ and

independent of S. Then the process X = (Xt : t ≥ 0) defined by Xt = BSt is called a subordinate

Brownian motion. X can be written as the independent sum of a Brownian motion and a purely
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discontinuous subordinate Brownian motion. The infinitesimal generator of X is

LX := −φ(−∆) = ∆− ψ(−∆),

and ψ(−∆) is a non-local operator. The Lévy density J of X is given by

J(x) = j(|x|) =
∫ ∞

0
(4πt)−d/2e−|x|2/4tµ(t)dt. (1.3)

The function J(x) determines a Lévy system for X, which describes the jumps of the process X:

for any non-negative measurable function f on R+×R
d×R

d with f(s, y, y) = 0 for all y ∈ R
d, any

stopping time T (with respect to the filtration of X) and any x ∈ R
d,

Ex



∑

s≤T

f(s,Xs−,Xs)


 = Ex

[∫ T

0

(∫

Rd

f(s,Xs, y)J(Xs − y)dy

)
ds

]
(1.4)

(see, for example, [14, Proof of Lemma 4.7] and [15, Appendix A]).

The function j is obviously a decreasing function on (0,∞). Using this and the fact that J is

a Lévy density (and so
∫
Rd(1 ∧ |x|2)j(|x|)dx < ∞), we can easily get that, for any K > 0, there

exists c = c(K) > 0 such that

j(r) ≤ cr−d−2 for r ∈ (0,K]. (1.5)

In fact, we have for s ∈ (0,K],

1

d+ 2
j(s)sd+2 =

∫ s

0
rd+1j(s)dr ≤

∫ s

0
rd+1j(r)dr ≤

∫ K

0
rd+1j(r)dr =: c(K) <∞,

from which (1.5) follows immediately.

The subordinate Brownian motion X has a transition density p(t, x, y) with respect to the

Lebesgue measure. Observe that p(t, x, y) is given by p(t, x, y) = p(t, |x− y|) where

p(t, r) =

∫ ∞

0
(4πs)−d/2e−

r2

4s P(St ∈ ds) ∀t > 0, r ≥ 0. (1.6)

Clearly r → p(t, r) is monotonically deceasing. For any open set D ⊂ R
d, we will use XD to denote

the part process of X killed upon leaving D. The process XD has a transition density pD(t, x, y)

with respect to the Lebesgue measure on D. The density pD(t, x, y) is the fundamental solution of

LX in D with zero exterior condition, which is also called the Dirichlet heat kernel of LX in D.

The goal of this paper is to establish explicit sharp two-sided estimates for pD(t, x, y) in C1,1

open sets D under the above assumptions. Throughout the remainder of this paper, we assume

that d ≥ 1. The Euclidean distance between x and y will be denoted as |x− y|. We will use B(x, r)

to denote the open ball centered at x ∈ R
d with radius r > 0. For a, b ∈ R, a ∧ b := min{a, b}

and a ∨ b := max{a, b}. We also define J(x, y) = J(y − x). For any Borel set A ⊂ R
d, we will

use diam(A) to denote its diameter and |A| to denote its Lebesgue measure. For any two positive

functions f and g, f ≍ g means that there is a positive constant c ≥ 1 so that c−1 g ≤ f ≤ c g on

their common domain of definition.
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We will show in this paper (see Remark 2.7 below) that under the above assumptions, for every

T > 0, there exists a constant c0 = c0(T, d, ψ) > 0 so that

p(t, r) ≥ c0

(
t−d/2e−r2/4t + t−d/2 ∧ (tj(r))

)

for all (t, r) ∈ (0, T ] × [0,∞). To get an explicit Dirichlet heat kernel upper bound estimates, we

will need to assume the following upper bound condition on p(t, r) for r ≤diam(D): For any T > 0,

there exist Cj ≥ 1, j = 1, 2, 3, such that for all (t, r) ∈ (0, T ]× [0, diam(D)],

p(t, r) ≤ C1

(
t−d/2e−r2/C2t + t−d/2 ∧ (tj(r/C3))

)
. (1.7)

In [16], a DeGiorgi-Nash-Moser-Aronson type theory has been established for a large class of

symmetric Markov processes on R
d with infinitesimal generators of the form

Lu(x) =
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u(x)

∂xj

)
+ lim

ε↓0

∫

{y∈Rd: |y−x|>ε}
(u(y)− u(x))

c(x, y)

|x − y|dΦ(|x− y|)dy, (1.8)

where (aij(x))1≤i,j≤d is a measurable d × d matrix-valued measurable function on R
d that is uni-

formly elliptic and bounded, c(x, y) is a measurable symmetric kernel that is bounded between two

positive constants, and Φ(r) is a positive increasing function in r ∈ (0,∞). If Φ satisfies suitable

growth conditions near zero and infinity, sharp two-sided estimates on the transition density of this

class of Markov processes have been obtained in [16]. In this case, the transition density p(t, x, y)

of such a process admits the following estimates: for any T > 0, there exist cj ≥ 1 such that for all

(t, x, y) ∈ (0, T ] × R
d × R

d,

p(t, x, y) ≥ c−1
1

(
t−d/2e−c2|x−y|2/t + t−d/2 ∧ (tj(c3|x− y|))

)

p(t, x, y) ≤ c1

(
t−d/2e−|x−y|2/c2t + t−d/2 ∧ (tj(|x − y|/c3))

)

with j(r) = r−d (Φ(r))−1. These estimates can be regarded as the counterpart of Aronson’s esti-

mates for non-local operators. When (aij) is a constant matrix and c(x, y) = c(|x−y|) is a function

of |x−y|, the Markov process X with generator L of (1.8) is a rotationally symmetric Lévy process

on R
d with Lévy measure j(|z|)dz = c(|z|)

|z|d Φ(|z|) dz. In this case, the Lévy exponent of X is

Ψ(ξ) =
d∑

i,j=1

aijξiξj +

∫

Rd

(1− cos(ξ · z)) c(|z|)
|z|d Φ(|z|) dz, ξ ∈ R

d. (1.9)

For the subordinate Brownian motion X considered in this paper, its Lévy exponent is φ(|ξ|2),
where φ is defined in (1.1), which admits an expression of the form

φ(|ξ|2) = |ξ|2 +
∫

Rd

(1− cos(ξ · z)) J(z)dz = |ξ|2 + ψ(|ξ|2), (1.10)

where J is defined in (1.3). When the complete Bernstein function ψ satisfies the following condition

near infinity: there exist constants δk ∈ (0, 1), ak > 0, k = 1, 2, and R1 > 0 such that

a1λ
δ1ψ(r) ≤ ψ(λr) ≤ a2λ

δ2ψ(r) for λ ≥ 1 and r ≥ R1, (1.11)
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then (see [28, Lemma 3.2])

J(x) ≍ 1

|x|dΦ(|x|) for |x| ≤ 1,

with a positive increasing function Φ satisfying the growth conditions in [16] for r ≤ 1. Then one

can use the heat kernel estimates in [16] and an argument similar to the proof of [5, Theorem 2.4]

to show that the estimate (1.7) holds for X for any bounded open set D with C3 = 1.

If, in addition to (1.11), ψ also satisfies the following condition near zero: there exist constants

δk ∈ (0, 1), ak > 0, k = 3, 4, and R2 > 0 such that

a3λ
δ3ψ(r) ≤ ψ(λr) ≤ a4λ

δ4ψ(r) for λ ≤ 1 and r ≤ R2, (1.12)

then (see [28, Theorem 3.4])

J(x) ≍ 1

|x|dΦ(|x|) for x 6= 0

with a positive increasing function Φ satisfying the conditions in [16] for all r > 0. So it follows

from the heat kernel estimates in [16] that the estimate (1.7) holds for X with D = R
d and C3 = 1.

To state the main result of this paper, we first recall that an open set D in R
d (when d ≥ 2)

is said to be a (uniform) C1,1 open set if there exist a localization radius R0 > 0 and a constant

Λ0 > 0 such that for every z ∈ ∂D, there exist a C1,1-function ϕ = ϕz : Rd−1 → R satisfying

ϕ(0) = 0, ∇ϕ(0) = (0, . . . , 0), ‖∇ϕ‖∞ ≤ Λ0, |∇ϕ(x) − ∇ϕ(z)| ≤ Λ0|x − z|, and an orthonormal

coordinate system CSz with its origin at z such that

B(z,R0) ∩D = {y = (ỹ, yd) in CSz : |y| < R0, yd > ϕ(ỹ)}.

The pair (R0,Λ0) is called the characteristics of the C1,1 open set D. Note that a C1,1 open set

D with characteristics (R0,Λ0) can be unbounded and disconnected; the distance between two

distinct components of D is at least R0. Let δ∂D(x) be the Euclidean distance between x and ∂D.

It is well-known that any C1,1 open set D satisfies both the uniform interior ball condition and the

uniform exterior ball condition: there exists r0 = r0(R0,Λ0) ∈ (0, R0] such that for any x ∈ D with

δ∂D(x) < r0 and y ∈ R
d \ D with δ∂D(y) < r0, there are zx, zy ∈ ∂D so that |x − zx| = δ∂D(x),

|y − zy| = δ∂D(y) and that B(x0, r0) ⊂ D and B(y0, r0) ⊂ R
d \D for x0 = zx + r0(x− zx)/|x− zx|

and y0 = zy + r0(y − zy)/|y − zy|. By a C1,1 open set in R we mean an open set which can be

written as the union of disjoint intervals so that the minimum of the lengths of all these intervals

is positive and the minimum of the distances between these intervals is positive.

For an open set D ⊂ R
d and x ∈ D, we will use δD(x) to denote the Euclidean distance between

x and Dc. For an open set D ⊂ R
d and λ0 ∈ [1,∞), we say the path distance in each connected

component of D is comparable to the Euclidean distance with characteristic λ0 if for every x, y in

the same component of D there is a rectifiable curve l in D connecting x to y such that the length

of l is no larger than λ0|x− y|. Clearly, such a property holds for all bounded C1,1 open sets, C1,1

open sets with compact complements and connected open sets above graphs of C1,1 functions.

For any open set D ⊂ R
d and positive constants c1 and c2, we define

hD,c1,c2(t, x, y) :=

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−d/2e−c1|x−y|2/t + t−d/2 ∧ (tJ(c2x, c2y))

)
. (1.13)

The following is the main result of this paper.
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Theorem 1.1 Suppose that X is a subordinate Brownian motion with Lévy exponent φ(|ξ|2) with
φ being a complete Bernstein function satisfying (1.1) and (1.2). Suppose that D is a C1,1 open

subset of Rd with characteristics (R0,Λ0).

(i) If the path distance in each connected component of D is comparable to the Euclidean distance

with characteristic λ0, then for every T > 0, there exist c1 = c1(R0,Λ0, λ0, T, ψ, d) > 0 and

c2 = c2(R0,Λ0, λ0, d) > 0 such that for all (t, x, y) ∈ (0, T ] ×D ×D,

pD(t, x, y) ≥ c1 hD,c2,1(t, x, y).

(ii) If D satisfies (1.7), then for every T > 0, there exists c3 = c3(R0,Λ0, T, d, ψ,C1, C3, d) > 1

such that for all (t, x, y) ∈ (0, T ] ×D ×D,

pD(t, x, y) ≤ c3 hD,C4,C5(t, x, y),

where C4 = (16C2)
−1 and C5 = (8 ∨ 4C3)

−1.

(iii) If D is bounded, then for every T > 0, there exists c4 = c4(diam(D), R0,Λ0, T, ψ, d) > 0 such

that for all (t, x, y) ∈ [T,∞)×D ×D,

pD(t, x, y) ≥ c4 e
−λ1tδD(x)δD(y),

where −λ1 < 0 is the largest eigenvalue of the generator of XD.

(iv) If D is bounded and satisfies (1.7), then for every T > 0, there exists c5 = c5(diam(D),

R0,Λ0, T, ψ, d, C1, C2, C3) > 0 such that for all (t, x, y) ∈ [T,∞)×D ×D,

pD(t, x, y) ≤ c5 e
−λ1t δD(x)δD(y).

When D = B(x0, r), it follows as a special case of [17, Theorem 4.5(ii)] that φ(λD1 )/2 ≤ λ1 ≤
φ(λD1 ), where λD1 is the smallest eigenvalue of −∆ in D. It follows from the scaling property

of Brownian motion (or Laplacian) that λ
B(x0,r)
1 = cr−2, where c = c(d) is a positive constant

that depends only on the dimension d. When D is a bounded C1,1 open set in R
d with C1,1-

characteristics (R0,Λ0), D contains a ball of radius r0 and is contained in a ball of radius diam(D),

where r0 = r0(R0,Λ0) is such that D satisfies the uniform interior ball condition with radius r0. By

the domain monotonicity of the first eigenvalue λ1, one concludes from above that λ1 is bounded

between two positive constants that depend only on R0,Λ0, ψ, diam(D) and d.

Note that the explicit upper bound estimates in Theorem 1.1 are established under the assump-

tion that the upper bound (1.7) for p(t, x, y) holds. If, instead of (1.7), we assume that there exist

constants δ ∈ (0, 1) and C6 > 0 such that the function ψ in (1.1) has the property

ψ(λr) ≤ C6λ
δψ(r) for λ ≥ 1 and r ≥ 1, (1.14)

we can establish the following upper bound on the Dirichlet heat kernel in terms of p(t, x, y) and

the boundary decay terms.

Theorem 1.2 Suppose that X is a subordinate Brownian motion with Lévy exponent φ(|ξ|2) with
φ being a complete Bernstein function satisfying (1.1), (1.2) and (1.14). Suppose that D is a C1,1

open subset of Rd with characteristics (R0,Λ0).
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(i) For every T > 0, there exists c1 = c1(R0,Λ0, T, ψ, d) > 0 such that for all t ∈ (0, T ] and all

x, y ∈ D,

pD(t, x, y) ≤ c1

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
p(t, x/4, y/4).

(ii) If D is bounded, then for every T > 0, there exists c2 = c2(diam(D), R0,Λ0, d, T, ψ) ≥ 1 such

that for all (t, x, y) ∈ [T,∞)×D ×D,

c−1
2 e−λ1t δD(x)δD(y) ≤ pD(t, x, y) ≤ c2 e

−λ1t δD(x)δD(y), (1.15)

where −λ1 < 0 is the largest eigenvalue of the generator of XD.

By integrating the two-sided heat kernel estimates in Theorem 1.1 with respect to t, we can

easily obtain sharp two-sided estimates on the Green function GD(x, y) :=
∫∞
0 pD(t, x, y)dt. For

this, let

gD(x, y) :=





1
|x−y|d−2

(
1 ∧ δD(x)δD(y)

|x−y|2
)

when d ≥ 3,

log
(
1 + δD(x)δD(y)

|x−y|2
)

when d = 2,
(
δD(x)δD(y)

)1/2 ∧ δD(x)δD(y)
|x−y| when d = 1.

(1.16)

Corollary 1.3 Suppose that X is a subordinate Brownian motion with Lévy exponent φ(|ξ|2) with
φ being a complete Bernstein function satisfying (1.1) and (1.2). Suppose that D is a bounded C1,1

open subset of Rd with characteristics (R0,Λ0).

(i) There exists c1 = c1(diam(D), R0,Λ0, ψ, d) > 0 such that

GD(x, y) ≥ c1 gD(x, y), x, y ∈ D.

(ii) If D satisfies (1.7), then there exists c2 = c2(diam(D), R0,Λ0, ψ, C1, C2, C3, d) > 0 such that

GD(x, y) ≤ c2 gD(x, y), x, y ∈ D.

We remark that even though D may be disconnected, in contrast with the Brownian motion case,

the process XD is always irreducible because XD can jump from one component of D to another.

Denote by G0
D(x, y) the Green function of Brownian motion in D. It is known (see [19]) that

G0
D(x, y) ≍ gD(x, y) when x and y are in the same component of D, and G0

D(x, y) = 0 otherwise.

Thus when D is a bounded C1,1 connected open subset of Rd, the estimates in Corollary 1.3 are

exactly the same as those for Brownian motion, while our heat kernel estimates (Theorem 1.1(i)–

(ii)) detect a short-time and short-distance region, precisely t ≤ |x−y|2 ≤ 1 and δD(x)∧δD(y) ≥
√
t,

where the jump part is the dominant term. When φ(λ) = λ+λα/2, Theorem 1.1 and Corollary 1.3

in particular recover the main results of [10].

Throughout this paper the constants r0, R0, λ0, Λ0, and Ci, i = 1, . . . , 6, will be fixed. We use

c1, c2, · · · to denote generic constants, whose exact values are not important and can change from

one appearance to another. The labeling of the constants c1, c2, · · · starts anew in the statement

of each result. We use c(α, β, ...) to indicate a positive constant that depends on the parameters α,

β, ... Dependence on dimension d will not be explicitly mentioned. We will use dx to denote the

Lebesgue measure in R
d.
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2 Lower bound estimate

In this section we derive the lower bound estimate on pD(t, x, y) whenD is a C1,1 open set such that

the path distance in each connected component of D is comparable to the Euclidean distance. As

a consequence, we also get the lower bound estimate on p(t, x, y) in R
d. We will use some relation

between killed subordinate Brownian motions and subordinate killed Brownian motions. In this

paper we always assume that X is a subordinate Brownian motion with Lévy exponent φ(|ξ|2) with
φ being a complete Bernstein function satisfying (1.1) and (1.2).

Let S̃t be a subordinator whose Laplace exponent ψ is given by (1.1). Then t + S̃t is a sub-

ordinator which has the same law as St. Assume that S̃t is independent of the Brownian motion

B in R
d. Suppose that U is an open subset of Rd. We denote by BU the part process of B killed

upon leaving U . The process {ZU
t : t ≥ 0} defined by ZU

t = BU
t+S̃t

is called a subordinate killed

Brownian motion in U . Let qU(t, x, y) be the transition density of ZU . Denote by ζZ,U the lifetime

of ZU . Clearly, ZU
t = Bt+S̃t

for every t ∈ [0, ζZ,U ). Therefore we have

pU (t, z, w) ≥ qU (t, z, w) for (t, z, w) ∈ (0,∞) × U × U. (2.1)

By [1, Proposition III.8], for every b > 0, there exist constants T0 > 0 and c > 0 so that

P(S̃t ≤ b t) > c for t ≤ T0.

Using the Markov property of S̃t, we can easily deduce that for every b > 0 and T > 0, there exists

c = c(b, T, ψ) > 0 such that

P(S̃t ≤ b t) > c for t ≤ T. (2.2)

These facts (with b = 1) will be used in the proof of the following lemma.

Lemma 2.1 Suppose that D is a C1,1 open set in R
d with characteristics (R0,Λ0) such that the

path distance in each connected component of D is comparable to the Euclidean distance with char-

acteristic λ0. For every constant T > 0, there exist positive constants c1 = c1(R0,Λ0, λ0,MT,ψ)

and c2 = c2(R0,Λ0, λ0) such that for all λ ∈ (0,M ], t ∈ (0, T ] and x, y in the same connected

component of
√
λD,

p√λD(λt, x, y) ≥ c1(λt)
−d/2

(
1 ∧

δ√λD(x)√
λt

)(
1 ∧

δ√λD(y)√
λt

)
e−c2|x−y|2/(λt). (2.3)

Proof. Suppose that λ−1/2x and λ−1/2y are in the same component, say U , of D. Let p̃U(t, z, w) be

the transition density of BU . By [18, Theorem 3.3] (see also [31, Theorem 1.2]), there exist positive

constants c1 = c1(R0,Λ0, λ0, T ) and c2 = c2(R0,Λ0, λ0) such that for any (s, z, w) ∈ (0, 2T ]×U×U ,

p̃U (s, z, w) ≥ c1

(
1 ∧ δU (z)√

s

)(
1 ∧ δU (w)√

s

)
s−d/2e−c2|z−w|2/s. (2.4)

(Although not explicitly mentioned in [18], a careful examination of the proofs in [18] reveals

that the constants c1 and c2 in the above lower bound estimate can be chosen to depend only on

(R0,Λ0, λ0, T ) and (R0,Λ0, λ0), respectively.) By using the scaling property of Brownian motion,

we get that, for every λ > 0, t ∈ (0, T ] and x, y in
√
λU ,

p̃√λU (λt, x, y) = λ−d/2p̃U (t, λ
−1/2x, λ−1/2y).

8



Thus by (2.4),

p̃√λU (λt, x, y) ≥ c1(λt)
−d/2

(
1 ∧ δU (λ

−1/2x)√
t

)(
1 ∧ δU (λ

−1/2y)√
t

)
e−c2|x−y|2/(λt)

= c1(λt)
−d/2

(
1 ∧

δ√λU (x)√
λt

)(
1 ∧

δ√λU (y)√
λt

)
e−c2|x−y|2/(λt). (2.5)

Now we assume λ ∈ (0,M ]. Recall that S̃t is independent of B and that q√λU (t, x, y) is the

transition density of Z
√
λU

t = B
√
λU

t+S̃t
. Note that for every 0 < t ≤ T and x, y in

√
λU ,

q√λU (λt, x, y) =

∫ ∞

λt
p̃√λU (s, x, y)P(λt+ S̃λt ∈ ds).

So by (2.1), (2.2) and (2.5), for every 0 < t ≤ T , λ ∈ (0,M ] and x, y in
√
λU ,

p√λD(λt, x, y) ≥ p√λU (λt, x, y) ≥ q√λU (λt, x, y)

≥
∫ 2λt

λt
p̃√λU (s, x, y)P(λt+ S̃λt ∈ ds)

=

∫ λt

0
p̃√λU (λt+ s, x, y)P(S̃λt ∈ ds)

≥ c3

(
1 ∧

δ√λU (x)√
t

)(
1 ∧

δ√λU (y)√
t

)
(λt)−d/2e−c2|x−y|2/(λt)

P(S̃λt ≤ λt)

≥ c4

(
1 ∧

δ√λU (x)√
t

)(
1 ∧

δ√λU (y)√
t

)
(λt)−d/2e−c2|x−y|2/(λt)

= c4

(
1 ∧

δ√λD(x)√
t

)(
1 ∧

δ√λD(y)√
t

)
(λt)−d/2e−c2|x−y|2/(λt).

✷

Remark 2.2 Note that the Brownian motion B in R
d with infinitesimal generator ∆ has transition

density

p̃(t, x, y) = (4πt)−d/2e−
|x−y|2

4t , x, y ∈ R
d, t > 0 .

Using this instead of (2.4) and an argument similar to (but easier than) the proof of Lemma 2.1

with λ = 1 we can get that, for any T > 0, there exists a positive constant c = c(T, ψ) such that

for all t ∈ (0, T ] and x, y in R
d,

p(t, x, y) ≥ c1t
−d/2e−

|x−y|2

4t .

Lemma 2.3 For any positive constants R and a, there exists c = c(R, a, ψ) > 0 such that for all

z ∈ R
d and r ∈ (0, R],

inf
y∈B(z,r)

Py

(
τB(z,2r) > ar2

)
≥ c.

9



Proof. By Lemma 2.1, we have

inf
y∈B(z,r)

Py

(
τB(z,2r) > ar2

)
≥ P0

(
τB(0,r) > ar2

)
=

∫

B(0,r)
pB(0,r)(ar

2, 0, y)dy

≥
∫

B(0,r/2)
pB(0,r)(ar

2, 0, y)dy

≥
∫

B(0,r/2)
c1 (ar

2)−d/2

(
1 ∧

δB(0,r)(0)√
ar2

)(
1 ∧

δB(0,r)(y)√
ar2

)
e−c2|y|2/(ar2)dy

= c2

∫

B(0,1/2)
a−d/2

(
1 ∧

δB(0,1)(0)√
a

)(
1 ∧

δB(0,1)(z)√
a

)
e−c2|z|2/adz

= c3(R, a, ψ) > 0.

✷

Recall that we assume that (1.2) holds. On the other hand, since φ is a complete Bernstein

function, it follows from [26, Lemma 2.1] that there exists c1 > 1 such that µ(t) ≤ c1µ(t + 1) for

every t > 1. Thus by [25, Proposition 13.3.5] and its proof, we have that for any K > 0, there

exists c2 = c2(K) > 1 such that

j(r) ≤ c2 j(2r), ∀r ∈ (0,K], (2.6)

and, there exists c3 > 1 such that

j(r) ≤ c3 j(r + 1), ∀r ≥ 1. (2.7)

Lemma 2.4 Suppose that R > 0 and b > 1 are constants. Then there exists c = c(R, b, ψ) > 0

such that for all r ∈ (0, R], t ∈ [r2/b, br2] and u, v ∈ R
d,

pB(u,r)∪B(v,r)(t, u, v) ≥ c (t−d/2 ∧ (tJ(u, v))).

Proof. Let r ∈ (0, R], t ∈ [r2/b, br2] and E = B(u, r) ∪ B(v, r). If |u − v| ≤ r/2, by Lemma 2.1

(with T = b,
√
λ = r and D = B(0, 1)) and (1.5),

pE(t, u, v) ≥ inf
|z|<r/2

pB(0,r)(t, 0, z) = inf
|z|<r/2

pB(0,r)(r
2(t/r2), 0, z)

≥ c1t
−d/2

(
1 ∧ r√

t

)(
1 ∧ r

2
√
t

)
e−c2r2/t ≥ c3t

−d/2 ≥ c4(tJ(u, v) ∧ t−d/2).

If |u− v| ≥ r/2, we have by the strong Markov property and the Lévy system of X in (1.4) that

pE(t, u, v) ≥ Eu

[
pE(t− τB(u,r/8),XτB(u,r/8)

, v) : τB(u,r/8) < t,XτB(u,r/8)
∈ B(v, r/8)

]

=

∫ t

0

(∫

B(u,r/8)
pB(u,r/8)(s, u,w)

(∫

B(v,r/8)
J(w, z)pE(t− s, z, v)dz

)
dw

)
ds

≥
(

inf
w∈B(u,r/8), z∈B(v,r/8)

J(w, z)

)∫ t

0
Pu

(
τB(u,r/8) > s

)
(∫

B(v,r/8)
pE(t− s, z, v)dz

)
ds

10



≥ Pu(τB(u,r/8) > t)

(
inf

w∈B(u,r/8), z∈B(v,r/8)
J(w, z)

)∫ t

0

∫

B(v,r/8)
pB(v,r/8)(t− s, z, v)dzds

= P0(τB(0,r/8) > t)

(
inf

w∈B(u,r/8), z∈B(v,r/8)
j(|w − z|)

)∫ t

0
P0(τB(0,r/8) > s)ds

≥ t
(
P0(τB(0,r/8) > br2)

)2
(

inf
w∈B(u,r/8), z∈B(v,r/8)

j(|w − z|)
)

≥ c5t

(
inf

w∈B(u,r/8), z∈B(v,r/8)
j(|w − z|)

)
.

In the last inequality we have used Lemma 2.3. Note that, if w ∈ B(u, r/8) and z ∈ B(v, r/8), then

|w − z| ≤ |u− w|+ |u− v|+ |v − z| ≤ |u− v|+ r

4
≤ (2|u− v|) ∧ (|u− v|+ R

4
).

Thus using both (2.6) and (2.7) we have

pE(t, u, v) ≥ c6tj(|u − v|) ≥ c6(tJ(u, v) ∧ t−d/2) .

The proof is now complete. ✷

The next lemma in particular implies that if x and y are in different components of D, the

jumping kernel component of the heat kernel dominates the Gaussian component.

Lemma 2.5 For any given positive constants c1, c2, R and T , there is a positive constant c3 =

c3(R,T, c1, c2, ψ) so that

t−d/2e−r2/(c1t) ≤ c3(t
−d/2 ∧ (tj(c2r))) for every r ≥ R and t ∈ (0, T ]. (2.8)

Proof. Observe that (2.7) implies that there exist c4 > 0 and c5 > 0 such that

j(c2r) ≥ c4e
−c5r for every r > 1/c2. (2.9)

For r > (1/c2) ∨ (2c1c5T ) and t ∈ (0, T ], we have r2/(2c1t) > c5r and

t−d/2−1e−r2/(2c1t) ≤ t−d/2−1e−((1/c2)∨(2c1c5T ))2/(2c1t)

≤ sup
0<s≤T

s−d/2−1e−((1/c2)∨(2c1c5T ))2/(2c1s) =: c6 <∞.

So by (2.9), when r > (1/c2) ∨ (2c1c5T ) and t ∈ (0, T ], we have

t−d/2e−r2/(c1t) ≤ c6te
−r2/(2c1t) ≤ c6te

−c5r ≤ (c6/c4) t j(c2r). (2.10)

When R ≤ r ≤ (1/c2) ∨ (2c1c5T ) and t ∈ (0, T ], clearly

t−d/2e−r2/(c1t) ≤ t

(
sup
s≤T

s−d/2−1e−R2/(c1s)

)
≤ c7tj(c2r). (2.11)

The desired inequality (2.8) now follows from (2.10) and (2.11). ✷

Recall that the function hD,c1,c2(t, x, y) is defined in (1.13).
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Theorem 2.6 Suppose that D is a C1,1 open set in R
d with characteristics (R0,Λ0) such that the

path distance in each connected component of D is comparable to the Euclidean distance with char-

acteristic λ0. For every T > 0, there exist c1 = c1(R0,Λ0, λ0, T, ψ) > 0 and c2 = c2(R0,Λ0, λ0) > 0

such that for all (t, x, y) ∈ (0, T ] ×D ×D,

pD(t, x, y) ≥ c1hD,c2,1(t, x, y). (2.12)

Proof. First note that the distance between two distinct connected components of D is at

least R0. Hence in view of Lemmas 2.1 and 2.5, we only need to show that there exists c =

c(R0,Λ0, λ0, T, ψ) > 0 such that for all (t, x, y) ∈ (0, T ]×D ×D,

pD(t, x, y) ≥ c

(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
((tJ(x, y)) ∧ t−d/2). (2.13)

Since D is a C1,1 open set, as mentioned earlier, it satisfies the uniform interior and uniform

exterior ball conditions with radius r0 = r0(R0,Λ0) ∈ (0, R0]. Set T0 = (r0/4)
2. Consequently, there

exists L = L(r0) > 1 such that, for all t ∈ (0, T0] and x, y ∈ D, we can choose ξtx ∈ D ∩B(x,L
√
t)

and ξty ∈ D∩B(y, L
√
t) so that B(ξtx, 2

√
t) and B(ξty, 2

√
t) are subsets of the connected components

of D that contains x and y, respectively.

We first consider the case t ∈ (0, T0]. Note that for u ∈ B(ξtx,
√
t), we have

δD(u) ≥
√
t and |x− u| ≤ |x− ξtx|+ |ξtx − u| ≤ L

√
t+

√
t = (L+ 1)

√
t.

Thus by (2.3) (with λ = 1), for t ∈ (0, T0],

∫

B(ξtx,
√
t)
pD(t/3, x, u)du ≥ c1

(
δD(x)√

t
∧ 1

)∫

B(ξtx,
√
t)

(
δD(u)√

t
∧ 1

)
t−d/2e−c2|x−u|2/tdu

≥ c1

(
δD(x)√

t
∧ 1

)
t−d/2e−c2(L+1)2 |B(ξtx,

√
t)| ≥ c3

(
δD(x)√

t
∧ 1

)
. (2.14)

Similarly, for t ∈ (0, T0],

∫

B(ξty ,
√
t)
pD(t/3, y, u)du ≥ c3

(
δD(y)√

t
∧ 1

)
. (2.15)

By the semigroup property, for t ∈ (0, T0],

pD(t, x, y) ≥
∫

B(ξtx,
√
t)

∫

B(ξty ,
√
t)
pD(t/3, x, u)pD(t/3, u, v)pD(t/3, v, y)dudv. (2.16)

We consider the cases |x− y| ≥
√
t/8 and |x− y| <

√
t/8 separately.

Case 1: Suppose |x − y| ≥
√
t/8 and t ∈ (0, T0]. Note that by (2.16), Lemma 2.4, symmetry and

(2.14)–(2.15),

pD(t, x, y)

≥
∫

B(ξty ,
√
t)

∫

B(ξtx,
√
t)
pD(t/3, x, u)pB(u,

√
t/2)∪B(v,

√
t/2)(t/3, u, v)pD(t/3, v, y)dudv
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≥c4
∫

B(ξty ,
√
t)

∫

B(ξtx,
√
t)
pD(t/3, x, u)(t

−d/2 ∧ (tJ(u, v)))pD(t/3, v, y)dudv

≥c4
(

inf
(u,v)∈B(ξtx ,

√
t)×B(ξty ,

√
t)
(t−d/2 ∧ (tJ(u, v)))

)∫

B(ξty ,
√
t)

∫

B(ξtx,
√
t)
pD(t/3, x, u)pD(t/3, v, y)dudv

≥c4c23

(
inf

(u,v)∈B(ξtx ,
√
t)×B(ξty ,

√
t)
(t−d/2 ∧ (tJ(u, v)))

)(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
. (2.17)

Since |x− y| ≥
√
t/8, we have that for (u, v) ∈ B(ξtx,

√
t)×B(ξty,

√
t),

|u− v| ≤ |u− ξtx|+ |ξtx − x|+ |x− y|+ |y − ξty|+ |ξty − v|
≤ 2(1 + L)

√
t+ |x− y| ≤

(
16(1 + L)|x− y|

)
∧
(
2(1 + L)

√
T0 + |x− y|

)
,

thus using (2.6) and (2.7) we have

inf
(u,v)∈B(ξtx ,

√
t)×B(ξty ,

√
t)
(t−d/2 ∧ (tJ(u, v))) ≥ c5 (t

−d/2 ∧ (tJ(x, y))). (2.18)

Thus combining with (2.17) and (2.18), we conclude that, for |x− y| ≥
√
t/8,

pD(t, x, y) ≥ c6

(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
((tJ(x, y)) ∧ t−d/2). (2.19)

Case 2: Suppose |x− y| <
√
t/8 and t ∈ (0, T0]. Then for (u, v) ∈ B(ξtx,

√
t)×B(ξty,

√
t),

|u− v| ≤ 2(1 + L)
√
t+ |x− y| ≤ (2(1 + L) + 8−1)

√
t.

Thus by (2.3), we have for every (u, v) ∈ B(ξtx,
√
t)×B(ξty,

√
t),

pD(t/3, u, v) ≥ c7

(
δD(u)√

t
∧ 1

)(
δD(v)√

t
∧ 1

)
t−d/2e−c8|u−v|2/t ≥ c9t

−d/2.

Therefore by (2.14)–(2.16), for t ≤ T0,

pD(t, x, y) ≥ c9c
2
3

(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)
t−d/2

≥ c9c
2
3

(
δD(x)√

t
∧ 1

)(
δD(y)√

t
∧ 1

)(
(tJ(x, y)) ∧ t−d/2

)
. (2.20)

Combining (2.19) and (2.20) we get (2.13) for t ∈ (0, T0]. When T > T0 and t ∈ (T0, T ], observe

that T0/3 ≤ t−2T0/3 ≤ T −2T0/3 ≤ (T/T0−2/3)T0, that is, t−2T0/3 is comparable to T0/3 with

some universal constants that depend only on T and T0. Using the inequality

pD(t, x, y) ≥
∫

B(ξ
T0
x ,

√
T0)

∫

B(ξ
T0
y ,

√
T0)

pD(T0/3, x, u)pD(t− 2T0/3, u, v)pD(T0/3, v, y)dudv (2.21)

instead of (2.16) and by considering the cases |x− y| ≥
√
T0/8 and |x− y| <

√
T0/8 separately, we

deduce by the same argument as above that (2.13) holds for t ∈ [T0, T ] and hence for t ∈ (0, T ]. ✷
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Remark 2.7 By Lemma 2.4, we have that for every T > 0 there is a positive constant c1 = c1(ψ, T )

such that for all (t, x, y) ∈ (0, T ]× R
d × R

d,

p(t, x, y) ≥ pB(x,
√
t)∪B(y,

√
t)(t, x, y) ≥ c1

(
t−d/2 ∧ (tJ(x, y))

)
. (2.22)

Together with Remark 2.2, (2.22) yields the following global lower bound on p(t, x, y): For every

T > 0, there is a positive constant c2 = c2(ψ, T ) such that for all (t, x, y) ∈ (0, T ]× R
d × R

d,

p(t, x, y) ≥ c2

(
t−d/2e−|x−y|2/(4t) + t−d/2 ∧ (tJ(x, y))

)
. (2.23)

3 Upper bound estimate

In this section, we derive the upper bound estimate on pD(t, x, y) for C
1,1 open sets satisfying the

assumption (1.7). We first record a lemma, Lemma 3.1, which serves as the starting point for the

upper bound estimate. Applying it and using (1.7) for pD(t, x, y) on the right hand side of (3.2), we

can get an intermediate upper bound estimate for pD(t, x, y) that has one boundary decay factor.

This is done in Proposition 3.2. Applying Lemma 3.1 again but now using the intermediate upper

bound estimate for pD(t, x, y) obtained in Proposition 3.2 on the right hand side of (3.1), we can

get the desired short time sharp upper bound estimate for pD(t, x, y). This is carried out in the

proof of Theorem 1.1(ii). Recall that X is a subordinate Brownian motion with Lévy exponent

φ(|ξ|2) with φ being a complete Bernstein function satisfying (1.1) and (1.2).

Lemma 3.1 Suppose that U1, U3, E are open subsets of Rd with U1, U3 ⊂ E and dist(U1, U3) > 0.

Let U2 := E \ (U1 ∪ U3). If x ∈ U1 and y ∈ U3, then for every t > 0,

pE(t, x, y) ≤Px

(
XτU1

∈ U2

)(
sup

s<t, z∈U2

pE(s, z, y)

)

+

∫ t

0
Px(τU1 > s)Py(τE > t− s)ds

(
sup

u∈U1, z∈U3

J(u, z)

)
(3.1)

≤Px

(
XτU1

∈ U2

)(
sup

s<t, z∈U2

p(s, z, y)

)
+ (t ∧ Ex [τU1 ])

(
sup

u∈U1, z∈U3

J(u, z)

)
. (3.2)

Proof. The proof is similar to that of [10, Lemma 3.4]. For the reader’s convenience, we spell out

the details here. Using the strong Markov property of X, we have

pE(t, x, y) = Ex

[
pE
(
t− τU1 ,XτU1

, y
)
: τU1 < t

]

= Ex

[
pE
(
t− τU1 ,XτU1

, y
)
: τU1 < t,XτU1

∈ U2

]

+ Ex

[
pE
(
t− τU1 ,XτU1

, y
)
: τU1 < t,XτU1

∈ U3

]
=: I + II .

Clearly

I ≤ Px

(
XτU1

∈ U2

)(
sup

s<t, z∈U2

pE(s, z, y)

)
≤ Px

(
XτU1

∈ U2

)(
sup

s<t, z∈U2

p(s, z, y)

)
.
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On the other hand, by (1.4) and the symmetry,

II =

∫ t

0

(∫

U1

pU1(s, x, u)

(∫

U3

J(u, z)pE(t− s, z, y)dz

)
du

)
ds

≤
(

sup
u∈U1, z∈U3

J(u, z)

)∫ t

0
Px(τU1 > s)

(∫

U3

pE(t− s, z, y)dz

)
ds

≤
(

sup
u∈U1, z∈U3

J(u, z)

)∫ t

0
Px(τU1 > s)Py(τE > t− s)ds.

Finally

∫ t

0
Px(τU1 > s)Py(τE > t− s)ds ≤

∫ t

0
Px(τU1 > s)ds ≤ t ∧ Ex[τU1 ].

This completes the proof of the lemma. ✷

Recall that C1, C2 and C3 are the constants in (1.7).

Proposition 3.2 Suppose that D is a C1,1 open set in R
d with characteristics (R0,Λ0). Assume

that (1.7) holds. For every T > 0, there exists c = c(C1, C3, R0,Λ0, T, ψ) > 0 such that for all

t ∈ (0, T ] and all x, y ∈ D,

pD(t, x, y) ≤ c

(
1 ∧ δD(x)√

t

)(
t−d/2e−|x−y|2/(4C2t) + (t−d/2 ∧ tj(|x− y|/(4 ∨ 2C3)))

)
.

Proof. There exists r0 = r0(R0,Λ0) ∈ (0, R0] such that D satisfies the uniform interior and

uniform exterior ball conditions with radius r0. Fix T > 0 and t ∈ (0, T ]. Let x, y ∈ D. In view

of (1.7), we only need to show the theorem for δD(x) < r0
√
t/(16

√
T ) ≤ r0/(16), which we will

assume throughout the remainder of this proof. Choose x0 ∈ ∂D such that δD(x) = |x− x0|. Let

U1 := B(x0, r0
√
t/(8

√
T )) ∩D. (3.3)

Let n(x0) be the unit inward normal of D at the boundary point x0. Put

x1 = x0 +
r0
√
t

16
√
T
n(x0). (3.4)

Note that δD(x1) =
r0

√
t

16
√
T
. Applying the boundary Harnack principle in [27] we get

Px(XτU1
∈ D \ U1) ≤ c1Px1(XτU1

∈ D \ U1)
δD(x)

δD(x1)
≤ c1

16
√
TδD(x)

r0
√
t

.

Hence

Px(XτU1
∈ D \ U1) ≤ c2

(
1 ∧ δD(x)√

t

)
. (3.5)

By [27, Lemma 4.3],

Ex[τU1 ] ≤ c3
√
t δD(x). (3.6)
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Thus we have by (3.5) and (3.6),

Px (τD > t/2) ≤ Px (τU1 > t/2) + Px

(
XτU1

∈ D \ U1

)

≤
((2

t
Ex [τU1 ]

)
∧ 1

)
+ Px

(
XτU1

∈ D \ U1

)
≤ c4

(
1 ∧ δD(x)√

t

)
. (3.7)

Now we deal with two cases separately.

Case 1: |x− y| ≤
(√

2dC2 ∨ (r0/
√
T )
)√

t. By the semigroup property, symmetry and (1.7),

pD(t, x, y) =

∫

D
pD(t/2, x, z)pD(t/2, z, y)dz

≤
(

sup
z,w∈D

p(t/2, z, w)

)∫

D
pD(t/2, x, z)dz

≤ 21+d/2C1t
−d/2

Px(τD > t/2)

≤ c42
1+d/2C1t

−d/2

(
1 ∧ δD(x)√

t

)
,

where in the last line (3.7) is used. Since

|x− y|2/(4C2t) ≤ (d/2) ∨ (r20/(4C2T )) ≤ (d/2) ∨ (r20/(4T )), (3.8)

we have

pD(t, x, y) ≤ c42
1+d/2C1e

(d/2)∨(r20/(4T ))t−d/2e−|x−y|2/(4C2t)

(
1 ∧ δD(x)√

t

)
.

Case 2: |x− y| ≥
(√

2dC2 ∨ (r0/
√
T )
)√

t. Let

U3 := {z ∈ D : |z − x| > |x− y|/2} and U2 := D \ (U1 ∪ U3). (3.9)

Since

|z − x| > |x− y|
2

≥ r0
√
t

2
√
T

for z ∈ U3,

dist(U1, U3) > 0 and, for u ∈ U1 and z ∈ U3,

|u− z| ≥ |z − x| − |x− x0| − |x0 − u| ≥ |z − x| − r0
√
t

4
√
T

≥ |z − x|/2 ≥ |x− y|/4. (3.10)

Thus,

sup
u∈U1, z∈U3

J(u, z) ≤ c sup
(u,z):|u−z|≥ 1

4
|x−y|

j(|u− z|) ≤ c3j(|x − y|/4). (3.11)

If z ∈ U2,
3

2
|x− y| ≥ |x− y|+ |x− z| ≥ |z − y| ≥ |x− y| − |x− z| ≥ |x− y|

2
. (3.12)

We remark here that up to this point, we have not used assumption (1.7) yet in this proof.
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Observe that, for any β > 0, the function f(s) := s−d/2e−β/s is increasing on the interval

(0, 2β/d]. By (1.7), (3.12) and the observation that t ≤ |x− y|2/(2dC2),

sup
s≤t, z∈U2

p(s, z, y) ≤ C1 sup
s≤t, z∈U2

(
s−d/2e−|z−y|2/C2s + s−d/2 ∧ sJ(z/C3, y/C3)

)

≤ C1 sup
s≤t, |z−y|≥|x−y|/2

(
s−d/2e−|z−y|2/C2s + sJ(z/C3, y/C3)

)

≤ C1 sup
s≤t

s−d/2e−|x−y|2/(4C2s) + C1tj(|x − y|/(2C3))

≤ C1t
−d/2e−|x−y|2/(4C2t) + c5(t

−d/2 ∧ tj(|x− y|/(2C3))), (3.13)

where in the last line (1.5) is used. In fact, since |x− y| ≥ (r0/
√
T )

√
t, by (1.5),

tj(|x− y|/(2C3)) ≤ tj((|x− y| ∧ r0)/(2C3)) ≤ c6

(
t

|x− y|2 ∧ r20

)1+d/2

t−d/2

≤ c6(T/r
2
0)

1+d/2 t−d/2, (3.14)

where c6 > 0 depends only on C3.

By the same argument as that used to get (3.5), we can apply the boundary Harnack principle

in [27] to get

Px(XτU1
∈ U2) ≤ c7Px1(XτU1

∈ U2)
δD(x)

δD(x1)
≤ c8

δD(x)√
t
. (3.15)

Applying (3.2), (3.6), (3.11), (3.13) and (3.15), we obtain

pD(t, x, y)

≤c9
(
t−d/2e−|x−y|2/(4C2t) + t−d/2 ∧ tj (|x− y|/(2C3))

) δD(x)√
t

+ c10 tj(|x − y|/4)δD(x)√
t

≤ c11

(
t−d/2e−|x−y|2/(4C2t) + t−d/2 ∧ tj(|x− y|/(2C3 ∨ 4))

) δD(x)√
t
,

where in the last line (1.5) is used (see (3.14)). This combined with (1.7) completes the proof of

this proposition. ✷

Proposition 3.3 Suppose that D is a C1,1 open set in R
d with characteristics (R0,Λ0). Assume

that (1.7) holds. For every T > 0, there exists c = c(C1, C3, R0,Λ0, T, ψ) > 0 such that for all

t ∈ (0, T ] and all x ∈ D
Px(τD > t) ≤ c

(
1 ∧ δD(x)√

t

)
.

Proof. Fix T > 0. By Proposition 3.2 and (2.23) we have that for every 0 < t ≤ T and x, z in D,

pD(t, x, z) ≤c1
(
1 ∧ δD(x)√

t

)(
t−d/2e−|x−z|2/C2(4t) + t−d/2 ∧ (tj (|x− z|/(4 ∨ 2C3))

)

≤c3
(
1 ∧ δD(x)√

t

)
p(t, c2x, c2z),
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where c2 := (
√
C2 ∨ 4 ∨ (2C3))

−1. Thus

Px(τD > t) =

∫

D
pD(t, x, z)dz ≤ c3

(
1 ∧ δD(x)√

t

)∫

D
p(t, c2x, c2z)dz ≤ c3

(
1 ∧ δD(x)√

t

)
.

✷

Proof of Theorem 1.1: (i). This has already been established in Theorem 2.6.

(ii). Fix T > 0. There exists r0 = r0(R0,Λ0) ∈ (0, R0] such that D satisfies the uniform interior

and uniform exterior ball conditions with radius r0. Let t ∈ (0, T ] and x, y ∈ D. By Proposition

3.2, (1.7) and symmetry, we only need to prove (ii) for δD(x) ∨ δD(y) < r0
√
t/(16

√
T ) ≤ r0/(16),

which we will assume throughout the remainder of the proof of (ii).

The proof of (ii) is along the line of the proof of Proposition 3.2 but using the estimate from

Proposition 3.2 for the upper bound estimate of pD(t, x, y) on the right hand side of (3.1) rather

than using (1.7). Define U1, x0 and x1 in the same way as in the proof of Proposition 3.2 (see

(3.3)–(3.4)), and consider the following two cases separately.

Case 1: |x − y| ≤
(√

8(d + 1)C2 ∨ (r0/
√
T )
)√

t. By the semigroup property, symmetry and

Proposition 3.2,

pD(t, x, y) =

∫

D
pD(t/2, x, z)pD(t/2, z, y)dz

≤
(
sup
z∈D

pD(t/2, y, z)

)∫

D
pD(t/2, x, z)dz

≤ c1t
−d/2

(
1 ∧ δD(y)√

t

)
Px(τD > t/2)

≤ c1t
−d/2

(
1 ∧ δD(y)√

t

)(
1 ∧ δD(x)√

t

)

≤ c2t
−d/2e−|x−y|2/(16C2t)

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
, (3.16)

where in the third inequality, Proposition 3.3 is used.

Case 2: |x − y| ≥
(√

8(d+ 1)C2 ∨ (r0/
√
T )
)√

t. Define U2 and U3 as in (3.9). Note that (3.11)

holds. Moreover, for z ∈ U2, as in (3.12),

3|x− y|/2 ≥ |z − y| ≥ |x− y|/2. (3.17)

Observe that, for any β > 0, the function f(s) := s−(d+1)/2e−β/s is increasing on the interval

(0, 2β/(d + 1)]. By Proposition 3.2 (instead of (1.7)), (3.17) and the observation that t ≤ |x −
y|2/(8(d + 1)C2),

sup
s≤t, z∈U2

pD(s, z, y) ≤ c3 sup
s≤t, z∈U2

(
s−d/2e−|z−y|2/(4C2s) + s−d/2 ∧ sj(|z − y|/(4 ∨ 2C3))

)δD(y)√
s

≤ c3δD(y) sup
s≤t, |z−y|≥|x−y|/2

(
s−(d+1)/2e−|z−y|2/(4C2s) +

√
sj(|z − y|/(4 ∨ 2C3))

)

≤ c3δD(y)
(
sup
s≤t

s−(d+1)/2e−|x−y|2/(16C2s) +
√
tj(|x− y|/(8 ∨ 4C3))

)
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≤ c4
δD(y)√

t

(
t−d/2e−|x−y|2/(16C2t) + (t−d/2 ∧ tj(|x− y|/(8 ∨ 4C3))

)
, (3.18)

where in the last line we used an argument similar to that in (3.14). On the other hand, by

Proposition 3.3 we have

∫ t

0
Px(τU1 > s)Py(τD > t− s)ds ≤

∫ t

0
Px(τD > s)Py(τD > t− s)ds ≤ c5

∫ t

0

δD(x)√
s

δD(y)√
t− s

ds

= c5δD(x)δD(y)

∫ 1

0

1√
r(1− r)

dr = c6δD(x)δD(y). (3.19)

Combining (3.1), (3.11), (3.15), (3.18) and (3.19) all together, we conclude that

pD(t, x, y)

≤ c7

(
t−d/2e−|x−y|2/(16C2t) + (t−d/2 ∧ tj(|x− y|/(8 ∨ 4C3)))

) δD(x)δD(y)
t

+c8 tj(|x − y|/4)δD(x)δD(y)
t

≤ c9

(
t−d/2e−|x−y|2/(16C2t) + (t−d/2 ∧ tj(|x− y|/(8 ∨ 4C3)))

) δD(x)δD(y)
t

= c9

(
t−d/2e−|x−y|2/(16C2t) + (t−d/2 ∧ tj(|x− y|/(8 ∨ 4C3)))

)(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
,

where in the second inequality (1.5) is used (see (3.14)). This combined with (3.16) and Proposition

3.2 completes the proof of (ii).

(iii) and (iv). We first note that the path distance condition is satisfied in any bounded C1,1 open

set D with λ0 depending only on R0, Λ0 and diam(D). Thus by (i) and (ii), it suffices to prove (iii)

and (iv) for T = 3.

In view of (1.7), the transition semigroup {PD
t , t > 0} of XD consists of Hilbert-Schmidt

operators, and hence compact operators, in L2(D; dx). So PD
t has discrete spectrum {e−λkt; k ≥ 1}

arranged in decreasing order and repeated according to their multiplicity. Let {φk, k ≥ 1} be the

corresponding eigenfunctions with unit L2-norm, which forms an orthonormal basis for L2(D; dx).

Clearly, ∫

D
(1 ∧ δD(x))φ1(x)dx ≤ |D|1/2‖φ1‖L2(D) ≤ |D|1/2. (3.20)

By using the eigenfunction expansion of pD(t, x, y) =
∑∞

k=1 e
−λktφk(x)φk(y), we get

∫

D×D
(1 ∧ δD(x)) pD(t, x, y) (1 ∧ δD(y)) dxdy =

∞∑

k=1

e−tλk

(∫

D
(1 ∧ δD(x))φk(x)dx

)2

. (3.21)

Noting that λk is increasing and ‖f‖22 =
∑∞

k=1(
∫
D f(z)φk(z)dz)

2, we have for all t > 0,

∫

D×D
(1 ∧ δD(x)) pD(t, x, y) (1 ∧ δD(y)) dxdy ≤ e−tλ1

∫

D
(1 ∧ δD(x))2 dx ≤ e−tλ1 |D|. (3.22)

On the other hand, by Theorem 1.1(ii) and (3.20), there exists c1 > 0 so that for every x ∈ D,

φ1(x) = eλ1

∫

D
pD(1, x, y)φ1(y)dy
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≤ c1e
λ1 (1 ∧ δD(x))

∫

D
(1 ∧ δD(y))φ1(y)dy ≤ c1e

λ1 |D|1/2 (1 ∧ δD(x)) . (3.23)

It now follows from (3.21) that for every t > 0,

∫

D×D
(1 ∧ δD(x)) pD(t, x, y) (1 ∧ δD(y)) dxdy

≥ e−tλ1

(∫

D
(1 ∧ δD(x))φ1(x)dx

)2

≥ e−tλ1

(∫

D
(c1e

λ1 |D|1/2)−1φ1(x)
2dx

)2

= c−2
1 |D|−1 e−(t+2)λ1 . (3.24)

For t ≥ 3 and x, y ∈ D, we have that

pD(t, x, y) =

∫

D×D
pD(1, x, z)pD(t− 2, z, w)pD(1, w, y)dzdw. (3.25)

By Theorem 1.1(ii) and (3.22), there exist ci > 0, i = 2, 3, so that for every t ≥ 3 and x, y ∈ D,

pD(t, x, y)

≤ c2 (1 ∧ δD(x)) (1 ∧ δD(y))
∫

D×D
(1 ∧ δD(z)) pD(t− 2, z, w) (1 ∧ δD(w)) dzdw

≤ c2|D|e−λ1(t−2) (1 ∧ δD(x)) (1 ∧ δD(y)) ≤ c3e
−λ1t (1 ∧ δD(x)) (1 ∧ δD(y)) . (3.26)

By (3.25), Theorem 2.6, the boundedness of D and (3.24) we have that there exist ci > 0, i = 4, 5,

so that for every t ≥ 3 and x, y ∈ D,

pD(t, x, y)

≥ c4 (1 ∧ j(diam(D)))2 (1 ∧ δD(x)) (1 ∧ δD(y))
∫

D×D
(1 ∧ δD(z)) pD(t− 2, z, w) (1 ∧ δD(w)) dzdw

≥ c5 (1 ∧ j(diam(D)))2 |D|−1 (1 ∧ δD(x)) (1 ∧ δD(y)) e−tλ1 = c6 (1 ∧ δD(x)) (1 ∧ δD(y)) e−tλ1 .

The theorem is now proved. ✷

Let (E ,F) be the Dirichlet form ofX on L2(Rd; dx). It is known that (E ,F) is a regular Dirichlet

form on L2(Rd; dx) with core C1
c (R

d); see [4]. Moreover, for u ∈ C1
c (R

d),

E(u, u) :=
∫

Rd

∇u(x) · ∇v(x)dx +

∫

Rd×Rd

(u(x) − u(y))2J(x, y)dxdy (3.27)

and F := C1
c (R

d)
E1 ⊂ W 1,2(Rd) = {f ∈ L2(Rd; dx) : E(f, f) < ∞}. So we have the following

Nash’s inequality:

‖f‖2+4/d
2 ≤ c1

∫

Rd

|∇u(x)|2dx · ‖f‖4/d1 ≤ c2 E(f, f)‖f‖4/d1 for f ∈ F . (3.28)

It follows then

p(t, x, y) ≤ c3t
−d/2 for t > 0 and x, y ∈ R

d. (3.29)
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Proof of Theorem 1.2. (i) There exists r0 = r0(R0,Λ0) ∈ (0, R0] so that D satisfies the uniform

interior and uniform exterior ball conditions with radius r0. Fix T > 0. We claim that there is a

constant c0 > 0 so that

pD(t, x, y) ≤ c0p(t, |x− y|/4)
(
δD(x)√

t
∧ 1

)
for every (t, x, y) ∈ (0, T ]×D ×D. (3.30)

In view of (1.6), pD(t, x, y) ≤ p(t, |x − y|) ≤ p(t, |x − y|/4). So it suffices to prove (3.30) when

δD(x) < r0
√
t/(16

√
T ) ≤ r0/16. Define U1, x0 and x1 in the same way as in the proof of Proposition

3.2 (see (3.3)–(3.4)). Hence (3.5)–(3.7) and (3.15) hold. We now prove (3.30) by considering the

following two cases.

Case 1: |x− y| ≤ (r0/
√
T )

√
t. By the semigroup property, symmetry and (3.29),

pD(t, x, y) =

∫

D
pD(t/2, x, z)pD(t/2, z, y)dz

≤
(

sup
z,w∈D

p(t/2, z, w)

)∫

D
pD(t/2, x, z)dz

≤ c1t
−d/2

Px(τD > t/2) ≤ c2t
−d/2

(
1 ∧ δD(x)√

t

)
,

where in the last line (3.7) is used. Since |x− y|2/(64t) ≤ r20/(64T ), we have by Remark 2.7,

pD(t, x, y) ≤ c2e
r20/(64T )t−d/2e−|x−y|2/(64t)

(
1 ∧ δD(x)√

t

)
≤ c3p(t, |x− y|/4)

(
1 ∧ δD(x)√

t

)
.

Case 2: |x − y| ≥ (r0/
√
T )

√
t. Define U2 and U3 as in (3.9). Note that (3.11) and (3.12) hold.

Observe that by (1.6)

sup
s≤t, z∈U2

p(s, z, y) ≤ sup
s≤t, |z−y|≥|x−y|/2

p(s, z, y) ≤ sup
s≤t

p(s, |x− y|/2). (3.31)

By [28, Lemma 3.1], (1.14) implies

j(r) ≤ c2r
−dψ(r−2) ≤ c1c2ψ(1)r

−d−2δ for all r ∈ (0, 1].

Thus under assumption (1.14), according to [16, Theorem 1.3], the parabolic Harnack inequality

holds for the subordinate Brownian motion X. Extend the definition of p(t, r) by setting p(t, r) = 0

for t < 0 and r ≥ 0. For each fixed x, y ∈ R
d and t > 0 with |x− y| ≥ (r0/

√
T )

√
t, one can easily

check that (s,w) 7→ p(s, |w − y|/2) is a parabolic function in (−∞, T ] × B(x, (r0/
√
T )

√
t/4). So

by the parabolic Harnack inequality from [16, Theorem 1.3], there is a constant c3 = c3(ψ) ≥ 1 so

that for every t ∈ (0, T ],

sup
s≤t

p(s, |x− y|/2) ≤ c3p(t, |x− y|/2).

Hence we have

sup
s≤t, z∈U2

p(s, z, y) ≤ c3p(t, |x− y|/2). (3.32)

Applying (3.2), (3.6), (3.11), (3.15), (3.32), we obtain

pD(t, x, y) ≤ Px

(
XτU1

∈ U2

)(
sup

s<t, z∈U2

p(s, z, y)

)
+ Ex [τU1 ]

(
sup

u∈U1, z∈U3

J(u, z)

)
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≤ c5p(t, |x− y|/2)δD(x)√
t

+ c5 tj(|x− y|/4)δD(x)√
t
. (3.33)

Since |x− y| ≥ r0
√
t/
√
T , by (1.5),

tj(|x− y|/4) ≤ tj((|x− y| ∧ r0)/4) ≤ c4

(
t

|x− y|2 ∧ r20

)1+d/2

t−d/2

≤ c4(T/r
2
0)

1+d/2 t−d/2. (3.34)

Thus by the monotonicity of the transition density and (3.33) and (3.34) we obtain

pD(t, x, y) ≤ c5p(t, |x− y|/4)δD(x)√
t

+ c6

(
t−d/2 ∧ tj(|x − y|/4)

) δD(x)√
t

≤ c7p(t, |x− y|/4)δD(x)√
t

≤ c7p(t, |x− y|/4)
(
δD(x)√

t
∧ 1

)
,

where in second inequality (2.22) is used.

Combining these two cases establishes the claim (3.30). Thus by the semigroup property and

the symmetry of pD(t, x, y) in x and y, we conclude from (3.30) that for every t ∈ (0, T ] and

x, y ∈ D,

pD(t, x, y) =

∫

D
pD(t/2, x, z)pD(t/2, z, y)dz

≤ c27

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)∫

D
p(t/2, |x − z|/4)p(t/2, |z − y|/4)dz

≤ c27

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)∫

Rd

p(t/2, |x− z|/4)p(t/2, |z − y|/4)dz

≤ c8

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
p(t, |x− y|/4).

(ii) The lower bound in (1.15) is Theorem 1.1(iii). The proof of the upper bound in (1.15) is

the same as that of Theorem 1.1(iv), the only difference is that we use part (i) of this theorem and

(3.29), instead of Theorem 1.1(ii), so that pD(1, x, z) ≤ c1(1 ∧ δD(x))(1 ∧ δD(z)) and pD(1, w, y) ≤
c1(1 ∧ δD(w))(1 ∧ δD(y)) . ✷

4 Green function estimates

In this section we give the proof of Corollary 1.3.

Proof of Corollary 1.3: Put T := diam(D)2. Recall that gD(x, y) is defined in (1.16). By an

argument similar to that for [7, Corollary 1.2], one gets that (see the proofs of [29, Theorem 5.0.8]

(for d = 1, 2) and [24, Theorem 6.2] (for d ≥ 3) for details)

∫ T

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)
t−d/2e−c1|x−y|2/tdt+

∫ ∞

T
e−λ1t δD(x)δD(y)dt ≍ gD(x, y).
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Thus, since D is bounded, by Theorem 1.1 (i) and (iii), we have GD(x, y) ≥ c2gD(x, y), which

proves Corollary 1.3(i).

When the bounded C1,1 open set D satisfies (1.7), by (1.5) and Theorem 1.1 (ii) and (iv), we

have

GD(x, y) ≤ c3

(
gD(x, y) +

∫ T

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−d/2 ∧ t

|x− y|d+2

)
dt

)
.

Therefore to prove Corollary 1.3(ii) it suffices to show that

∫ T

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−d/2 ∧ t

|x− y|d+2

)
dt ≤ c4gD(x, y). (4.1)

By the change of variable u = |x−y|2
t , we have

∫ T

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−d/2 ∧ t

|x− y|d+2

)
dt

=
1

|x− y|d−2

∫ ∞

|x−y|2/T

(
ud/2−2 ∧ u−3

)(
1 ∧

√
uδD(x)

|x− y|

)(
1 ∧

√
uδD(y)

|x− y|

)
du. (4.2)

Since for every x, y ∈ D and r > 0,

(
1 ∧ rδD(x)

|x− y|

) (
1 ∧ rδD(y)

|x− y|

)
≤ 1 ∧ r2δD(x)δD(y)

|x− y|2 , (4.3)

we have

1

|x− y|d−2

∫ ∞

1

(
ud/2−2 ∧ u−3

)(
1 ∧

√
uδD(x)

|x− y|

)(
1 ∧

√
uδD(y)

|x− y|

)
du

=
1

|x− y|d−2

∫ ∞

1
u−2

(
u−1/2 ∧ δD(x)

|x− y|

)(
u−1/2 ∧ δD(y)

|x− y|

)
du

≤ 1

|x− y|d−2

∫ ∞

1
u−2

(
1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
du

≤ 1

|x− y|d−2

(
1 ∧ δD(x)δD(y)

|x− y|2
)
. (4.4)

(1) When d ≥ 3, by (4.3), we have

1

|x− y|d−2

∫ 1

|x−y|2/T

(
ud/2−2 ∧ u−3

)(
1 ∧

√
uδD(x)

|x− y|

)(
1 ∧

√
uδD(y)

|x− y|

)
du

≤ 1

|x− y|d−2

(
1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)∫ 1

0
ud/2−2du

≤ 2

d− 2

1

|x− y|d−2

(
1 ∧ δD(x)δD(y)

|x− y|2
)
. (4.5)

Combining (4.2), (4.4) and (4.5), we arrive at (4.1) for d ≥ 3.

For the other cases, we define

u0 :=
δD(x)δD(y)

|x− y|2 . (4.6)
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Clearly 1/u0 ≥ |x− y|2/diam(D)2 = |x− y|2/T .
(2) Suppose d = 2. By (4.3) we have

1

|x− y|d−2

∫ 1

|x−y|2/T

(
ud/2−2 ∧ u−3

)(
1 ∧

√
u δD(x)

|x− y|

)(
1 ∧

√
u δD(y)

|x− y|

)
du

≤
∫ 1

|x−y|2/T
u−1

(
1 ∧ u δD(x)δD(y)

|x− y|2
)
du

=

∫ 1

|x−y|2/T
u−11{u≥1/u0}du+

∫ 1

|x−y|2/T
u01{u<1/u0}du

= log(u0 ∨ 1) + u0

(
1

u0
∧ 1− |x− y|2

T

)
. (4.7)

Thus by (4.2), (4.4) and (4.7),
∫ T

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−1 ∧ t

|x− y|4
)
dt

≤
(
1 ∧ δD(x)

|x− y|

)(
1 ∧ δD(y)

|x− y|

)
+ log(u0 ∨ 1) + u0

(
1

u0
∧ 1− |x− y|2

T

)

≍ 1 ∧ u0 + log(u0 ∨ 1) + u0

(
1

u0
∧ 1− |x− y|2

T

)

≍ 1 ∧ u0 + log(u0 ∨ 1) ≍ log(1 + u0) = log

(
1 +

δD(x)δD(y)

|x− y|2
)
.

This proves (4.1) for d = 2.

(iii) Lastly we consider the case d = 1. By (4.3) and (4.6),

1

|x− y|d−2

∫ 1

|x−y|2/T

(
ud/2−2 ∧ u−3

)(
1 ∧

√
u δD(x)

|x− y|

)(
1 ∧

√
u δD(y)

|x− y|

)
du

≤ |x− y|
∫ 1

|x−y|2/T
u−3/2

(
1 ∧ u δD(x)δD(y)

|x− y|2
)
du

= |x− y|
(∫ 1

|x−y|2/T
u−3/21{u≥1/u0}du+

∫ 1

|x−y|2/T
u0u

−1/21{u<1/u0}du

)

= |x− y|
(
2
(
(u0 ∨ 1)1/2 − 1

)
+ 2u0

(
(u0 ∨ 1)−1/2 −

( |x− y|2
T

)1/2
))

.

Thus by (4.2), (4.4) and the last display, we have
∫ T

0

(
1 ∧ δD(x)√

t

)(
1 ∧ δD(y)√

t

)(
t−1/2 ∧ t

|x− y|3
)
dt

≤ |x− y| (1 ∧ u0) + |x− y|
((

(u0 ∨ 1)1/2 − 1
)
+ u0

(
(u0 ∨ 1)−1/2 −

( |x− y|2
T

)1/2
))

≍ |x− y|
(
u
1/2
0 ∧ u0

)
= (δD(x)δD(y))

1/2 ∧ δD(x)δD(y)

|x− y| .

This proves (4.1) for d = 1. ✷
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Lévy processes. Preprint, 2013.

[13] Z.-Q. Chen, P. Kim, R. Song and Z. Vondraček. Boundary Harnack pinciple for ∆ + ∆α/2.

Trans. Amer. Math. Soc. 364 (2012), 4169–4205.

[14] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on d-sets, Stoch.

Proc. Appl., 108 (2003), 27–62.

[15] Z.-Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on

metric measure spaces. Probab. Theory Relat. Fields, 140 (2008), 277–317.
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