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ABSTRACT. In this paper, we study the following time-dependent stochastic
differential equation (SDE) in R¢:
dX; = o(t, Xs)dZ + b(t, X )dt, Xo =z € R?,

where Z is a d-dimensional non-degenerate a-stable-like process with a €
(0,2), and uniform in t > 0, z — o(t,z) : R* - R? @ R? is B-order Hélder
continuous and uniformly elliptic with 8 € ((1 — «)T,1), and = > b(t, ) is
B-order Holder continuous. The Lévy measure of the Lévy process Z can be
anisotropic or singular with respect to the Lebesgue measure on R% and its
support can be a proper subset of R4, We show in this paper that for every
starting point = € R?, the above SDE has a unique weak solution. We further
show that the above SDE has a unique strong solution if z +— o (¢, z) is Lipschitz
continuous and z — b(t, x) is B-order Holder continuous with 8 € (1 —«a/2,1).
When o(t,z) = Igxq, the d X d identity matrix, and Z is an arbitrary non-
degenerate a-stable process with 0 < a < 1, our strong well-posedness result
in particular gives an affirmative answer to the open problem in [22].
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1. INTRODUCTION

The main purpose of this paper is to establish the strong well-posedness as well
as weak well-posedness for a class of stochastic differential equations driven by any
non-degenerate a-stable-like Lévy process with « € (0, 2), and with time-dependent
Holder drift b. More precisely, we are mainly concerned with the following time-
dependent SDE:

dX; = o(t, X;_)dZ, + b(t, X;)dt, X, =z € R, (1.1)

where 0 : Ry x R - R ®R? and b : Ry x R? — R? are two Borel measurable
functions, and Z is a pure jump Lévy process on R¢ whose Lévy measure v when
restricted to the unit ball centered at the origin is bounded between the Lévy
measures of two a-stable Lévy processes with a € (0,2). When o(t,z) and b(¢, x)
are Lipschitz continuous in # € RY, it is well known that by first removing large
jumps of Z and applying Picard’s iteration method, one can show that SDE (1.1)
has a unique strong solution. This paper is concerned with the strong existence and
strong uniqueness of solution to SDE (1.1) when b(¢, z) is only Holder continuous
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in x, as well as weak existence and uniqueness for solutions of SDE (1.1) when both
o(t,z) and b(t,z) are only Holder continuous in z.
To be precise, in this paper Z is a Lévy process on R? with Lévy exponent

P(€) :==1logE [e7 7] = /d (eig'z —1—i€- 21 <1y) v(dz), (1.2)
R

where v is a positive measure on R? \ {0} so that [, min{|z|?,1}v(dz) < co. To

state our condition on Lévy measure v, for a € (0,2), denote by ]Lg,%)n the space of

all non-degenerate a-stable Lévy measures v(®); that is,

@ (4) = /OOO (/S m’;ﬁ)ffde)) dr, A B(RY), (1.3)

where ¥ is a finite measure over the unit sphere S?~! in R% with
/ 00 - 0] 2(df) > 0 for every 6y € S* 1. (1.4)
Sd—l

Since the left hand side of the above is a continuous function of 6y € S, condition
(1.4) is equivalent to
inf / 16 - 6] 52(d6) > 0.
OoeSi—1 Jgd—1
For R > 0, denote by Bg the closed ball in R? centered at the origin with radius
R. We assume that there are vy, 15 € ]Lg{f,)n, so that

v1(A) < v(A) < vy(A) for A€ B(By). (1.5)

For the drift coefficient b(t,x) and diffusion matrix o(¢,z), we assume that there
are constants 3,6 € ((1 —a)*,1] and A > 0 so that for all ¢ > 0 and z,y € RY,

bt 2)| <A and [b(t,z) — b(t,y)| < Az — g, (1.6)
ATMel < o(t2)el < Alel, llo(t,2) —o(ty)ll < Az —yl°, (1.7)
where || - || denotes the Hilbert-Schmidt norm of a matrix, and | - | denotes the

Fuclidean norm. We call a pure jump Lévy process Z whose Lévy measure v
satisfies condition (1.5) an a-stable-like Lévy process. The following is the main
result of this paper.

Theorem 1.1. Under conditions (1.5), (1.6) and (1.7), for each x € R?, there is
a unique weak solution to SDE (1.1). Moreover, if 8 € (1 — a/2,1] in (1.6) and
0 =1 in (1.7), then there is a unique strong solution to SDE (1.1).

Remark 1.2. Condition (1.4) is clearly satisfied if Z; = (Zt(l), cee Zt(d)) is a cylin-
drical a-stable process, that is, each component is an independent copy of a non-
degenerate one-dimensional (possibly asymmetric) a-stable process. Note that the
Lévy measure of a cylindrical a-stable process Z; is singular with respect to the
Lebesgue measure on R%. In this case, Theorem 1.1 in particular answers affirma-
tively an open question from [22], and improves a result in [11, Corollary 1.4(iii)]
for cylindrical a-stable processes from « € (2/3,2) to all o € (0, 2).

Remark 1.3. It follows from Theorem 1.1 and a standard localization argument
(see, e.g., [14, 25]) that if conditions (1.6) and (1.7) are satisfied locally on each
ball B with A depending on R, then for each 2 € RY, there exists a unique strong
solution to SDE (1.1) up to the explosion time ¢ with lims ¢ Xy = oo.

The new feature or contributions of this paper are
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e the driving Lévy process Z is any non-degenerate a-stable-like Lévy process
on R? with a € (0,2) whose Lévy measure can be singular with respect to
the Lebesgue measure on R? and its support can be a proper subset of R?;

e the SDE (1.1) has variable diffusion matrix o(t, z);

e weak existence and uniqueness of solutions to (1.1) are established for g-
Holder continuous multiplicative coefficients o(t, z) and S-Holder continu-
ous drift b(t, z) with 8 € (1 — )™, 1).

Note that the (time-dependent) infinitesimal generator corresponding to the so-
lution X of SDE (1.1) is .%, + b(x) - V, where

Lu(z) = /Rd (u(x + o(t,x)z) — u(z) — Ly <ot 2)z - Vu()) v(dz),  (1.8)

which is a nonlocal operator of order a under assumption (1.5). When o > 1, %
is the dominant term, which is called the subcritical case. When « € (0, 1), the
gradient V is of higher order than the nonlocal operator .%; so the corresponding
SDE (1.1) is called supercritical. The critical case corresponds to o = 1. Strong
solution and pathwise uniqueness for SDEs driven by Lévy processes with non-
Lipschitz drifts, especially for supercritical SDEs, is known to be a challenging
problem; see [11, 21, 22].

The study of weak and strong well-posedness of SDE (1.1) with irregular coeffi-
cients has a long history and there is a large amount of literatures devoted to this
topic especially when Z is a Brownian motion. When Z is a standard d-dimensional
Brownian motion, o(t,z) = I4x4 and b is bounded measurable, Veretennikov [27]
proved that SDE (1.1) has a unique strong solution, which extended a result of
Zvonkin [32] in one-dimension. Using Girsanov’s transformation and results from
PDEs, Krylov and Rdckner [17] obtained the existence and uniqueness of strong
solutions to SDE (1.1) when o is the identity matrix and b satisfies

T a/p 711 2 4
b v = b(t,x)Pd dt <oo, —+4+-<1.
Wlagaaseoy = | [ ([ popas) o 241

These results have been extended to SDEs with Sobolev diffusion coefficients and
singular drifts in [28, 29] by using Zvonkin’s idea.

However, things become quite different when Z is a pure jump Lévy process.
In one-dimensional case, Tanaka, Tsuchiya and Watanabe [26] proved that if Z
is a symmetric a-stable process with « € [1,2), o(t,z) = 1 and b(t,x) = b(x) is
bounded continuous when o = 1 or bounded measurable when « € (1,2), then
SDE (1.1) has a unique pathwise strong solution for every & € R. They further
showed that for a € (0, 1), the SDE (1.1) has a unique weak solution when b(z) is a
bounded non-decreasing function that is S-Holder continuous with § > 1 — «, and
for any 5 € (0,1 — &) there is a bounded S-Holder continuous function b(z) so that
both strong and weak uniqueness fails. For one-dimensional multiplicative noise
case where o(t,x) = o(x), see [2] and [16, Theorem 1]. For multidimensional case,
Priola [21] proved pathwise uniqueness for (1.1) when o(t,2) = Ijxq4, Z is a non-
degenerate symmetric but possibly non-isotropic a-stable process with o € [1,2)
and b(t,x) = b(x) € CP(R?) with 8 € (1 — a/2,1) is time-independent. Priola’s
result was extended to drift b in some fractional Sobolev spaces in the subcritical
case in Zhang [30] and to more general Lévy processes in the subcritical and critical
cases in Priola [22]. Recently, for a large class of Lévy processes, Chen, Song and
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Zhang in [11] established strong existence and pathwise uniqueness for SDE (1.1)
when o(t, z) = Ijxq and b(t, z) is time-dependent, Holder continuous in . Therein,
the authors not only extend the main results of [21] and [22] for the subcritical and
critical case (« € [1,2)) to more general Lévy processes and time-dependent drifts
b € L>([0,T);C”) with B € (1 — £,1), but also establish strong existence and
pathwise uniqueness for the supercritical case (o € (0,1)) with b € L>(]0,T]; C?)
for any 8 € (1 — §,1). It partially answers an open question posted in [22] on the
pathwise well-posedness of SDE (1.1) in the supercritical case. However, when Z
is a cylindrical a—stable process, the result of [11] requires « > 2/3. As mentioned
in [11], it is a quite interesting question whether the constraint o > 2/3 can be
dropped. Theorem 1.1 of this paper not only gives an affirmative answer to the
above question but moreover it is done for the multiplicative noise setting and for
a large class of Lévy processes. We remark that except in the one-dimensional
case, almost all the known results in literature on strong well-posedness of SDE
(1.1) driven by pure jump Lévy process Z requires o(t,z) = Ijxq. On the other
hand, for d > 1 and Z being a rotationally symmetric a-stable process in R¢ with
a € (1,2), it is shown in [20] when d = 1 and in [19] for d > 2 that SDE (1.1)
with o(t,2) = Igxq has a weak unique solution for any b(t,z) = b(z) € LP(RY)
with p > d/(a — 1). The above result is extended in [8] to any b(t,z) = b(z) in a
Kato class that includes any function that can be written as the sum of a bounded
function and an LP-integrable function with p > d/(a — 1). In a recent paper
[18], SDE (1.1) is shown to have a unique weak solution for o(t,x) = o(z)lgxq
and Z being a rotationally invariant symmetric «, where o(x) is a scale Holder
continuous function on R? that bounded between two positive constants, and 3-
Hoélder continuous drift b(t,z) = b(z) with 8 € ((1 — «)*,1). In another recent
work [31], the above weak well-posenedss result has been obtained for a subclass of
a-stable processes Z with a € (0,1), o(t,z) = Lyxq and S-Hoélder continuous drift
b(t,z) = b(x) with f§ > 1 — «a (see also [6] for the case of @ > 1/2). Our weak
well-posedness result in Theorem 1.1 holds for any a-stable process Z and for any
B-Hoélder continuous drift b(t,z) = b(z) with § > 1 — «, and thus extending the
results of [18, 31].

We now describe the approach of this paper. For the strong well-posedness of
SDE (1.1), we shall use a Zvonkin type of change variables to remove the drift term
and convert the SDE (1.1) to a new SDE whose strong existence and pathwise
uniqueness can be readily established. This requires a deep understanding for the
following nonlocal PDE (Kolmogorov’s equation):

ou=Zu+b-Vu—Au+ f with u(0,z) =0, (1.9)

and establish some a priori regularity estimates for its solution. Here .Zu is defined
in (1.8). When o(t,z) = Ijxq and b(t,z) = b(x) is time-independent, a priori
regularity estimates have been obtained in [21, 22] for a class of a-stable type
Lévy processes Z with a > 1 under certain derivative condition on the transition
semigroup of the Lévy process Z. The supercritical case « € (0, 1) is much harder.
When .%; is the usual fractional Laplacian A®/? := —(—A)*/? with a € (0, 1), that
is, when v(dz) = ¢(d,a)|z|¢~*dz for some constant c¢(d,a) > 0 and 0 = Ijxq
in the above definition, and b € L>([0,7T]; C?) with 8 € (1 — a, 1), Silvestre [23]
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obtained the following a priori interior estimate for any solution w of (1.9):

lull oo ((0,1];c0+8 (B )) < C(HUHLOC([o,z]sz) + ||f||Loc([o,2];cﬁ(Bz)))- (1.10)

Such an interior estimate suggests that one could solve the supercritical SDE (1.1)
uniquely when Z is a rotationally symmetric a-stable process with o € (0,1) and
b € L>([0,T];CP) with 8 € (1 — a/2,1) (see [22]). However the approach of [23]
strongly depends on realizing the fractional Laplacian in R? as the boundary trace
of an elliptic operator in upper half space of R4*!. Extending Silvestre’s argument
to general a-stable-type operators would be very hard, if not impossible at all. In
[11, Theorem 2.3], a new approach of establishing estimates analogous to (1.10)
is developed under the assumption that o(t,2) = [;xq for a large class of Lévy
processes Z. Probabilistic consideration played a key role in that approach. As
mentioned above, when Z is a cylindrical a-stable process, the approach of [11]
requires o > 2/3. So new ideas are needed for the study of SDE (1.1) with general
Lévy process Z and variable diffusion matrix o (¢, ).

Our approach in the study of (1.9) is based on the Littlewood-Paley decompo-
sition and some Bernstein’s type inequalities. This approach seems to be new and
allows us to handle a large class of Lévy’s type operator in a unified way, including
Lévy’s type operators with singular Lévy measures, see Theorem 3.3 below. When
o(t,z) = o(t) is spatially independent and real part of the symbol 1;(£) of % (that
is, Y1(€) = [pa (5707 —1 — 17, 1<iyio(t)z - €) v(dz)) is bounded from above by
—co|€]®, we show the following a priori estimate for solutions of (1.9): for every
p > d/(a+ 8 — 1), there is a constant C' > 0 depending only on T, d, p, a, 8 and
||b||LOC([O7T];B§,OO) so that

”“”Lw([o,T];B;tf) < C||f||Loc([0’T];Bgvoc), (1.11)

where Bf  is the usual Besov space (see Definition 2.1 below). The above a
priori estimate is the key in our solution to the pathwise well-posedness prob-
lem of SDE (1.1) when o(t,z) = o(t) is spatially independent. The general case
with variable coefficient o(¢,z) is much more delicate. First of all, in general
x »—>f{|z|>1} f(xz 4+ o(t,z)z)v(dz) may not be smooth even if f(x) and o(t,x) are
smooth. Thus to treat the general case, we have to first remove the large jumps
from the Lévy process Z. Next we need to impose a small condition on the oscilla-
tion of ¢ by using a perturbation argument and establish an estimate analogous to
(1.11) but for solutions u of (1.9) where the operator .%; of (1.8) being redefined
with 1y;<137(dz) in place of v(dz); see Theorem 3.6. This new estimate is also
the key for our weak well-posedness result for SDE (1.1). Then remove the small
oscillation on ¢ and add back large jumps from the driving Lévy process Z through
a localization and patching together procedure.

The rest of this paper is organized as follows: In Section 2, we recall some well-
known facts from Littlewood-Paley theory, in particular, the Bony’s decomposition
and Bernstein’s inequalities, and establish a useful commutator estimate. In Section
3, we study the nonlocal advection equation (1.9) with irregular drift b, and obtain
some a priori estimates in Besov spaces. In Section 4, we establish strong well-
posedness result by utilizing these estimates, Zvonkin’s transform and a suitable
patching together technique. In Section 5, we first obtain the well-posedness for the
martingale problem corresponding to SDE (1.1) driven by truncated Lévy process



6 ZHEN-QING CHEN, XICHENG ZHANG AND GUOHUAN ZHAO

Z obtained by removing large jumps from Z. We then, through a conditioning
and piecing together procedure, establish the well-posedness for the martingale
problem corresponding to SDE (1.1) driven by Z. The latter result will yield the
weak existence and uniqueness for solutions of (1.1).

We close this section by mentioning some notations used throughout this paper:
We use := as a way of definition. For a,b € R, aVb := max{a, b}, aAb := min{a, b},
and T :=aVv0. On R%, V := (8%1, e a%d) and A := 2221 6872%. The letter ¢ or
C with or without subscripts stands for an unimportant constant, whose value may
change in difference places. We use A < B to denote that A and B are comparable
up to a constant, and use A < B to denote A < CB for some constant C' > 0. For

two functions f and g on R%, we use f * ¢ to denote its convolution
frg(@):= /d fle—y)gly)dy, =R,
R

whenever it is defined, and supp[f] the support of the function f on RY. For
p € [1,00], we use LP to denote the LP space on R? with respect to the Lebesgue
measure dz, and || f[|, := ([pa |f(2)[Pdz) VP for p € [1,00) and || f||co the essential
supremum of | f]|.

2. PRELIMINARY

In this section, we recall some basic facts from Littlewood-Paley theory, espe-
cially Bernstein’s inequalities (see [1]). We then establish a commutator estimate,
which plays an important role in our approach.

Let .7 (R?) be the Schwartz space of all rapidly decreasing functions, and .7’ (R%)
the dual space of .#(R?) called Schwartz generalized function (or tempered distri-
bution) space. For f € L'(R?), its Fourier transform Ff = f and inverse transform
F~1f = f are defined as

fl@) = n 2 [ @, ) = @02 [ d
Rd Rd
Using Schwartz’s duality, the definition of Fourier transform and inverse Fourier
transform can be extended to tempered distributions as follows. For any f €
S (RY), Ff = f and F~'f = f are the unique elements in .7’ (R%) so that
Ff@)=f(F¢) and F'f(p)=f(F '¢) forevery ¢ € L (RY).
See, e.g., [1, §1.2.2].
For R, Ry, R > 0 with R; < Ry, denote
Br:={xcR%:|z| <R} and Dg, g, :={rcR?: R, <|z| <Ry}
The following simple fact will be used frequently. For any two f € LP(R?) and
g € L9(R?) with % + % = 1 whose supports are in Bg, and Dg, gr,, respectively,
supp[f * 9] C D(g,—Ro)*+,Ra+Ro- (2.1)
Let x : RY — [0, 1] be a smooth radial function so that
1 when |§] < 1,
x(§) = |
0 when [¢] > 3/2.

Define
@(&) = x(§) — x(2€).
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It is easy to see that ¢ > 0, supp[p] C Bs/s \ By /2 and for each £ € R4,

k
X(20) + D (2778 = x(27F) =1 as k — o (2.2)
§=0
Moreover,
supp [@(2_j~)} N supp [@(2_k-)] =0 if|j—kl =2 (2.3)

From now on, we shall fix such x and ¢, and introduce the following definitions.
Definition 2.1. The dyadic block operator 11; is defined by
ny { F@IFDG=-
L FTH e ES), 520
For s € R and p,q € [1,00], the Besov space B; , is defined as the set of all
f e " (RY) with
1/q

s = Loy | 35 2%, 7 +1{q:w}(

jz-1

wp 2J‘S|ij|p) < oo,
j=-1

Some literature, e.g., [1, 7], uses notation A; for the dyadic block operator II;
defined above. We choose to use notation II; in this paper out of two considerations:
(i) the dyadic block operator is a projection operator in the L2-space, and (ii) we
want to avoid possible confusion with the Laplacian operator A on R?.

For s > 0 and p € [1,00), let H,) := (I—A)=%/2(LP) be the usual Bessel potential
space with norm

1z = (T = )2 f .
Note that
£z = [LFllp + 11(=2)*"Fll, for f € Hj.
It should be observed that if s > 0 is not an integer, then the Besov space B3,
is just the usual Holder space C*®. Moreover, Besov spaces have the following
embedding relations: For any s,s’,s” € R and p,p’,q,¢" € [1,00] with
p<p,q<q, s<s ands—d/p=s—d/p,

it holds that (cf. [4])

B,y CH, CB,.,CB,,CB, .- (2.4)
Let h = F~'x be the inverse Fourier transform of y. Define

hoq(z) == F 'x(2)(z) = 27n(27'2) € Z(R?),

and for j > 0,

hji(x) == F (279 (x) = 27¢n(27x) — 20~ Dp(29-1z) € 7 (RY). (2.5)
It follows from the definition that
I f(a) = (b + ) = [ hya =) f)dn, 5> -1, (2.

The cut-off low frequency operator Sy is defined by

Sefi= Y Mf =207 [ p(2b (- y)) f(y)dy.

Rd
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It is easy to see that

1Sk fllp < Il l1F Nl and [k f]
Moreover, one has by (2.2) that

Bg, < Al ]

By (2.7)

Sef =x@7F)f, f=lim Sif = YIS (2.8)

j=—1

For f,g € .7"(RY), define

Trg=> (Sef)Mis1g), R(f9):= > Y (Muf) (i ig)
k=0 k=-11i|<1

with the convention that II_5 := 0. Clearly,
f9=Trg+Tyf + R(f.g) for f.g€ 7" (RY).
This identity is called Bony’s (paraproduct) decomposition of fg.
We first recall the following Bernstein’s type inequality.
Lemma 2.2. (Bernstein’s type inequality) Let 1 < p < ¢ < 0o. Foranyk =0,1,---
and B € (—1,2), there is a constant C such that for all f € /' (R%) and j > —1,
IV*IL ]l < C2 4= T, £, (2.9)
and for any j = 0,

1

1_ 1y,
I(=2)77210; flly < G246 I £, (2.10)

and for any 2 < p < oo, j = 0 and o € (0,2), there is a constant ¢ > 0 such that
for all f € '(RY),

2 .
Ll e = e, i, (211)

Proof. Estimates (2.9) and (2.11) can be found in [1, Lemma 2.1] and [7, Theorem
1.1]), respectively. For (2.10), its proof is essentially the same as that of [1, Lemma
2.1]. Indeed, by dilation, it suffices to prove (2.10) for j = 0. Let @ € .7 (R%\{0})
with value 1 on {1/2 < |z| < 3/2}, and h := .Z~'@. Define Ilof := .Z HG.F f) =
h« f. Since IoIly = ITy as Gy = ¢, we have by Young’s inequality,
I(=2)"Tlo fllg < [[(=A)*"*ThoMo g < [[(—A)%2R]|,||TTo f]lp,

where 1 =1~ 1 4 1. Since [¢|°¢(€) € #(R?), we have (=A)A/2h € . (RY) and
so ||(=A)#/2h||, < co. This establishes (2.10) for j = 0, and consequently for all
j = 1 by dilation. 0

The following commutator estimate plays an important role in this paper.

Lemma 2.3. Let p,p1,p2,q1,q2 € [1,00] with % = p% + p% and q% + q% =1. For
any B1 € (0,1) and B2 € [—p1,0], there is a constant C > 0 depending only on

d7p7p17p27ﬂ1762 such that
”fHBffllw ||g||;1727 Zf 52 = 07
I, flgll, < 27750 8 ifllgon _Ngllgga o if Butfa >0,

||fHB§11,q1 HQHBgr‘quz, if B1+p2=0,
where [I1;, flg == IL;(fg) — fIl;g.
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Proof. We first consider the case 82 = 0. In this case, by (2.6),

(1L, flg(z) = y hi()(f (@ —y) = f(2))g(z — y)dy.
For any p € [1,00] and s € (0, 1), by Theorem 2.36 of [1],

£ =y) = FOlp < ClylIlf]
Using Holder’s inequality and (2.5), we have

11T, flglly < /Rd R =y) = FOllp llgllp.dy

s .
B}

Sy Nalha | sl

=l Nl 0% [ 12%8(29) = b ol dy

<2795 fll gy gl

(2.12)

(2.13)

Next we consider the case B2 € [—f1,0). By using Bony’s decomposition, we can

write
[Hja f]g = [Hj7 Tf]g + H](Tgf) - Tﬂjgf + HJR(f7g> - R(f7 ng)
It follows from (2.8) and (2.3) that

FL(Sk-1/Tkg)) = 9(277) (2275 1)+ (0(275)9)) =0 for [k = j| > 2,

and
I, =0 for |k—j| > 2.
Therefore, by (2.7) and (2.13) we have

I, Telglly, = || > (Hj(Sk—lfHkg)—Sk—1ijHkg)
[k—j]<2 P
< > ||[Hj>Sk71f]Hk9Hp
[k—j]<2
S2h Y 1Sk—1f Nl s 1MLkl
lk—3l<2 ’
< 9-if 1 kB>
S £l ger > ol sz

[k—j]<2
—j(B1+B2)
< 2N fll o gl

Similarly, we have by Holder’s inequality and 8y < 0,

(T Hllp = || D Wi(Skrglef)|| < D IT;(Sk1gTTkf)llp
[k—jl<2 p |k—jl<2
SO ISk fly < D> > (Mg e fllp
[k—j]<2 [k—j|<2 m<k—2

S ||g||B522»OCHf||B1[:11,oo Z Z 9—mB29—kB1

|k—j|<2 m<k—2

—3(B2+PB1)
< lgllpge 17l g 2770545,
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and

1Tr,0fllp < D ISk ILgIefllp < D I oo 1Sk—11L59]1p

kzj—2 kzj—2
< k>22 27k ||f||3511oc Hnjg”pz < C2_j(ﬂ1+62) ||.][H]5’5110o ||g||35;°0'
Z)—

Finally, we have

I R(f; 9)llp = (M fMeig)|| S Y. ISl Mgl
S p o liI<1k2j-4
S 27RO (289 T £, ) (257 Tl )
Jil<1,k>—4
< 2*j(ﬂ1+52) { ||f||3511oc HQHngwooa ﬁl + 62 >0,
£ ger, Mol 5 Br+ B2 =0,
1 1 _
where ota= 1, and
IR(f, ILig)llp = > Mgl S 1Al gzn ||9||ng,w2*j(ﬁ1+52).
i<, [k—j|<1 »

Combining the above calculations and noticing | f||p; . < [|fB;s,, we complete
the proof. O
3. NONLOCAL PARABOLIC EQUATIONS

In this section we study the solvability and regularity of nonlocal parabolic equa-
tion (1.9) with Hélder drift b. Let o be a constant d x d-matrix and v a measure
on R? such that

/ (22 A 1)p(dz) < oo.
R4\ {0}

We define a Lévy-type operator L by

£58@) = [ (#o+02) = £@) = Lupenoz- VF(@))vlds), € SR,

By Fourier’s transform, we have

—

Ly 1(&) = s (9 (),
where the symbol ¢% () is given by

Y (&) = /]Rd (eiéoz =1 =1 <1)ioz- 5) v(dz).

Now let o(t,z) : Ry x R — R4 ® R? be a Borel measurable function. Define a
time-dependent Lévy-type operator

Zif(z) = E(’;(t,x)f(x).

In this section, for A > 0, we study the solvability of the following equation with
Besov drift b(t,z) : R, x R? — RY,

Ou= (L —ANu+b-Vu+ f with u(0) =0. (3.1)
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For a space-time function f: R, x R? = R and T > 0, define

HfHL%O(B;ﬂ) = sup | f(, ')HBE,Q'
te[0,T7]

3.1. Constant diffusion matrix case. In this subsection we consider equation
(3.1) with time dependent constant coefficient o(t,z) = o(t). First of all, we
establish the following Bernstein’s type inequality for nonlocal operator £, which
plays a crucial role in the sequel.

Lemma 3.1. Suppose Re(¥(€)) < —colé|® for some co > 0. Then for any p > 2,
there is a constant ¢, = c(co,p) > 0 such that for j =0,1,---,

[ AP ) 251, e < =200 1, (32)

and for j = —1,
M s e <
]Rd

Proof. For p > 2, by the elementary inequality |r|P/? —1 > B(r—1) forr e R, we
have
|aP/? — |b|P/? = B(a — b)bJbP/?72, a,bER.

Letting g be a smooth function, by definition we have

£h1gl"(x) = / (lga + o) = lg(@)"* = 111102 - Valgla) /2 )v(d2)

> Blola)l"*29(0) | (oo +02) —gl0) = Va0 V(o) v(d)

= Llg(@)"* (@)Lt g(x).

Multiplying both sides by | g|p/ 2 and then integrating in  over R?, by Plancherel’s
formula, we obtain

9 2 v 2 T v
[t 2acsgan <2 [ laprezlgran =2 [ bR €

=2 [ laP@Pretwseas < -2 [ g7

2c
<=2 |(=A) A glp/? 2 dx,
P Jrd

which in turn gives the desired estimate by taking g = IL; f and (2.11). O
We introduce the following assumptions about drift b(t, z):
(Hf’p) b = by + bs satisfies that for some 8 € [0,1] and p > 1,

|\b1\|qus(Bg,&) + Hb2HL;§(B§o)OQ) S K < oo (3:3)

Remark 3.2. The reason to consider b of the form b, + by satisfying condition
(3.3) is the need in our study of strong well-posedness of solutions to SDE (1.1).
In Theorem 4.1, we will apply Theorem 3.6 below with by = b(¢,z) and by =
—lacono(t, x) fIZKI zv(dz) to show that the SDE driven by the truncated Lévy

process Z obtained from Z by removing jumps of size larger than 1 has a unique
strong solution. Moreover, Bf;oo C B;[ioo N Bfopo for any ¢ > p.
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We introduce the following parameter set for later use:
O := (CO7 Ta dap7 «, 67 K’)'
Now we can state the following main a priori estimate of this subsection.

Theorem 3.3. Let 5 € (0,1) and o € (0,2) with o+ 8 > 1. Let T > 0 and
p € (=—2— Vv 2,00). Suppose that (Hg’p) holds and for some ¢y > 0,

a+p—-1
Re(djg—(t) (5)) g 7CO|§|Q7 5 € Rdv te [O’T]

For any n € [0,0] and q € [2,p], there is a constant C = C(n,q,0) > 0 inde-
pendent of \ so that for any classical solution u to the nonlocal PDE (3.1) with
feLFP(B] ) and X >0,
HU“L;O(B;*;Q) SO llge By ) (3.4)
Moreover, for any v € [0,a+ 1),

lullse By o) < exllfllzee () (3.5)
where ¢y = ¢(A\,7,1,¢,0) = 0 as A = oo.
Proof. Applying the operator II; on both sides of (3.1), we have

8,5Hju = (.,Eﬁ — )\)H]u + Hj (b . Vu) + ij.

For ¢ > 2, by the chain rule or multiplying both sides by |II;u|¢"?II;u and then
integrating in z, we obtain

Oy | L[

P /Rd (|Hju|q*2(nju) (Lju+T0(b - V) + 11 f — AHju)>dx

:/ \Hju\q_z(ﬂju).i’}ﬂjudx—l—/ L2 (M u) [, b - V]udz
R R4
+/ Tl 2(TLu) (b - V)ILudz
Rd

Ml 2 (0 e - AL
Rd
= IV 4+ 1P 4 10 4 19 4 1,
For Ij(l)7 recalling .&; = EZ(t) and by Lemma 3.1, there is a ¢ > 0 such that
1 1 o) .
1 <o, 1V < -2 Iulg, j=0,1,2,--.
For I\*), using Lemma 2.3 with
f=b, g=0u fori=1,---,d,

and
pr=08, Pao=n—pB, ¢t =00 and ¢ =1,
by Holder’s inequality and recalling b = by + by, we have for all j = —1,0,1,---,

2 —
I < |1, b V| [ 1ull2 "
<27 (bl g Nl gooen + 102l g, el promes ) 1MLl

where
1/r=1/¢—1/p.
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For Ij(-g), note that

IJ(B) = / ((b - S]b) . V)HJU |Hju|q_2Hjudx
R4
+ / (S50 - V)Iju |Tul 2 ude =: 1Y + 1137,
R4

By Hélder’s inequality and Bernstein’s inequality (2.9), we have

31 -
I < 37 (0b - V) ull | TTuf g
k>3

< 37 (bl IV Tl + T o VT ) [T~
k>j

S 20t 3 (Wbl + kb
kz=j

< 200D Tl (ol + Dol g, )
For IJ(-32), we have by the divergence theorem and (2.9) again,
1 1
8% = 7/ (S;b - V)| ul?dz = ﬂ/ S;divb [IT;u)?dz
q Jrd q Jrd

1 . 1 .
< §||5jdlvbl\oo||HjUHZ <= D IMdivh oo L
K<

< D22 (b + [ TIkbe | ) T8

k<y

S 2053 (b o+ bl g ) Tl
Combining the above estimates, we obtain
Orll ML/ g < =271, z0l|TLjul§ — ATLul?
+ 027 ([[ull o+l 1 ) Tl
+ C20 | T2+ Ol 11,
< —(€2%9150 + A — C2075+0 ) 1
+ C (27 (full s + Jull gown) + 1T g ) Tl

Since 1 — f + d/p < «, by dividing both sides by ||Hju||g’1 and using Young’s
inequality, we get for some ¢y, A\ > 0 and all j > —1,

0l Tully < (02 + A= Ao)[Tsullg + C27 (||l grsoen + [l grsoen ) + CIT fllg,

which implies by Gronwall’s inequality that for all j > —1,

t i .
Iju()llg S / e 2 A=) (971 (| 1o + [l g o40) + TS ) ds
0 , q,1
t .
< 2—717/ o~ (€027 +A=X0) (t—) (||UHB“5+” + ||’U/||B;76+n + Hf||3gm>ds (3.6)
0 r,1 1

t )
< 2—77-72)\075/0 e_002 Jst(Hu”LgO(Bw{le*") + ||u||LtoQ(B;EB+n) + HfHL;”(BZ},w))-
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Hence,

lu(®)l gotr =

wp (207 | Lju (o)),
j=z—1

(3.7)
< HUHL?O(B;:B-%—H) + ||UHLtoo(B;)—1[3+T/) + 1 lzge (B )

where we have used that 227 fot eme02Vsds = (1 — 02" /¢y < 1/cp.
Let 6 € (0,a + 8 —d/p —1). By embedding relation (2.4) and interpolation
theorem, we have for all ¢ € (0, 1),
1-9 KA
lull g1 en < Cllullggin-o < Cllull gaty luls)lizy | < ellullpgin + Cellullzy .
and similarly,
lulgr-s+0 < elull s + Cellullzg .

Substituting these into (3.7) and letting € be small enough, we get

ull g gty S Nullzoe gy + 1 220 (37 (3.8)
and also,
HUHL;?O(BHB“’) + HUHL;?O(BiifS*”) N ”uHL;’O(Bf},m) + Hf”Lf"(Bg,oo)' (3‘9)

Now, multiplying both sides of (3.6) by 27 and then taking supremum over j, we
obtain

t
g 5 [ O (g s+l gy v + 1. )

t
S [ by s+ (1A= X0l ) Il

Thus by Gronwall’s inequality we get

lull Lse (B ) < C(l AA— Ao\_1> 1 fllzse (B2 o) (3.10)
where C = C(n, ¢, 0), which together with (3.8) yields (3.4). Combining (3.4) with
(3.10) and using the interpolation theorem again, we obtain (3.5). O

Remark 3.4. If we take n = 0 and ¢ > d/a in (3.5), then by embedding (2.4),

Jull e (zoey < exllfllngeme ) < exllfllzse(ra)-

Such type maximal estimate is useful for deriving Krylov’s estimate, which is crucial
in the study of SDEs with rough drifts (cf. [30]).

By the above a priori estimate, we have the following existence and uniqueness
of classical solutions to PDE (3.1).

Theorem 3.5. Let 5 € (0,1) and o € (0,2) with o+ 8 > 1. Let T > 0 and
pe (=4 vV % V 2,00). Suppose that (Hf’p) holds and for some ¢y > 0,

a+pB—1
Re(¢y ) (§)) < —colé|®, €€ RY, te0,T).

For any f € L%O(Bgoo) and X = 0, there exists a unique classical solution u €
L%’(B;‘ifgf) to the nonlocal parabolic equation (3.1) in the sense that for all (t,x) €
[0,T] x RY,

u(t, x) :/0 (& — )\)u(s,x)ds—l—/o (b-Vu)(s,x)ds—i—/o f(s,z)ds. (3.11)
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Moreover, there is a constant C = C(©) > 0 independent of X > 0,

HUHL;"(B;‘,LP) < C”f”L}Q(Bg,DO)’ (3.12)
and for any v € (0, + ),

ullse (7 o) < CAHf”L%o(Bﬁ,oo)’ (3.13)
where ¢y = ¢(A,7,0) = 0 as A — oo.

Proof. Let p be a non-negative smooth function with compact support in R¢ and
Jga p(x)dz = 1. Define p.(z) := e p(e " *x), be := p- * b, fo := pe * f. Let uc
be the smooth solution of PDE (3.1) corresponding to b. and f.. That is, for all
(t,z) € [0,T] x RY,

ue(t, ) :/0 (s — )\)ue(s,m)ds—f—/o (be - Vus)(s,x)ds—i—/o fe(s,x)ds. (3.14)

By the a priori estimate (3.12) and (2.4), for any ¢ € (0,8 — d/p), we have

<
oS0 ucllz mere) S S0P uelliz ey < Ol s (3.15)
Since o+ 3 > 1 and p > ﬁg—v we can choose § < 3 — % so that o+ 6 > 1. Note

that for every (s,x) € [0,T] x R%,

|-Lue(s,z)| < /0<| > |ue(s, @ + 0(s)z) — ue(x) — o(s)z - Vue(s, z)| v(dz)

+ / lue (s, + o(s)z) — ue(x)| v(dz)
|z|>1
< ClHuE”L;O(BgC‘ng) < C2||f||L;°(B,‘f,W)7

where the positive constants ¢; and c¢s are independent of ¢ > 0. Thus, by (3.14)-
(3.15), we have for all 0 <t < ¢/ < T,

lim  sup [Juc(t) — ue(t')||oo = 0.
[t—t'|=00<e<1

Now, by Ascolli-Arzela’s theorem, there is a decreasing sequence ¢, — 0 and a
continuous function u so that for any R > 0,

kli_{lolo |ue, — UHL“([O,T];Cl(BR)) — 0,

and for any ¢ € (0,5 —d/p),
2.4)
||u||L’;9(B§of§o S ||U||L;S(B,,"ﬂt£) S ||f||L;°(B§,oo)'
By taking £ — 0 along the sequence ¢, in (3.14), one concludes that u is a classical
solution of PDE (3.1) and (3.11) holds. O

3.2. Variable diffusion matrix case. In this subsection we consider the variable
diffusion coefficient case, and introduce the following assumptions on o (¢, x):

(H?) There are 6,e € (0,1) and A > 1 such that
lo(t,z) —a(t,y)| < Alx —y|® and o(t,z) = o(t,0) for |z| > ¢, (3.16)
A7HEP < Jo(t,0)€]? < Al€]? for every € € RY. (3.17)
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Notice that (3.16) means that o only varies near 0 and this implies that
lo(t,z +y) = ot, )| < C(lyl Ae)’. (3.18)
About the Lévy measure v, we assume
(H2) There are vy, vs € L&), so that
v1(A) <v(A) <wve(A) for every A € #(By).

In particular, for any v > o >+’ and 6 > 0,

/ 2Pu(dz) < CFT—, / 2] v(dz) < C57 = (3.19)
|z|<8

0<z|<1
Since the Lévy measure v is not necessarily absolutely continuous with respect to

the Lebesgue measure, it seems hard to show that for any f € Bg;g,

T = flx+o(t,x)2)v(dz) € B)

p,00)
|z|>1
which is very essential if one wants to use the perturbation argument. Thus we
have to first remove the large jump part and consider the following operator

Zif () = Ly, f ()

(3.20)
= /I - (f(:l: +o(t,x)z) — f(x) = laep2yo(t, o)z - Vf(x))l/(dz).

The following theorem is the main result of this subsection. Although this analytic
result needs a special assumption on the oscillation of o (¢, -), it is enough for us to
get our Theorem 1.1 .

Theorem 3.6. Let 5 € (0,1) and o € (0,2) with o+ 3 > 1. Let T > 0 and

p € (%ﬁ_l \Y% ai/\ﬁ V2,00), 0 € (8,1]. Suppose that (HY) and (Hf’p) hold. Then

there are g9 € (0,1) and A\g > 0 such that for all € € (0,&0) and X € (Ao, 00), under
(H?), for any f € L (B} ), there is a unique classical solution u € L§°(BytP)
to the following PDE

du= (% —Nu+b-Vu+f, u(0)=0, (3.21)
that is, for all (t,z) € [0,T] x R?,

t ¢ ¢
u(t,z) = / (ZLs — Nu(s,z)ds —|—/ (b- Vu)(s,z)ds —|—/ f(s,z)ds.
0 0 0
Moreover, there is a C = C(eg, Ao, A, v1,v0,T,d,p,, 5,0, k) > 0 such that
HUHL%O(B;J&?) < CHfHL%O(Bg’OQ)v (3-22)
and for any v € (0,a + ),
||UHL%°(B;’YOC) < CAHf”Lg?(Bf,oo)’ (323)
where ¢y = c(A,v,e0, A, v1,v0, T, d,p,c, 3,0,k) = 0 as A — oo.
In order to get the above result, we need the following commutator estimate.
Lemma 3.7. Under (HY) and (HY), for any p > 1, we have
P TP lul|gs. , a€(0,1),6 € (a,1],5 € (0,60);

a2 Zull, < Cq L,
P e P gsr @ €[1,2),6 € (a,2),5 € (0,6),
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where [AS/Q,Z]U = AS/QZu - ZAS/QU, and the constant C' > 0 is independent
of €.

Proof. We only prove it for a € [1,2) since the case a € (0,1) is similar. For
simplicity of notation, we drop the variable ¢ in o(¢,z) and write

I (r,y,2) =ulz+y+olx+y)z) —ulz+y+o(x)z)
—(o(z+y) — o)z Vu(z +y),

and

a2, Zlull = ( [+ ) (82, Ziu(a) P do = o + T2
lz|<2e |z|>2¢
Let § € (a,2). By (3.18) and (2.12), we have
0 S (AL [ (9t 3+ (= r)ote + )2 +ro(e)2)
i — Vu(z + y)|dr
S (1l A 2| IVl

and by definition,

8%, Ziuta) = |

|z

e
I<1 Ra  [y|?te

Thus, for Jp, by (3.19) we have

p
2%(Jy| A £)’
7 < |Vl / / v(dz) / Ui ne) g,
B % lzl<2e |J)z1<1 Ra  |y|dts

p
/ yl"dy+/ efdy
wi<e W17 Jiyse lyl*te

< |‘vu“ggoi;€(978)lﬂ+d.
For Ja, since T'Y(x,y,z) =0 for |z|, |x + y| > € by (3.16), we have

p
I'o(z,y, z
go= [ [ wan [ D,
|z|>2e [/]z]<1 |z+y|<e |y|
5 o |P
z|°(ly| Ne
SVl [ [ wan [ ELEAER,,
02 Jlz|>2¢ |/ 2|1 |z+y|<e |y|

p
1
SIval e [ ] de
Bgo’éo |z|>2¢e |/ |z+y|<e |y|d+\S

dx

< Vully

5—1
B, oo

dx

dx

1
< IVal? . Eep+dp/ L < IVl s,
SIVullye & | e S IVl
Combining the above calculations, we obtain the desired estimate. (I

Lemma 3.8. Suppose that (H?) and (HY) holds with 0,¢ € (0,1) and a € (0,2).

For any p € (aim,oo), we have

a—d)0
HfHB;},tfa o€ (0?1)7 B € (07 (5(1_9)) /\9)7

Iflpses acL2), Be (0.0,

where c. is a positive constant so that lim._,gc. = 0.

——
v
ot

Gy~ Bl < {
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Proof. We only give the proof of the estimate for o € (0,1). The case « € [1,2) is
similar. For simplicity of notation, we drop the time variable ¢ and write

—

Tol(2) = L2, f(2) — L0, f() = /| = (£ +0(@)2) = fla +0(0)2) )(da).

For v € (d/p,1], § > 0 and yo € R?, by [10, Lemma 2.2], we have

sup [f(-+y) = fC+wo)l|| Sy
ly—yo|< »
which implies under condition (H?) that
If(-+0()2) = £ +(0)2)llp
< sup [fC+y) = FC+0(0)2)| Sl (1f Ly
ly—o(0)z|<Ae? 2] »

Since p > g, we can take v and 4 so that % < v < a < v < 1. By the above

estimates,
ITaflly S /,zw(sw'z'v”f"fﬂ“ N 1l gy Jr(d2) (3.24)
For each i > —1, by (2.8),
IMLToflp < D0 MLTIL fllp + Y ML TG fll, = T+ o (3.25)
J>i Jj<t

By (3.24) and the Bernstein’s inequality (2.10),

17510 £l 5/ (L2 ) A 0L T £y )v(d2)

1<
< / (01 29) A (O DN e (3.26)
|z]<1
Note that by (3.19),

[ @z A e 2 )
lz1<1

< 1097 / 2P w(dz) 4+ 70279 / 27 v(d2)
|2]<2-3 2

—i<]z|<1
YO oo v 0oaj "0 oj
S M2 4 7729 < gV P2,

Substituting this into (3.26), we obtain

I ToTL; £l < €027 |TL; £ (3.27)
Thus,
/ , , ) Y 09—Bi
J5er’ ;wHHJ‘pr Sev’ ;Q‘BJIIfHB;tf = 757 Illsge-

For Jo, for any S € (0, (;’?11%))9 A 8), one can choose § € (a, ifﬁ‘:;l)) A 1] such that

B < 6. Since § < g;f;:g;, we get 0+ ¢ — o < 00. By this, we can fix s € (3,60)
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such that s > § + % — «. Using Bernstein’s inequality and Lemma 3.7 and noting
that AS/QHj = HjAs/2, we have

T2 =Y NLATEAPTILfl, S 2750 ) AT,

J<i J<i
<273 (A2, Tl + T2 AT £,
i<i
=27 (A2, I £, + 1T 8710 £l )
It
(327) —si 05—s+d/p ) Y O0oa5 | AS/2TT.
S 2 Z € 1L flles + €™ 2% | AL £l
i<i
S 27 (SIS )+ 02 I £ )
j<i
<c2™ Z (2(5+d/p)j + 2(a+s)j) ITL; £1l,
J<i

<o [ 2703 20 e 4 9=t N 2B | £l s
j<i ji<i ’

< CaQ—&”fHBgL{N
where lim._,g ¢ = 0. Thus we have by (3.25) that

’
gr'?

HﬁfHBB = Sup (2iﬁ“ni7;f||p) < T _o9-8 + e ”fHBO‘JrB-
LSS | 1-2 Py
This gives the desired estimate. (Il

We are in a position to give

Proof of Theorem 3.6. Since we are considering the truncated operator Z, without
loss of generality we may assume v|ge = v1. Thus, by the assumptions,

“Reltoo(©) = [ (1= cos(o(t,0)z - O)(d)
R
> / (1 —cos(o(t,0)z-&))v1(dz) = col€]”,
Rd
where ¢y = co(A, v1,d, a) > 0. Now we use Picard’s iteration to show the existence.

Let u; = 0. For n € N, by induction and Theorem 3.5, the following PDE admits
a unique classical solution u, 41 € L;?(ngf):

8tun-‘rl + Aun—i—l - Eg(t,())un—i-l -b- vun-‘,—l

—_~—

3.28
=f+ (£Z(t7_) — L7 1.0))un — / . (un( +0(t,0)z) — un(.))y(dz)’ (3.28)

where

bi=b— lac(o,1) / o(t,0)zv(dz).
|zI<1



20 ZHEN-QING CHEN, XICHENG ZHANG AND GUOHUAN ZHAO

Moreover, by the assumption § > 8 > 1+ % -, (58:%))9 > 6. So, by (3.12), (3.13)

and Lemma 3.8,
C;1||un+l||L%o(Bgm) + ||un+l||L3§>(Bth£)
< Ol gy T 1500 = Lo unll g sy )+ Collunlliz ..
< CleHL%o(Bg,m) + CE”“NHL?(B;Q?) + C2||unHL3?(Bg,oc)’
where C7,Cs > 1 is independent of £, A and n. Here
lime. =0, limecy =0.
€l0 Moo
In particular, for any m € N,

-1
Cx EEEHUTLHL;O(BIEW) +:2EHHU”HL%"(33§3)

o)

< Cl”‘fHL%Q(Bg,oc) + ce :2& ”u””L%"(BS,JEf) + 02 sup ||un||L%o(B£e

nm

Choosing ¢p small and A large enough so that ¢, = % and cy, = ﬁ, we get for
all € € (0,g9) and X € (N\g, 00),

1.—1 1

b 300 iz ogy + 330 Pl o < il oo

Letting m — oo, we obtain the following uniform estimate:
-1
o < . .
Cy ilelll\)l Hun”L%o(Bg,oo) + ilelg ||UnHLoTo(Bpf;f) S 201||fHL°T°(B§m) (3.29)
Similarly, for any n,k € N, we have
c;1||un+1 — uk+1||L%o(Bgm) + 1 — Uk-s-l”L;o(B;tf)
< CaHun - ukHLi’?(Bg’tf) + C2||un - uk”L']o"C(BE,oo).
As above, for all € € (0,¢0) and A € (A, 0), we deduce that
imasup (1 e ey + =g )) =0 (330)

Finally, by (3.29) and taking limits in (3.28), we obtain the existence of a classical
solution. By (3.29) and interpolation theorem, we also have (3.22) and (3.23).
As for the uniqueness, it follows by the same calculation as that for (3.30). This
completes the proof of the theorem. O

4. STRONG WELL-POSEDNESS OF SDE (1.1)

In this section, we give a proof for the main result of this paper, Theorem 1.1.
Define
Zy = Z (Zs — Zs_)1{1z.—7. |51y and Z;:=Z, — Z,. (4.1)
0<s<t
It is well known (see, e.g., [5]) that both Z and Z are pure jump Lévy processes
with Lévy measures 1y|.1<137(dz) and 1y|;513v(dz), respectively, and they are in-
dependent to each other. We call Z a truncated stable-like process as it only has
jumps of size no larger than 1. The Lévy process Z has finite Lévy measure and
hence is a compound Poisson process. SDE (1.1) can be written as

t t t
X = Xo —l—/ b(s, X)ds +/ o(s, Xs_)dZ, + / o(s, X, )dZ,. (4.2)
0 0 0
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To solve SDE (1.1), by standard interlacing technique, it suffices to solve the fol-
lowing SDE

t ¢

X: = Xo —I—/ b(s,XS)ds—i—/ o(s, Xs—)dZs. (4.3)

0 0
Its generator is given by L
Ay =L+ by -V,
where %, is defined by (3.20) and
b(t, z) == b(t,z) — o(t, z)¢ (4.4)

with £ := 1,c(0,1) f|z\<1 zv(dz).

In the following we shall fix a stochastic basis (Q,.%,P; (%)i>0) so that all the
processes are defined on it.

Theorem 4.1. Let b(t,z,w) and o(t, z,w) be two B(R, ) x B(R?) x Fy-measurable

functions. Let B € (1 —%5,1) andp € (W \Y o%ﬁ V 2,00). Suppose that

sup ||0.(-,w) || joorps <00, T >0,
sup 1.0 5.

and o.(-,w) satisfies (HL) with common bound A for almost every w, where € is
a small constant as in Theorem 3.6. For any F-measurable random variable Xy,
there is a unique F¢-adapted strong solution X, so that

t t
Xy = Xo + / b(s, Xs)ds + / o(s, Xs_)dZs.
0 0

Proof. Let N(dt,dz) be the Poisson random measure associated with Z, that is,
N((0,t] x By => 1p(Z,— Zs-), E < BR"\{0}),
s<t
whose intensity measure is given by dtv(dz). Let N(dt,dz) = N(dt,dz) — dtv(dz)
be the compensated Poisson random martingale measure. By Lévy-Itd’s decompo-
sition, we know

¢ ¢
th// zN(ds,dz) and th// zN(ds,dz).
0J{z€R4:0<|z|<1} 0J{z€R4:|z|>1}

Let T > 0. Consider the following backward nonlocal parabolic system with
random coefficients:

atut + (:Z — )\)ut +g Vut + b= 0, ur = O, (45)
where %, is defined by (3.20) and by is defined by (4.4). By the assumptions and

Theorem 3.6, for some \g > 0, and for each w and A > \g, there is a unique solution
u.(-,w) € LF(BytP) to the above equation with

sup ||ju.(-,w wo(patsy < C,
eQ” ( )H[T(Bpfgc)
and for any vy € (O,a + B),

Sug [u.(, W)Lz (87 ) < €, (4.6)
we

where ¢y — 0 as A — co. Thanks to /24 8 > 1 and p > W, by Sobolev’s
embedding (2.4), one can choose A > \g large enough so that

suF2 IVu.(, w)|leo < 1/2. (4.7
we
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Since u is Fp-measurable, by Itd’s formula (see, e.g., [14]), we have

t —~— ~
w (X)) = uop(Xo) +/ [Osus + Zug + bs - Vug](Xs)ds
0

+/O/O<|Z|<1[us(xs_ +0(8, Xs-)2) — us(Xs_)|N(ds, d2).

Let ®;(7,w) = z + w(z,w). Then by (4.7), z = ®4(z,w) is a C!-diffeomorphism
and, by (4.5),

Y, = ®,(X,) = Bo(Xo) + /Ot ()\us(XS) —o(s, XS)E)ds

+ //< ‘<1[<I>S(Xsf + 0(s, Xs_)z) — ®(Xs_)|N(ds, dz) (4.8)

¢ ¢
= 9y (Xp) +/0 a(s,Ys)ds + /0/0<|z|<1 9(s,Ys_,2)N(ds,dz),
where
a(t,y) = Mg (@ (y) —o (£, 7 (W)L g(ty,2) = e (T (y) + ot @7 (y))2) -
Fixn € (o/2,a+ 5 —1—d/p). Noting that
[f(z+2) = f(2)] = [f(y+2) = FWI < IVSlBz 2 =yl 21",
we have by (4.6)-(4.7) that for all z,y € R? and |2| < 1

l9(t,x,2) — g(t,y, 2)| < | (@0 (D) ' (2) + ot <I>’1( ))z) — @4(® " (x)))
— (@4 (27 () + o (t, P, M (2))z) — @1 (D, (1)) )]
+ @ (27 M (y) + o (t, @7 (2)2) — B¢ (D7 (y) + o (t, @71 ())2) |
<V |97 (x)*@t‘ W)l o, ;" (z))z]"

i (
o
F Vo | (o, 27 () — o(t, 277 (y)) 2]
Sl —yllz[" + o —yll2]
Sl =yl lz]".
Moreover, we also have
la(t, ) —al(t,y)| S [z —yl.
Since the coefficients of SDE (4.8) are Lipschitz continuous, by the classical result,

SDE (4.8) admits a unique solution (cf. [14]). In particular, one can check that
X; = &, 1(Y;) satisfies the original equation (4.3). The proof is complete. O

We also need the following technical lemma in order to patch up the solution.

Lemma 4.2. Let X; be a R¥-valued right continuous process. Let T be an F;-
stopping time. Suppose that for each t > 0, Xiy, is Fiy--measurable. Then for
each t > 0, 1{,<y X is Fy-measurable.

Proof. Since X; is right continuous, we have
(2]
LireyXe = Um T Xiprfanqje-n = lim Z 1<y Xepr—jo-nl{j<anr<jt1}-

n—o00
=0
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On the other hand, since by assumption X, _jo-n = X {_jo—n) I8 Fry(1_jo-n)-
measurable and 7 + ¢t — j27™ is a stopping time when ¢ > j2~™, we have for each
n>1and 1 <j<[2"¢,
Lir<oy Xigpr—jo-nliconr<jrty = Xipr—jo-nlio—rjcr<(+2-m1 lr<e)
=Xoptjonlirii joncira-nyle-ngr<i)-
Noticing XT—‘,—t—jQ*"1{7‘+t—j27”<t+27"} S ngt_,’_Q,n and 1{j2—n<7-<t} S cg.t, we get

1<y Xt € N1 Fpq0-n = F.

The proof is complete. O
Now we can give

Proof of Theorem 1.1 . By the discussion at the beginning of this section, we only
need to prove the global well-posedness of (4.3). By Remark 1.3, we can further
assume that b has support contained in ball Bg. Let p > 1. By definition (2.6), we
have

p
dx

nnwmgf\/"hxszum®
R4 Br
P
< 0L Bl + 012 | (/|ww—mdQ az.
B Br

c
2R

Noting that hj(z) = 27%hg(27z) by (2.5), we have

p
L] mste—tan) ae<mlir™ [ [ hyto - s
BSp Br BSp Y Br
< C(ho)/ / 214272 — y|)"24dyda < C(ho,d, R)277%,
5rY BR

where the second inequality is due to the polynomial decay property of Schwartz
function hg. Hence,

loell sz, = sup 27| Wb, < C sup 27 (Ibeloc +277Ibelloc) < Cllbeli s
P gz iz-1

Below we use induction to construct a sequence of finite stopping times (7, )nen
with lim,,_,c 7, = 00 a.s. and such that SDE (4.3) is strong well-posed up to each
Tn. Let 79 = 0. For n € N, suppose that we have constructed stopping time 7,, and
the existence and uniqueness of strong solutions up to time 7,,. That is, there is a
unique strong solution X satisfying

t t
X = Xo +/ b(s, Xs)ds +/ o(s,Xs_)dZ,, fortel0,7,).
0 0

Now define

Xy, o= Xe, +0(tn, Xe, N Zry — Zn, ), Tl = Fpyr,, t=0.

n

Clearly, X, € %}. We introduce .#}-measurable random R%valued function b’
and (d x d)-matrix valued function ¢’ as follows:

V(t,z,w) =bt+ 1,2+ X, (w))
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and
ot + mw),xz+ X, (W), || < e/2,
2(e—|z|) cx
o(t + Tn(w), g7 + Xr, (W)
o (t,r,w) = 52(‘ I( /2) 2l ) e/2 < |z| ¢,
+ - 56 U(t+Tn(w)7XTn(w))v
ot + 7 (w), X7, (w)), |z| > €.

It is easy to see that o’ satisfies (H.). Thus, by Theorem 4.1, the following SDE
admits a unique strong solution

t t
X| = / v (s, X.)ds +/ o' (s, X._)dZ;, s, t=0. (4.9)
0 0
Define #/-stopping time
=inf{t > 0:|X;| >¢e/2}, (4.10)
and for t > 0,
Xp = Xilier, + (X, + X7 ) lizr, . (4.11)

Since t — )Z't is right continuous and )Z'HT" =X+ X, € Fii.,, by Lemma 4.2,
l{Tngt})?t is #;-measurable.

Thus, for each ¢ > 0, by the change of variable,

t+7n _ _ ¢ _ B
/ o(s,Xs—)dZs = / o (54 Tn, X(sr)— )27, 45 (4.12)
T 0

Now, by definition and (4.12), we have for t € [0,7'),

t t
Xtyr, = X5 + / b(s + TnaXs+m)d5 + / o(s+ Tan(S+sz)—)dZTn,+s
0 0

t+7n _ t+7n - .
= Xt [ s Xt [ o(s Rz

n n

7 _ 47 _ _
x—i—/ b(s, Xs)ds +/ o(s, Xs—)dZs. (4.13)
0 0

Define 7,41 := 7’ + 7,,. Observe that for each s > 0,
{Tnt1 < 8} = Uregues({T' <t} N{mn < s — t}) € Fs.

This means that 7,41 is an .%#;-stopping time. By (4.13) and induction hypothesis,
we obtain that X; uniquely solves

t t
Xi=z +/ b(s,Xs)ds—F/ o(s,Xs—)dZs, t €0, Tpnt1) (4.14)
0 0
Finally, we show that ( := lim,,_, 7, is infinite P-a.s.. Define

t t
Yt;:x+/ Hsds+/ K,dZ,,
0 0

where
o(s, Xs_) for s < (,

o b(s, Xs) for s < ¢,
s Ogdxd for s > ¢

and K, =
0 for s > ¢
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Here 04x4 denotes the zero matrix. Clearly, Y; = X; for ¢ < (. Note that ¢ —
fot K,dZ; is a square-integrable martingale. Hence P-a.s. Y; has finite left-limits in
t € (0,00). Since

Y. =Y. =X, — X, _,| =>¢€/2 foreveryn>1,

it follows that ¢ = lim,,_, o, 7, = 00 P-a.s.. This completes the proof of the theorem.
O

5. WEAK WELL-POSEDNESS OF SDE (1.1)

Let D be the space of all R%-valued cadlag functions on R, which is endowed
with the Skorokhod topology so that D becomes a Polish space. Denote by P (D)
the space of all probability measures on ID. Let w; be the canonical process on D.
For t > s > 0, let Bf denote the natural filtration generated by {w,;r € [s,t]} and
define

%f = MNp>s mPG'P(D) (Bi)P, By = %g, B = %(‘;,
where (B2)F stands for the completion of B2 with respect to P.

We first introduce the notion of martingale solutions to SDE (1.1). Recall that

the generator of SDE (1.1) is given by <% := %, +b- V.

Definition 5.1 (Martingale solutions). For (s,y) € Ry xR?, a probability measure
P € P(D) is called a martingale solution of <, starting from y at time s if

(i) Plws =) = 1.

(ii) For any f € CZ(RY), M/ is a B,-martingale under P, where

. t
Ml i ) = fl) = [ A f)dr, ez (1)
The set of all the above martingale solutions is denoted by M; ().

5.1. Martingale problems for SDEs driven by truncated stable processes.
In this subsection we show the Av/vell—posedness of the martingale problem associated
with the truncated operator <,

=L +b-V,

where %, is defined by (3.20) and by is defined by (4.4). We also write 4226’17 for o,
when we want to emphasize its dependence on o (¢, x) and b(¢, x).

The following general localization result can be proven along the same lines as
in [25, Theorem 6.6.1].

Lemma 5.2. Let 0 : Ry x R = RY@R? and b : Ry x RY — R? be bounded
measurable functions. Suppose that for each (s,y) € Ry x R, there is an open set
U of (s,y) and bounded measurable ¢’ and b’ such that

(i) o=0c" and b=V on %;

(i) there is a unique element in MZ’, (JAZ‘/T,’H) for each (s',y') € Ry x RY.

Then there is a unique element in M3 () for each (s,y) € Ry x R™.
We can use the above localization lemma to establish the following.

Theorem 5.3. Suppose that b(t,x) and o(t,x) satisfy (1.6)-(1.7) with o € (0,2),
and 3,0 € (1—a)T,1). Then for each (s,y) € Ry x R, there is a unique element
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Proof. Without loss of generality we assume 8 < 6. We fix € € (0,1) being small
as in Theorem 3.6. For fixed (s,y) € R, x R?, we define

b>Y(t,x) == bt + s, +y),

and
ot 45,2 +), ol < /2
o¥Y(t,z) = LE;M)U(t + 8 507+ y) + 72(|$|;E/2)0(t +s,y), ¢€/2<]z|<e,
o1t 5.9). o] > .

By Lemma 5.2, it suffices to prove that there is a unique element in ./\/lfl,, (JZZE 9!

for each (s',y') € Ry x R, where ;z%fy is the operator associated with (b%¥,o%).
Without loss of generality, we assume s’ = 0. Since the coefficients are bounded and
continuous in z, the existence of martingale solutions is well-known (for example, see
[15, p.536, Theorem 2.31]). Let us show the uniqueness. Let Py, Py € MY (")
be two martingale solutions associated with f;a?f Y with starting point 3’ at time
0. Let T > 0 and f € C§°(R4!). By the assumptions and Theorem 3.6, for
p > %/H \ a%f\ﬁ V 2 and A\ large enough, there is a unique classical solution
u € L%O(Bg"‘gf ) solving the following backward nonlocal parabolic equation:

Dy + (@?f’y - A)ut +f=0 with up =0.
Let u) (z) := M7=y, (). Then
dyup + M up + ATV =0 with u) = 0. (5.2)

By the definition of martingale solutions, we have
t
a0 )~ [ (@} )X, )
0

are Bi-martingales under P;,¢ = 1,2. In particular, by (5.2), we obtain

T T
B [ AT X ) = i) =B [ AT X
0 0

From this, we derive that P; and Py have the same one-dimensional marginal distri-
butions. By a standard induction method, we deduce that P; = Ps (see [25, p.147,
Theorem 6.2.3]). The proof is complete. O

Theorem 5.4. Suppose that b(t,z) and o(t,x) satisfy (1.6)-(1.7) with a € (0,2),
and 3,0 € (1 —a)t,1). Then for each x € R, there is a unique weak solution to
(4.3). More precisely, there are a stochastic basis (2, F,P;{F }i>0) and (X, Z)
two cadlag F-adapted processes defined on it such that

(i) Zisa pure jump {F; }i>0-Lévy process with Lévy measure 1y, 1<13v(dz) in
the sense that Zg is Fi-measurable for each t > 0 and for each t,s > 0,
Z+s - Z is independent of Fy;

(ii) (X, Z) satisfies a.s. that

t

t
Xi=z+ | b(s,X,)ds —|—/ o(s,Xs_)dZs for allt > 0.
0 0
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Proof. Since the coefficients are bounded and continuous in x, the existence of
a weak solution to SDE (4.3) is standard by a weak convergence method. The
uniqueness follows by Theorem 5.3 since Po X ! € MY() for each weak solution
X of (4.3). |

5.2. Weak well-posedness for SDEs (1.1). In this section, we will establish the
following existence and uniqueness of weak solution for SDE (1.1). The following
is the detailed version of the weak well-posedness part of Theorem 1.1.

Theorem 5.5. Under conditions (1.5), (1.6) and (1.7), for each x € R, there is
a unique weak solution to SDE (1.1). More precisely, there are a stochastic basis
(Q, 7, P;{F }i>0) and (X, Z) two cadlag F;-adapted processes defined on it such
that
(i) Z is a pure jump {ZF }i>0-Lévy process with Lévy measure v in the sense
that Z; is Fi-measurable for each t > 0, and for each t,s 2 0, Zy1s — Zy is
independent of F;
(ii) (X, Z) satisfies that for allt > 0,

t t
X = x—i—/ b(s,XS)ds+/ o(s,Xs—)dZs, a.s.
0 0

Before we present the proof of this theorem, let us first explain the difficulty, our
main idea and the strategy to prove the theorem. The key is to show that if (X, Z)
is a weak solution to (1.1), the distribution of X is unique. Let Z and Z be defined
as in (4.1). The processes Z and Z are pure jump {Z:}1>0-Lévy processes with
Lévy measures 1¢.|<137(dz) and 1y),|>13v(dz), respectively, and they are mutually
independent. Define

Ti=inf{t >0:|Z — Zi_| > 1} =inf{t >0: |o7 (X, )(X¢ — X;)| > 1},
which is an {.%; };>¢-stopping time. On the other hand,
T=inf{t >0: 7 #0}.

So 7 is exponentially distributed with parameter \g := v({|z| > 1}) and is inde-
pendent of the truncated Lévy process Z. Note that

tAT tAT
Xinr = Xo + / b(X,)ds + / o8, Xs VA Zs + 1500 (Xo ) (Zr — Z,2).
0 0

If we define
Y = Xilior + Xp_1r,
then

tAT tAT -
Yo = Xo+ / b(YT)ds + / o(s, Y7 VdZs,
0 0

solves SDE (4.3) driven by truncated stable process Z on [0,7]. However, we can
not get the uniqueness in law of Y7 from Theorem 5.4 as we can not identify
directly {Y;";t < 7} in distribution with the unique weak solution of (4.3) killed
at an independent exponentially distributed time with parameter Ag. In other
words, one does not know a priori whether the local uniqueness in distribution
holds for SDE (4.3). Instead, we will extend the process of Y7 beyond time 7
by running a weak solution of (4.3) with initial value X,_ that is independent of
{(Xt,Zy);t < 7} conditioned on X,_. The extended solution is a weak solution of
(4.3) on [0,0) and so its law is unique by Theorem 5.4. This would imply that the
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law of {X;¢ € [0,7)} is unique. Consequently, the law of {X;¢ € [0, 7]} is unique
as X, =X, +0o(X,_)(Z,—Z,;_) and Z, — Z,_ is independent of X,_. Iterating
this would give the uniqueness of the distribution of {X;;¢t € [0,00)}. In the
remaining of this subsection, we will make rigorous of this idea and in fact establish
the uniqueness of solutions to the martingale problem MZ(,%) This localizing
procedure is very similar to that of [24, Sections 3]|. For reader’s convenience, we
spell out the details below.

Denote by X the canonical process on D taking values in R?; that is, X;(w) =
w(t) for w € D. For each s > 0, define X*~ by

X7 = Xilppeay + Xs Lisay, ¢ 0. (5.3)
For a {%;}-stopping time 7, define

Br_ =c{AN{t<71}: A€ B,t>0}.
Clearly, 7, X[ ™, X,_ € #,_. For t > 0, denote by 6, the time shift operator on D;

that is, 6;w(s) = 0(t + s) for w € D.
The following two lemmas are analogy of [25, Lemma 6.1.1 and Theorem 6.1.2].

Lemma 5.6. Fiz s > 0 and n € D. For any probability measure Q@ on D with
Qw eD:w(s) =n(s—)) =1, there is a unique probability measure 6, @s_ Q on D
such that
(0p ®s— Q){w €D : w(t) =n(t) forallt €[0,5)}) =1
and
0y ®s— Q@ =Q on B

For w € D and t > 0, we also denote w(t) by wy.

Lemma 5.7. Let 7 be a finite { A, }-stopping time onD. Suppose that Q : n — Q,, is
a map from D to P(D) such that for each A € B, n— Qn(A) is B, _-measurable
and

Qn({weD:w(r(n) =n(r(n)-)}) =1 for every n € D.
Let P € P(D). Then

(i) There exists a unique P ®,_ Q € P(D) such that P ®,_ Q = P on %,_
and {6y ®7(p)— Qu(-)}nep is a regular conditional probability distribution of
P®,_ Q given B, _.

(ii) If M : Ry x D — R is progressive measurable and right continuous such that
M/~ is a P-martingale and M, — M;(")_ is a Qn-martingale for each n € D,
then My is a P ®._ Q-martingale.

Proof. (i) For 0 =tq <t; <--- <t, < oo and I; € B(R), let
Ay =0 {w:w, €Ty}, AA =i {w:iw, €y}, k=1, ,n.
Observe that

1= (O ©r(p— Qn)(An) = Z 1{tk—1<7'(77)<tk}1Ak—1(n)Q"'Z(Ak) € HBr.
k=1

We conclude by a monotone class argument that for any A € %, the mapping
N = (0 ®r(p)— Qn)(A) is B _-measurable. Now we define

P = [ (5, rr- QAP A€ e
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It is easy to see that P has the desired properties.
(i) For simplicity we write E for EF. Let 0 < s <t and A € %,. By definition,
we have

E[M;14] = E[E(Mt1A|93T_)} = E{EQ' (Mt1A)]
Note that for each n € D,
B (M14) = B2 [(M, = M7 7)14] + B2 (M7 1,]
— E@n [(Mg _ Mg(n)*)lA] + E@n [M;(n)_lA}

=E9 [M1an{r()<sy] +EP [Mf (n)_lAﬂ{T(n)N}} :

It follows from this and the fact that Q,({w : 7(w) = 7(n)}) = 1 for each n € D
and M7~ is a P-martingale that

E[M;14] = E [E?" [(Ms1anr(<sy]] +E [EQ”(M;(n)ilAm{T(n)»})]
=E [Ms1an(r<sy] +E [M{ 1an(r>q]
=E [Milan(r<sy] + E[M] 1angrssy] = E[M14].
The proof is complete. O
The following Lévy system formula can be proved as in [3, 9].

Lemma 5.8. Let (s,y) € Ry x R, P € Mi(o) and F : R* x R? - R, be a
measurable function with F(t,x,z) = 0. For any {%;}-stopping times 7o > 171 > s
and any non-negative { Ay }-predictable process Hy,

8| & mereew)] =2

T1<t<T2

T2
Hy(w)F(t,wi,w + U(t,wt)z)l/(dz)dt} .
1 JR4

We have the following key lemma.
Lemma 5.9. Let (s,y) € Ry x R, Define
T(w) := inf {t > s ot we ) (wy — wi )| > 1},

which is a {B,}-stopping time, and for f € CZ(RY),
t —
M = ) = ) = [ i fw)r

Suppose P € My (). Then (Mf)ff is a P-martingale with respect to the filtration
{%:}. Moreover, if we let Q, = ﬁf(’?)ﬂ?r(n)* for n € D, where ﬁs’y s the unique

element in M (), then P @, Q € M; ().
Proof. (i) For f € CZ(R%), by definition of (5.3),

tAT

(M)~ = f(wine) = [f(wr) = Flwr)liresy — Ay f(wy)dr.

S

Thus for any t >t > s,
(M)~ = (M)} = fwins) = Flwrnr) = (F(wr) = F@r) Lpercn

[ Ay f (wy)dr. (5.4)

t'AT
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For E € %y, since P € M; (), we have with E := EP,

tAT

E[Li(/ (inr) = fan))] =E 12
On the other hand, if we let F'(t,z,y) := (f(y) — f(2))1{joc-1(t,2)(y—a)|>1}> then
(f(WT) - f(wa))l{t/<‘r<t} = Z F(?‘, UJT,,(UT).

PAT<r<tAT

Since EN {7 > t'} € By ar, we have by Lemma 5.8 that

)] (5.5)

t'AT

E[1e(f(wr) — f(wr))lp<r<ty] =E [1pngrse) Z F(r,wy—,wy)

t'AT<r<EAT

tAT
=E {IEQ{TM/} / F(r,wp,wy, + Jr(wr)z)u(dz)dr]
t/

Ar JRe
—efte [ [ (oo~ Segppt@r] . 50)
We thus obtain from (5.4)-(5.6) that for any ¢t > ¢ > s and for any E € %y,
E 1 (M7~ - (1h);7)] = 0.

This establishes that (M/)]~ is a P-martingale with respect to the filtration {4, }.

(ii) Note that (s,y) — ]@87y(A) is B(R) x B(R%)-measurable and 1 — (7(1), 17— )
is %, _-measurable. One can also verify by definition that M7/ — (M)~ is a
{%:}-martingale under each @,. Thus P®,_ Q € M; (=) by Lemma 5.7. O

Theorem 5.10. The uniqueness of M; (<) for each (s,y) € Ry x R? implies the
uniqueness of M3 (<) for each (s,y) € Ry x RY.

Proof. Without loss of generality, we assume (s,y) = (0,0) and P P(2) € MY ().
Let 79 = 0 and for each n € N, define stopping time 7,, by

T, = inf {t > Tt ot we ) (we — wel )| > 1} with inf () := oo.

For each (sq,y0) € Ry xRY, let I?P/’So,yo € My (Q?) be the unique martingale solution

of SDE (4.3). For n € D, let Q,, :==P . By Lemma 5.9,

T1(N)sWry (n)—
PO @, _ Qe MY(), i=1,2

It follows that P @, Q = IFO)O by the uniqueness of M8(,52,7v), where ¢ = 1,2. In
particular,

P — p — ED(),O on $B-, _. (5.7)
Next we show that
PO PO on 2, . (5-8)

It suffices to show that for any n > 1,0 =159 <51 <--- < s, and I'; € B(R?) for
0<j<n,

PO (M_o{wsinn €T5}) =P (Mj_o{winn €T5}) (5.9)
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We have by (5.7)
P (ﬂ?:(){ws,-/\rl € Fj})
=P (H?ZO{WSJ'/\‘H € Fj}; L > 5") +IP(1) (m?:(){wsj/\"'l € Fj}; 1S 5")

n

=PpW (m;;o{w;;;ﬁ € FJ—}) +y (IP(”) (M_o{ws;nr €T3} sk—1 <71 < k)
k=1

0 (n;.;o{w;;;n €T} spo1 <7 < sk) )
=: By, (mgzo{w;;;ﬁ e rj}) +3 g, (5.10)
k=1

By the the Markov property of P() on A, — and the Lévy system formula of Lemma
5.8, for each 1 < k < n,

(i)
J(k) = ]EP |: Z (lm?:qu ((JJT.) — 1m?:kri (wr_)) 1{‘0;1(wr7)(w7‘7wr7)|>1};

Sp_1<r<SpAT1

23 {ws, €T3} N {511 <71 < )]
P SEAT1
=E [/ / (1nn, 1, (wr +04(2)) = 1o 1, (wr)) v(dz)dr;
sk—1 J{lz[>1}
ﬂf;é {wsj S FJ} n {7’1 > 5k—1}:|
~ SEATL
— o / / (Loo 1 (@ + 0(2)) = Lon_ 1, (wr)) w(d2)dr;
Sk—1 {|z|>1}

ﬂf;é {wsj S Fj} N {7’1 > 3k—1}:|-

This together with (5.10) establishes (5.9) and thus (5.8).

Finally, let {Pg)}we]@ be the regular conditional probability distribution of P(%)
with respect to %,,. By [25, Theorem 6.1.3], there is a common P®)-null set
N € %, so that for all w € D\ N,

5., ®7—1(w) P(i) c erl(w)(«Q{t)~

71 (w)

Repeating the above proof, we can derive that P(1) = P(?) on AB,. By the induction
and the fact that lim,, ,., 7, = 00, we have PO = P®? on A... O

We now give the proof for the weak well-posdeness part of Theorem 1.1, that is,
Theorem 5.5.

Proof of Theorem 5.5. Since the coefficients are bounded and continuous in x, the
existence of a weak solution to SDE (1.1) is standard by a weak convergence argu-
ment. The uniqueness follows by Theorem 5.10 since P o X! € MY () for each
weak solution X of (1.1). O
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