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Chapter 1

Brownian Motion with Darning

1.1 What is Brownian motion with darning?

Let X be Brownian motion on R%. For a nearly Borel set A C R?, a point z is said to be
regular for A if P,(04 = 0) = 1. Here o4 := inf{t > 0: X; € A} is the first hitting time of A
by Brownian motion X. We use A" to denote all the regular points of A. A nearly Borel set
A in R? is said to be polar if P,(04 < 0o) = 0 for all z € R% Tt is well-known that for every
nearly Borel set A, A\ A" is polar (see [16, Proposition 6.3 on p.44]). It is also known that
when d = 1, A" = A (see [16, Proposition 3.2 on p.30]). Lebesgue showed that when d = 2,
any connected subset B of R? that contains at least two points is non-polar and B C B"
(see [16, Proposition 7.2 on p.47)).

Suppose that E a domain (open connected subset) of RY, and Ki,..., Ky are quasi-
separated non-polar finely closed relatively compact subsets of E. Let D = E '\ Uévlej.
Intuitively speaking, Brownian motion with darning on D* := DU{aj, ..., a% } is a Brownian
motion in E by “shorting” each Kj; into a single point a}. Sometimes we also use K7 to
denote the point aj. For such a purpose, we may assume without loss of generality! that
K; C K7. But for the convenience of describing the topology on D*, in this notes we assume
that each K is compact but put no assumptions on the regular points of K, that is, we do
not assume K; C K.

Formally, by identifying each K; with a single point a}, we can get an induced topological
space D* := DU{aj, ..., ay} from E, with a neighborhood of each a} defined as (UND)U{a}}
for some neighborhood U of K; in E. Let m be the Lebesgue measure on D, extended to
D* by setting m(K*) = 0, where K* := {a],...,a}}

Definition 1.1.1 Brownian motion with darning (BMD in abbreviation) X* is an m-symmetric
diffusion on D* such that

'In general, note that (cf. [2, Lemma A.2.18(i)]) K; \ K7 is semipolar and hence polar. Thus for every
r € K; N K], since o; = OK;NK; N OK\KT Pz(aanKjr =0) = P,(0k, = 0) = 1; that is, every point of
K; N K7 is regular for K; N K. So we can take K; N K7 as new Kj;, which is non-polar and finely closed
(rather than closed) since E \ K is finely open.
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(i) its part process in D has the same law as Brownian motion in D;
(ii) it admits no killings on K*.

Observe that it follows from the m-symmetry of X* and the fact that m(K*) = 0 that
BMD X* spends zero Lebesgue amount of time (i.e. zero sojourn time) at K*. We point
out that D can be disconnected.

Example 1.1.2 (One dimensional examples) Let £ = R.

(i) N =1and K = [0,1]. In this case, D* =2 R and BMD X* on D* is just the standard
BM on R (see Figure 1.1).

| 1 — .

0 1

Figure 1.1: Example 1.1.2(i)

(i) N =1and K =[0,1/3]U[2/3,1]. D* is homeomorphic to a knotted curve (see Figure

1.2) and X* is BM on this graph.
.
1

Figure 1.2: Example 1.1.2(ii)
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(ii) N =1 and K = {-1,0,1,2}. The graph D* has three knots hanging at the same point
(see Figure 1.3). BMD X* is BM on this graph.
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Figure 1.3: Example 1.1.2(iii)

(iv) N =2, K; = {-1,1} and Ky, = {0,2}. D* is a graph consisting a circle and a line
passing the center of the circle (see Figure 1.4). BMD X* is BM on this graph.
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Figure 1.4: Example 1.1.2(iv)

(v) N =1 and K is the Cantor subset of the unit interval [0, 1]. D* is a graph with infinite
degree (see Figure 1.5). BMD X* is BM on this graph.

Figure 1.5: Example 1.1.2(v)

Example 1.1.3 (Multidimensional examples) Let £ = R? with d > 2.

(i) N =1 and K is a non-polar connected compact subset of R%. See Figure 1.6.

o - .

Figure 1.6: Example 1.1.3(i)

(i) N =1 and K = 0B(0,1). D* is homeomorphic to he plane with a sphere sitting on
top of it. See Figure 1.7.

(iii) N =2, K; = B(0,1) and Ky = B(x, 1) for some xy € R? with |zg| > 2. See Figure
1.8.

(iv) N =2, K; = 0B(0,1) and Ky = 0B(x0,2) for some xy € R? with |zg| > 4. D* is
homeomorphic to the plane with a sphere sitting on top of it. See Figure 1.9.

(v) N =1, K = B(0,1) U B(zg, 1) for some zy € R? with |zo| > 2.

(vi) N =1 and K = 9B(0,1) UdB(x,2) for some xq € R? with |zo| > 4. D* is homeomor-
phic to the D* in (iv) but with two points where the spheres touch the plane identified
into one point.

(vil) d =2, N =1 and K is the Siepinski gasket or Siepinkski carpet in R2.
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O .

Figure 1.7: Example 1.1.3(ii)
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Figure 1.8: Example 1.1.3(iii)

Remark 1.1.4 (i) BMD with darning on (E \ K)* when K is a fractal-like set might be
an interesting subject to study from the fractal geometry point of view.

(i) One can also do darning (or shorting) for symmetric diffusions on R? as well as on
general state spaces. In fact, one can do darning for a large family of non-symmetric
(possibly discontinuous) Markov processes. See [2, 4, 5, 6, 9]. The results developed
in this lecture notes (except the conformal invariance property for planar BMD) can
be easily adapted to be applicable to symmetric diffusions on general state spaces. O

1.2 Existence and Uniqueness

In this section, we show that BMD always exists and is unique in law.

As mentioned earlier, BMD on D* can be intuitively thought of as obtained from Brow-
nian motion on E by “shorting” each K;. The Dirichlet form for the part process X
of Brownian motion X killed upon leaving domain E is (D, Wy*(E)), where D(u,v) =
1 [, Vu(z) - Vu(z)dz and Wy?(E) is the v/Dj-completion of C2(E). Here for a > 0,
D, (u,u) := D(u,u) + a [, u(z)?dr. The quadratic form (D, W,?(E)) is a regular Dirichlet
form in L*(E;dz). For u € W,*(E), its energy measure

i (dr) = [Vu(e) Pde.

which is the same as its strongly local part uf, (dz) as the Dirichlet form (D, Wy (E)) is
strongly local.

Think D(u,u) as the energy for the potential (or voltage) u on E. “Shorting” on K;
means u is constant D-q.e. on K. Denote by (£*, F*) the Dirichlet form for BMD X* on
D*. Then intuitively,

F*={u e W,*(E) : u is constant D-q.e. on each K}

and £*(u,v) = D(u,v) for u,v € F*. Denote K = UYX| K and o := inf{t > 0: X" € K}.
It is well known that for every u € Wy*(E) and a > 0, Hu(z) := E, [emoxu(XE )] is in
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Figure 1.9: Example 1.1.3(iv)

W, ?(E) and u — H%u € Wy*(D). Moreover, u — H%u is the D,-orthogonal projection of
u into the closed subspace W, *(D) of W, *(E). Define for each j,

uj(z) :=E, [e7%; X2 € Kj].

Since K is compact, u; = Hj f for any f € C°(F) with f =1 on K; and f = 0 on other
K,’s, s0 it is an element in W, "*(E) that is D;-orthogonal to Wy *(D). Foru € F* c Wy*(E),
since u takes constant value, denoted as u(K;), D-q.e. on each K, we have

Hju(x) =Y B, [e 7 u(X2); X2 € K] =) u(K;)u;(x).

Jj=1 j=1
As each K is non-polar, one has
F* = linear span of Wy (D) and {u;,j =1,...,N}

and for u,v € F*,
E*(u,v) = D(u,v) = %/ Vu(z) - Vu(z)de.
D

In the last equality, we used the fact that

,U?u>(U§V:1Kj) = / \Vu(z)|*dz =0 for any u € F,

N
UN L K

due to the following result that is valid for any quasi-regular Dirichlet form.

Theorem 1.2.1 Let (€, F) be a generic quasi-reqular Dirichlet form on L*(E;m), where E
is a Lusin space. Suppose that u € bF. Then the push forward measure v of /,L‘zu) under map

u defined by
V(A> = M?u) (u_l(A))7 A€ B(R)v

18 absolutely continuous with respect to the Lebesque measure on R. This in particular implies
that Iy does not charge on level sets of u. Here [y 1S the Revuz measure for (M*™°), the
predictable quadratic variation of the continuous part M™° of the square-integrable martingale
M*™ appeared in Fukushima’s decomposition of u(X;) — u(Xo).
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Proof. It suffices to show that for any compact set K C R having zero Lebesgue measure,
v(K) = 0. Let K be a compact set having zero Lebesgue measure. There exists a sequence
{ér,k > 1} of continuous functions having compact support in R such that |¢x| < 1,
limg o ¢r (1) = 1k () on R, and

o) 0
/ o(r)dr = / ér(r)dr =0 for k > 1.
0 —00

The last display implies that each @, (x fo ér(r)dr is a C! function with compact support,
@,(0) = 0 and |?}(x)] < 1. Hence @k( ) is a normal contraction of u and so ®r(u) € F
with (P (u), Pr(u)) < E(u,u). Since limy_,o Px(r) = 0 on R, by dominated convergence
theorem, @ (u) — 0 in L?*(E;m). Thus by Banach-Saks Theorem (see, e.g., [2, Theorem
A.4.1]), taking the Cesaro mean sequence of a suitable subsequence of {¢y, k > 1}, and
then redefining them as {¢y, k& > 1} if necessary, we may and do assume that @y (u) is & -
convergent to 0 € F. Now by Fatou’s lemma and [2, Theorems 4.3.3(iii) and 4.3.7], we
have

v(K) < hm/(ﬁk v(dr) llm/% (y (dz)
= lim 2&8(Px(u), Pr(u )<2hm€@k()¢k()) 0.

k—o0
This completes the proof. a
Now we define
F* = linear span of Wy*(D) and {u;|p,j =1,...,N} (1.2.1)
and for u,v € F*,
1
= —/ Vu(z) - Vo(z)dz. (1.2.2)
2Jp
Observe that
Fr={ulp: ue Wy *(E), u is constant D-q.e. on each K;} (1.2.3)

and

Wo*(D) € F* € WH(D) = {f € L*(Dsdx) : V.f € L*(D;dx)}.
Clearly, (£*, F*) is a Dirichlet form on L*(D;dz) = L*(D*;m).

Theorem 1.2.2 The quadratic form (£*, F*) defined by (1.2.1)-(1.2.2) is a reqular Dirichlet
form on L?(D*;m). It is strongly local and each a; has positive capacity. Consequently, there
s an m-symmetric diffusion X* on D* that starts from every point in D* and admits no
killings on D*. The diffusion X* is BMD on D* and every a; is reqular for itself.
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Proof. Let C = {u € C*(E) : u is constant on each K;}. By defining u(aj) to be the
value of v on K;, we can view C as a subspace of C.(D*) N F*. Since C is an algebra
that separates points in D*, by Stone-Weierstrass theorem, C is uniformly dense in C, (D*).
Next we show C is &-dense in F*. For this, it suffices to establish that each w; can be
& -approximated by elements in C. Let f; € C2°(E) so that f; =1 on K; and f; =0 on K;
for i # j. Note that u; = Hi f; = f; — (f; — Hi f;) is a Dy-orthogonal decomposition with
fi — Hik f; € Wy*(D). Since (D, W,?(D)) is a regular Dirichlet form on L?(D;dx), there
is a sequence {gy, k > 1} C C°(D) that is Dy-convergent to f; — Hj f;. Let v, := f; — gi,
which is in C and &f-convergent to u;. Thus we have established that (£*, F*) is a regular
Dirichlet form on L?*(D*;m). Clearly it is strongly local and its part Dirichlet form on D
is (D, W,?(D)). So there is an m-symmetric diffusion X* on D* associated with (£*, Fx),
whose part process in D is the killed Brownian motion in D. The diffusion X* is a BMD
on D*. Since Brownian motion X% in E starting from = € D visits each K; with positive
probability, X* starting from z € D visits each a} with positive probability. This implies
that each a} has positive capacity. Consequently, X* can be refined to start from every point
in D*. That each a is regular for itself follows from the general fact that for any nearly
Borel measurable set A, A\ A" is semipolar and hence m-polar. a

We point out that in the above theorem, we do not assume that every point of Kj is
a regular point for K;. If K; C K for every j = 1,..., N, then each u; is a continuous
functions in C(£) that takes constant value 1 on K; and zero on other K;. From it, one
concludes immediately that C; := {u € Wy*(E) N Cx(E) : u is constant on each K}, after
defining u(a}) to be the value of u on Kj for each u € Cy, is a core of (£, F*) and so (£*, F¥)
is a regular Dirichlet form.

Every function in a regular Dirichlet form is known to admit a quasi-continuous version
(see, e.g., [2]). We assume throughout this notes that every function u in the domain of a
regular Dirichlet form is always represented by its quasi-continuous version.

Theorem 1.2.3 BMD on D* is unique in law.

Proof. It suffices to show that if X* is a BMD on D*, its associated quasi-regular Dirichlet
form (€, F) on L?(D*;m) has to be (€%, F*). First note that according to the definition of
BMD, each @} is non-polar for X* and that the part Dirichlet form (€, Fp) of (£,F) in D
is (D, Wy*(D)) (see [2, Theorem 3.3.8]). By the & -orthogonal projection (see [2, Theorem
3.2.2]), for every u € F, Hj.u(z) :=E, [e77 u(X}.)] € F and u — Hj.u € Wy *(D). Here
K*:={aj,...,ay} and o* :==inf{t > 0: X € K*}. Now

H.u(z) = Zu(a}k) E,[e 7 X} = ai] forxz e D.

Jj=1

By the continuity of X*, the definition of a} and the fact that X *D has the same distribution
as the subprocess of X% killed upon leaving D, we see that

E,[e7; X5 =d}] =E, [e“’E;XfK € K;] =u;(z) forzeD.

o J
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It follows then Hi.u = Z;VZI u(a})u;(r). As each aj is non-polar,
{(u(a}), ... u(ay));u € F} =R"

and so F = F*. Note that (&€, F) is strongly local so for every bounded u € F = F*,

1 * c c * c

where in the last equality, we used Theorem 1.2.1 with A = {u(a});j = 1,..., N}. For every

relatively compact open subset U of D, there is a ¢ € C2°(D) so that ¢» = 1 on U. Note
that ut) € Fp = Wy (D) and wth = won U. As (€, Fp) = (D, W,*(D)), by the strong local
property of the energy measure i, (see [2, Proposition 4.3.1]), we have

W (dx) = pfyy (do) = [V (u)(2)[*dz = |Vu(z)|*dz on U.

Consequently, we have uf,,(dz) = |Vu(z)[*dz on D. So &(u,u) = 3 [, |Vu(z)|*dz for every
bounded u € F and hence for every u € F. This completes the proof that (€, F) = (€*, F*).
]

Remark 1.2.4 (i) The above procedure of constructing BMD works almost word for word
for darning holes for symmetric diffusions on general state spaces. We will use this
extension without further mention in Theorems 1.3.2 and 1.3.3.

(ii) Let D be a Euclidean domain in R?. 1In [11], Fukushima considered via Dirichlet
form technique a process that amounts to darning reflected Brownian motion on D by
“shorting” 0D. O

Theorem 1.2.5 Let
pij(x) =P, (X} €K;), j=1,....N,

and (£*, FY) the extended Dirichlet form of (£*,F*). Then
F; = linear span of Wol”ez(D) and {¢;|lp,j=1,...,N},

e

1
E(u,v) = é/DVu(x)-VU(x)dx foru,v e F.

Here Wol”f(D) denotes the extended Dirichlet space of (D, Wy?(D)).

Proof. Clearly, Wol,f(D) C Fr. Let f; € C°(E) so that f; = 1 on K; and supp[f;]NK; =0
for any i # j. Then ¢;(z) = Hi f;(z) :=E, [fj(XfK)}. Since for a € (0,1), H} f; € F* with

En(Hy f5, Hi f3) < EL(fi, f3) < Dalfy, f5)
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and that lim,_,0 H% f; = Hg f; = ¢; on D, we conclude that ¢; € F;. Hence we have shown
F D linear span of WOI’f(D) and {p;|p,j=1,...,N},

Now suppose that u € F. Then there is an £*-Cauchy sequence {wg, k > 1} in F* that
converges to u m-a.e. on D*. For each k > 1, there is f, € Wy*(D) so that

wy(r) = fir(x) + Z wy(a;)us(x) = fr(x) + Z wy(a;)(uj(z) — @j(r)) + Zwk(a§)<ﬂj(1)-

Note that hy := Zjvzl wg(a})p; € F. which is £*-orthogonal (or equivalently, D-orthogonal)
to Wolf(D), while g == fi + Zjvzl wy(a})(u; — ¢;) € WO{f(D) due to the fact that u; —
@; = limgo(Hi f; — HYf;) and H f; — HYf; € W,*(D). Thus {gp, k > 1} is a D-
Cauchy sequence in the transient Dirichlet form (D, W,*(D)) in L*(D;dz) and so gy — g
in the Hilbert space (Wol’f(D),D) and a.e. on D for some g € WOIS(D) Consequently,
hy — h:=u—g m-a.e. on D* as k — oco. It follows then wy(a}) converges to some constant
cj as k — oo because {p;(x),7 = 1,..., N} are linearly independent functions on D. We
thus conclude that h = Zjvzl cjpj. As u = g+ h, this completes proof of the theorem. O

Remark 1.2.6 Let Wol,f(E) be the extended Dirichlet space of (D, W,*(E)). Then we
conclude by the same argument as those in the second paragraph of this section that

Fr={ulp:ue WOIE(E), u is constant D-g.e. on each K} .

1.3 Localization Properties

Suppose that F is a domain in R? and K, ..., Ky are disjoint non-polar compact subsets
of E. Suppose also that F; is a subdomain of E that contains Ky, ..., K; for some | < N
and that By N K; = 0 for j > [. Let D = E \ Uévlej and D; = Ep \ Uélej. Set
D*:=DU{a},...,ay} and Dy = Dy U {aj,...,a}, and let X* be BMD on D*.

Theorem 1.3.1 The part process X*P1 of X* killed upon leaving D} is the BMD on D7.

Proof. We will present two proofs for this theorem.

(i) Using Theorem 1.2.3 and by checking the definition of BMD in D7, we see immediately
that X*P1 is the BMD on Dj.

(ii) We now present a second proof by using Dirichlet form characterization of BMD in
D;i. Let (€*,F*) and (&€, F) be the Dirichlet forms of BMD in D* and D7, respectively.
Recall from (1.2.3) that

F={ulp: ue Wy *(E), u is constant D-q.e. on each K;}.
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It is known that X*P1 has Dirichlet form (£*, F}.) on L?(Dj;m), where
Fpr={u€F :u=0&"qe on D"\ Di}.

Since each a} has positive capacity and (£, Fp) = (D, Wy ?(D)), we conclude that
Fpr = {u|D cu € Wy*(E), u is constant D-q.e. on K; for j =1,...,1

and u = 0 D-q.e. on E\El} = F.
So (€%, Fp) = (€, F), which establishes that X*"7 is the BMD on D. O

The next theorem says one can darn (or short) holes one by one.

Theorem 1.3.2 Let Y be BMD on O* := (E'\ U;V:?Kj) Udaj,...,ay_1} by darning (or
shorting) the first N — 1 holes. Let Z be the diffusion with darning on D* obtained from 'Y
by shoring Ky to a single point ay,. Then Z is BMD on D*.

Proof. Let D; = E'\ UXS'K; and denote by (&, F) the Dirichlet form of Y on L*(Dj;m).
In view of (1.2.3) and Theorem 1.2.1,

F={ulp,: ue W,?(E), u is constant D-q.e. on K; for j =1,...,N — 1}

and

E(u,v) = %/D Vu(z) - Vo(z)dz.

The Dirichlet form (€, F) on L2(D*;m) for Z is

F = {ulp: ueF, uis constant E-q.e. on Ky}
= {ulp: ue W,?(E), u is constant D-q.e. on K; for j =1,... N}
= F*

and, in view of Theorem 1.2.1, for u,v € f,

E(u,v) =E(u,v) = %/DVu(m) -Vou(x)dx.

This shows that (€, F) = (€%, F*), which completes the proof of the theorem. O

Theorem 1.3.3 Let K = AU B be the union of two disjoint non-polar compact subsets of
E. LetY be BMD on (E '\ A)* by darning A, and Z the diffusion with darning on (E \ K)*
obtained from Y by darning (or shoring) A*U B. Then Z is BMD on (E \ K)* by darning

K into one single point.
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Proof. Let (£, F) and (£, F) be the Dirichlet forms for the processes Y and Z on L*((E \
A)*:m) and L2((E \ K)*;m), respectively. Note that

F = {ulpa: ue Wy*(E), uis constant D-q.e. on A},
1
E(u,v) = = Vu(z) - Vu(x)dz for u,v € F,
2 /ma

while

F = {u\E\K . u € F, uis constant £-q.e. on A* U B}
{ulpx : ue Wy(E), uis constant D-q.e. on K = AU B} = F,

- 1 -
E(u,v) = E(u,v) =~ Vu(x) - Vo(z)de = E*(u,v) for u,v € F.
2 Jpk
Here (£*, F*) is the Dirichlet form for BMD X* on (£ \ K)*. This proves that Z has the
same distribution as BMD X* on (E \ K)*. O

One can also prove the above two theorems just by using the definition of BMD on D*.

1.4 Conformal Invariance of Planar BMD

In this section, we assume the dimension d = 2, F is a domain in R? and Kj,..., Ky are
disjoint non-polar compact subsets of F. Let K = U;V:lKj and D = E'\ K and X* be BMD
in D*=DU{aj,...,ay}

Theorem 1.4.1 Let K = Ufilf(i, where {[?1, e [A(N} is a second set of disjoint non-polar
compact subsets of a domain E in R2. Suppose that ¢ is a conformal map from E'\ K onto
E \ K that, for each i > 1, ¢ maps the E\ K-portion of any neighborhood of K; mto the
E \ K- -portion of a nezghborhood of KZ, and vice versa. Identify the compact set K wzth
a single point af and equip D* - (E \ K) {aj,...,ay} the topology induced from E by
identifying each set K; into one point a;f. Define gb( l) af, 1 < i < N. Then ¢ is a
topological homeomorphism from D* onto D*. Moreover, ¢(X*) is, up to a time change,
BMD on D,

Proof. In view of Theorem 1.3.1, we may assume that the domain F' is bounded with smooth
boundary and that ¢ extends contmuously to OF to be a homeomorphism from JF to OE.
Let 7 be the Lebesgue measure on D := E \ K extended to D* by setting m({a;}) = 0 for
i=1,...,N. BMD X* = (X/,[P}) on D* is an extension of the absorbing Brownian motion
in D to D* and is m-symmetric. By Theorem 1.2.5, the extended Dirichlet space (F},E*)
of X* is given by

f* = {f‘FZ;NlCZQDAD f e W&f(D), C; € R},
E*(u,v) =1 [, Vu(z) - Vo(z)dx  for u,v € F;,
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where ¢;(z) := P, (X2 € K;) for z € D.

We define a Markov process Y = (V;,P}), 5. on D* by

Yy = ¢(X:)7 ]P)g = Pqﬁ—l(w)a w e B* (141)

Y is clearly a diffusion process on D*. We claim that Y, after a time change, is actually a
BMD on D*.

Denote by {P;,t > 0} and {PY,¢ > 0} the transition function of X* and Y, respectively.
It then hold that PY f(w) = P,(f o ¢)(¢~1(z)) for w € D*. Let 1 = ¢~ be the inverse
map from D* to D* and let p(dw) = 19/ (w)]?15(w)dw, which is extended to D* by setting
,u([/(\’ *) = 0. Recall the change-of-variables formula that for any function v > 0 defined on

D,
[ awntan) = [ )i

The above in particular implies that p(D ) |D| is finite. From the change-of-variable
formula, we immediately obtain ||PY ez, = I12:(f © &)l r2(p;m) and

(PtYf7 g)LZ(ﬁ;u) = (PtX(f © (b)a go ¢)L2(D;m)7

from which the p-symmetry of Y follows. Let (£Y,FY) be the Dirichlet form of Y on
L3*(D*; ). For f € L*(D; ), we let ¢ | 0 in the equality

t_l(f - PtYf7 f)L2(ﬁ*;#) = t_l(f © ¢ - PtX(f © ¢)7 f © ¢)L2(D*;m)
to see that f € FY if and only if f o ¢ € F*, and in this case,
D = 5 [ IVTooPE
= 3 ] IVIF@EIERE: = 5 [ V).

The above identity also implies that f € FY if and only if f o ¢ € F*, and
N = (foofo0) =5 [ [Vw)Pde for e 7.

Let (€%, F*) and F* denote the Dirichlet form and extended Dirichlet space of BMD on D*.
We then conclude from Theorem 1.2.5 that F¥ = F*. Since the finite measure u(dz) on D*
is mutually absolutely continuous with respect to m on D*, we have by [2, Theorem 5.2.7]
that Y is a time-change of BMD X* on D* (and vice verse). O
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1.5 Zero Flux Characterization of Generator

The L*-generator (£,D(L)) of (£*, F*) is defined as follows: v € D(L) if and only if u € F*
and there is some f € L*(D;dx) = L*(D*;m) so that

E(u,v) = —/ f(z)v(x)dz for every v € F~. (1.5.1)
D
We denote the above f as Lu. In view of (1.2.1), condition (1.5.1) is equivalent to

%/DVu(x) -Vo(z)dr = —/Df(x)v(x)dx for every v € C°(D) (1.5.2)

and

1

3 /D Vu(z) - Vuj(z)dr = — /D f(x)u;(z)dx for every j =1,...,N. (1.5.3)

(1.5.2) says that Au exists on D in the distribution sense and f = ;Au € L*(D;dz). Let us
define the flux NV(u)(a}) of u at a} by

N(u)(a}) = /DVu(x) - Vu;(z)dx + /DAu(x)uj(x)dx. (1.5.4)
Then (1.5.3) is equivalent to

N(u)(at)=0.  forevery j=1,...,N. (1.5.5)

J

Hence we have established the following.

Theorem 1.5.1 A function uw € F* is in D(L) if and only if the distributional Laplacian
Au of u exists as an L*-integrable function on D and u has zero flux at every aj. Moreover,

foruweD(L), Lu=L1Au on D.
Note that when 0K is smooth for j = 1,..., N, the by Green-Gauss formula, we have

N @) = [ 25 wotas)

where n is the unit outward normal vector field of D on 0D and o is the surface measure on
0D. Since uj(x) =1 on K; and u;(x) =0 on K; with ¢ # j,

N (u)(as) = /M’ agf)a(d:c). (1.5.6)

Fix some f; € F* so that f;(aj) = 1 and fj(a;) = 0 for i # j; that is, f; € Wy (E) so
that f; =1 D-qg.e. on K; and f; = 0 D-q.e. on K; for ¢ # j.
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Theorem 1.5.2 Suppose that u € W2(D) with Au € L*(D;dz) in the distributional sense.
Then

N (u)(a;) = /DVU(ZE) -V f(z)dx + /D Au(z) f;(x)dx. (1.5.7)

Proof. Assume that the distributional Au of u exists and is in L?*(D;dz). Since f; —u; €
W,y*(D), one has

/ V(f;() — uy(x)) - Vula)de + /D (f5(@) — () Aulz)dz = 0,
which establishes (1.5.7). 0

Suppose that E is bounded. Then it is well known that the first eigenvalue of the Dirichlet
Laplacian in F is strictly positive; that is, there is A; > 0 so that

D)2 [ faide  for f € WoHE)
E
In view of Theorem 1.2.1 and (1.2.1), this in particular implies that

EX(u,u) > )\1/ u(z)?dx for uw € F*.
D

It follows that (S* }"*) is transient and for every f € L?(D;dx), there is u € F* so that
E*(u,v) = — fD x)dx for every v € F*. We denote thls u by G* f. It is easy to see (cf.
2]) that G* is the 0 order resolvent of X* and G* f E. [[,° f(X?)ds] on D*.

Theorem 1.5.3 If E is bounded, then for every f € L>®(D)(= L>*(D;m)), G*f € D(L)
with LG*f = —f.

Proof. For f € L?(D;dz), by the strong Markov property of X*, we have for x € D,
o) N
G'f(a) = Gofta) 45, | [ f(X:)ds} — Gof(e)+ 3 G S [Xs,. = a]
OK* ]:1
= Gpflx +Zg* (1.5.8)

Since D = E \ K is bounded, Gp(L>*(D)) C L>(D) C L*(D). In view of (1.5.8), G*
has the same property. Hence the resolvent equation G*f = Gif + G;(G*f) yields that
G*f € D(L) with LG*f = —f. 0
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1.6 Harmonic Functions and Zero Period Property

Definition 1.6.1 A function u defined on a connected open subset O of D* is said to be
X*-harmonic or BMD-harmonic on O if for every relatively compact open subset O of O,

ExUU(X:OI)H <oo and u(z)=E, [u(X;kol)} for every x € O;. (1.6.1)
Here 70, :=inf{t > 0: X} ¢ O, }.

Clearly, the restriction to O N D of any X*-harmonic function on O is harmonic there in
the classical sense (i.e. with respect to Brownian motion) and so u is continuous in O N D.
It follows that X*-harmonic functions in O; is locally bounded.

Proposition 1.6.2 If u is X*-harmonic in a connected open subset O of D*, then u is £*-
quasi-continuous on O. In fact, for every relatively compact open subset Oy of O, there is
some function f € F* so that w = f m-a.e. in O;.

Proof. Without loss of generality, we may assume that 0O, C D. Since u is harmonic in
OND, uis C*®-smooth in OND. Let ¢ € C(D) so that ¢ =1 in a neighborhood of 90;.
Note that up € C*(D) C F* and

u(z) = Ex[(ugp)(Xjfol)] = Hp-o, (up)(x) for x € O;.

Since ugp is bounded and compactly supported in D, Hp-\o, (up) € F; N L*(D*;m) = F*.
It follows that u is £*-quasi-continuous in O. O

Lemma 1.6.3 Suppose that v is X*-harmonic in a connected open subset O of D*. Then
limonpse—s. u(z) = u(aj) for D-g.e. 2 € K; N (O N D) whenever aj € O.

Proof. Suppose that a; € O. Let O; be a relatively compact connected open subset of O
so that O N K* = {aj}. By Proposition 1.6.2, there is a function f € F* so that u = f
m-a.e. in a neighborhood of O;. By Theorem 1.2.2, f is the restriction to D of a function
f € Wy?(E) that takes constant value D-q.e. on each K;. Let {Dy;k > 1} be an increasing
sequence of smooth subdomains of D N Oy so that Dy C Dy and Ups1 Dy = Oy N D. Since
f is harmonic in O N D, we have for x € O1 N D,

u(@) = f(@) = lim B, | f(Xn,)| = Ex [£(Xeo,00)]
= Eo [f(Xro,00); Xrp,np € DN OO + u(a))Py (Xry o € K;)
Since K\ K7 is semipolar, we conclude limpnpse—- u(z) = u(aj) for D-qe. z € K;NJ(ON

D). O

If K7 C Kj for every a} € O, then every function u that is X*-harmonic in a connected
open subset O of D* is continuous in O. In particular, such u is a harmonic function in
O N D, taking boundary value u(a}) on each K; whenever a} € O.
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Theorem 1.6.4 Suppose that Dy and Dy are two connected subsets of D* and that DN Dy #
0. If u is X*-harmonic in D; for i = 1,2, then u is X*-harmonic in Dy U D,.

Proof. Let O be a relatively compact open subset of Dy U Dy. Let {U,gi); k > 1} be an
increasing sequence of relatively compact open subsets whose union is D; and (9U,£i) is a
smooth subset in D for ¢ = 1,2. Since {U,il) U U,gQ); k > 1} forms an open cover for O, there
is some ky > 1 so that O C U,E;) U U,gz). For notational simplicity, denote U,g? by U; for
1 = 1,2. Note that O; := O N U; is a relatively compact open subset of D;, i = 1,2. We
claim that for every z € O, u(z) = E, [u(X7))]. In the following we show that the above
holds for every z € O;. The case for z € O, is analogous.

Let {0;;t > 0} be the shift operator for BMD X* on D*. We use {JF;;t > 0} to denote
the minimal augmented natural filtration generated by X*. Define a sequence of stopping
times as follows. T} := 7p,, T := 70,, and for k > 1,

T2k+1 = Tgk + To, © QTQk and T2k+2 = T2k+1 + TO4 © 0T2k+1'

In view of (1.5.8), E, [ro] is a bounded function on O and so 7o < oo P,-a.s. for every
x € O. Note that T}, < 7o for every k > 1. Since u is X*-harmonic in both D; and Ds, we
have for z € Oy, P,-a.s.

u(Xy,) = ]E,X%k+1 [u(X;kH)HTJ for every k > 1.
In other words, {u(X7,);k > 1} is an {Fp, }r>1-martingale under P, for every = € O;. Let
T = limy_ 00 T Since u is bounded and £*-quasi-continuous on O, we have

u(z) = lim By [u(X7,)] = Ex [u(X7)].
We next show that T' = 7. Clearly T' < 79 P,-a.s.. On {T < 70}, X} (w) € O = O1 U Oy,
say, X7(w) € Oy. There is some large kg = ko(w) so that X7 (w) € O, for all k > kg. This is
impossible as for even k > ko, X7, ¢ O. So we must have T' = 79 P,-a.s. and consequently,

u(z) = B, [u(X},)] for every x € O;. This shows that u is X*-harmonic in O for every
relatively compact subdomain O of D; U Dy and so u is X*-harmonic in Dy U Ds. O

Let O be a connected open subset of £ and v is a harmonic function in O N D. Suppose
that K; € O. Let U be any relatively compact C'-smooth subdomain of O that contains K;
and that K; N U = () for any ¢ # j. We define

ov(x)

oU 811

the period of v at a} (or around the compact set Kj) := o(dx),
where n is the inward normal vector field of U on 90U and o is the surface measure on oU.

Note that by the Green-Gauss formula and the harmonicity of v in O N D, the value on the
right hand side is independent of the choice of the subdomain U. Note that E \ K; may
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be connected or disconnected; see Example 1.1.3(i) and (ii) for these two concrete cases.
The next result says that locally an X*-harmonic function can be expressed as the Green
potential of a bounded function with compact support that is supported away from that
region.

Lemma 1.6.5 Suppose that v is an X*-harmonic function in an open subset Oy of D*. For
any relatively compact open subset Oy C O1, there is a compactly supported bounded function

f on D* with supp[f] N Oy = 0 such that v = G*f in Os.

Proof. Let A; = {j : aj € O;} for i = 1,2. There is an open subset U; of £ and a relatively
compact open subset Uy of U; so that Ujep, K; C U; and U;N D = O; N D for © = 1,2. Take
some ¢ € C°(Uy) so that 0 < ¢ < 1 with ¢ = 1 on U,. Define f(z) = —31p(z)A(Yv)(x).
Note that f € L>®(D;dz) and f =0 on D\ (O; \ Oz). Hence G*f € F* is X*-harmonic in
(UsnN D)UA{al,i € Ay} and so is w := v — G*f. On the other hand, (1.5.8) implies that
w is harmonic and hence X*-harmonic in D. Thus by Theorem 1.6.4, w is X*-harmonic in
D*. Since both ¥v and G* f vanish on OF = 0D*, so is w. Thus by maximum principle for
the bounded X*-harmonic function w on D* (note that a}’s are interior points of D*), we
have w = 0 on D*, and in particular v = G*f in Os. a

Theorem 1.6.6 Let O be a connected open subset of D*. An E*-quasi-continuous function
v 18 X*-harmonic in O if and only if v is harmonic in D N O and the period of v at a} is 0
for every v such that af € O.

Proof. The assertion trivially holds if O does not contain any a;. In view of Theorem 1.3.1
and Theorem 1.6.4, without loss of generality, we may and do assume that E is bounded
with smooth boundary 0F, D* = O and that D* contains exactly one a} (that is, K consists
of exactly one compact set K1).

Since we do not assume that K C K", the function u; may not be continuous on K and
hence {z € E : ui(xz) > 1 — ¢} may not be an open set that decreases to K as ¢ | 0. We
will construct a continuous function ; on E taking values in [0, 1] that is 1 precisely on K,
smooth in D and the open set {x € E': uy(x) > 1 — e} decreases to K as ¢ | 0. For this, we
first recall a result about the regularized distance function. Let dg(z) denote the Euclidean
distance between x and K. By [18, Theorem 2, p. 171], there exists a C'"*°-smooth function
dk(x) in K¢ and constants ¢; > ¢ > 0 so that

codp(2) < 0 (x) < crdi(z) and |Vig(x)| < ¢ for every x € K°.

Clearly, 0 () extends to be a continuous function on R? after setting dx (z) = 0 for z € K.
Let U; and U, be relatively compact open subsets of E such that Ky Cc Uy C Uy C Uy C
U, C E so that dg(x) < 1 for o € U,. Take some 1 € C°(Us) so that 0 < ¢ < 1 with ¢ =1
on U;. Define

Ui(z) = (1 =0k (2))¢. (1.6.2)
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Clearly, ¢y € C°(Us) with 0 < ¢y <1 #1(z) =1 if and only if = € Kj;.

Suppose that v is X*-harmonic in D*. For € € (0,1), let 1. be the boundary of the
connected component of {z € E : ¢ (x) > 1 — e} that contains K;. By Sard’s theorem (see,
e.g., [15]), there is a set Ny having zero Lebesgue measure so that for every e € (0,1) \ N,
ne is a C*-smooth (d — 1)-dimensional hypersurface. Take a decreasing sequence {g,,n >
1} € (0,1) \ No with lim,, oo en = 0. Since {x € E : ¢;(x) > 1 — &, } decreases to K7, we
may assume that each 7., is contained inside U;. Call the connected component of R\ 7,
that contains K the interior of 7..

By Lemma 1.6.5, there is a bounded compactly supported function f on D* with supp|f]N
U, = 0 so that v = G* f in U;. By the Green-Gauss formula, Theorems 1.5.1, 1.5.2 and 1.5.3,
we have

period of v at a] = lim aG—f(g)a(alf)
n—o0 Nen ang
o 1 IG* f(§)
= ggol_gn /n e Y1(§)o(dE)
) 1
= lim

/ (Vi - VG* f + 01 AG™ f) dx
D\int(ny)

— /D Vipy(z) - VG* f (z)dx + /D Y1 (2)AG™ f(x)dx
= 2N(G"f)(ay) = 0.

Here n denote the unit inward normal vector field on 7., for the interior of 7., .

Conversely, assume that v is an £*-quasi-continuous function on D* that is harmonic in
D and has zero period at aj. Let the relatively compact open subsets U; C U, of E, the
smooth function ¥ and the smooth curves 7., be defined as above. Set ¢(x) = Py(04: < 00).
Observe that ¢ € W'?(D) and the function w := v — v(aj)p is smooth in D, vanishing
D-q.e. on D. So w = Gpf € Wy*(D), where f = —1p(z)3Aw(x). We have therefore

Yv=w+v(al)p € F* with A(yw) € L*(D;dx).

Since v has zero period at aj, we have by the Green-Gauss formula that

0 = lim/ 81}_({)0(d€>: lim/ Ma(df)

ng n—oo ang

-t [ 2 ota)

/ _ (Viy - V() + 01 A(yv)) do
D\Int(ny)

= [ V@) Vs + [ @aw) @i
— 2N (a)),
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where the last equality is due to Theorem 1.5.2. Hence we conclude by Theorem 1.5.1 that
v € D(L).

Let g := —1D(:E)%A(@/)v)(x), which is smooth and compactly supported. Define w; = G*g,
which by Theorem 1.5.3, is in D(L) C F* with Lw; = —g. Since

1
E (v —wy,u) = —(L(Yv —wy),u) = —§(A(¢v —wy) =0 for every u € F¥,
and that (€*, F*) is transient, we have v = w = G*g. Since g = 0 and v = Yv = G*g on
Uy, v is X*-harmonic in U;. This together with Theorem 1.6.4 implies that v is X* harmonic
in D*. O

Remark 1.6.7 Let Y be Brownian motion in E reflected on compact sets K;, j =1,...,N.
Then harmonic functions of Y in D = E'\ K have zero normal derivatives at K; N dD and
hence zero period around each K;. However these harmonic functions typically do not take
constant values on K; N dD. BMD-Harmonic functions in O C D* takes constant values
on K; whenever a; € O. This property is important for the Riemann mapping theorem in
multiply connected domains in C = R?; see Section 1.10.

1.7 Harmonic Conjugate

Throughout this section, the dimension d = 2. The next theorem is a consequence of
Theorem 1.6.6. Note that in multiply connected planar domains, classical harmonic functions
(i.e. with respect to Brownian motion) in D can only locally be realized as the imaginary
(or real) part of an analytic function in D. Theorem 1.7.1 shows that BMD is the right tool
to study complex analysis in multiply connected domains in R2.

Theorem 1.7.1 Suppose that D := E \ K is connected. If v is X*-harmonic on D*, then
—UlD admits a harmonic conjugate u on D uniquely up to an additive real constant in D so
that f(z) = u(z) + w(z), z € D, is an analytic function in D.

Proof. Fix some z; € D and the value u(zy). For any z € D, define

u(z) = u(z) + aU—(Oa(alg), (1.7.1)
y al’lg

where 7 is a C?-smooth simple curve in D that connects 2y to z, o(d§) is the arc-length
measure along v and n the unit normal vector field along v in the counter-clockwise direction
(that is, if v is parameterized by (z(t),y(t)), then n is the unit vector pointing to the same
direction as (—y/(t), 2'(t))). By the zero period property of v, the value of v(x) is independent
of the choice of the smooth C? simple curve v that joins 2z to z and hence well defined. One
checks easily that (u, v) satisfies the Cauchy-Riemann equation and hence f(z) := u(z)+iv(2)
is an analytic function in D. O
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1.8 Boundary Process

Let 4 be the counting measure on K* = {aj,...,ajy}. Since each a} has positive capacity
with respect to the Dirichlet form (£*, F*), u is a smooth measure with respect to the BMD
X*. Let A* be the positive continuous additive functional (PCAF in abbreviation) of X*
having p as its Revuz measure. Define its inverse

7, = inf{s > 0: A¥ > t}.

The time changed process Y; := X is the trace (boundary) process of X* on K*. It is a
p-symmetric continuous-time finite state Markov chain on K*. Let (£*, F*) be the Dirichlet
form of Y on K*. It is known that F* = F*|g-, F* = F.NL*(K*; u), which is just L>(K*, )
as K* is finite, and

N
E*(u,v) = & (Hyeu, Hyov) = Y u(a))u(a))E (i, ;) for u,v € F.
1,7=1

It follows that Y has infinitesimal generator £Y in L?(K*; )

N
LYv(k) = — 25*(%, ©i)v(j) for v € RY.
=1
In other words, (¢;; := —&*(¢i, ¢;))1<ij<n is the Q-matrix for the finite-state Markov chain

Y, which in particular implies that gx; > 0 for every pair k # j and Zjvzl qr; < 0 for every
1 <k < N. We can also check the above property directly. Note that for ¢ # 7,
4ij = —

(1{a;‘}7 1{a;‘})

Ny = Lagp Yy = Leapp) = € Ly + Loy Lapy + 1{a;}))

E(Lazy = apl gy = Lo D) = € (Lagy + Lagys Lary + 1{a;}))

| = ==

o N N (\’}

& (Nay + Lagys Lay + Lapp) = € (Lapy + Ly Loy + 1{a;})>

SRS

while

N
= & (Lary Lary)
k=1

N
= — Zg*(HK*l{a:},HK*l{az}) = 5*(HK*1{a:}7HK*1K*>
k=1

= —D(¢;,Hrlg) <0

<
Il
-

=
S
|
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as Hilg(z) = P.(0x < 00) is the zero-order equilibrium potential of K in E and ¢; > 0.

Let
N

ki =Y € (Lary Lay) = Z%k
j=1
Then for u € F* = L*(K*; p),
1 N
E*(u,u) = 5 (ulaf) —ula)))a; + ;U(ai‘)zfﬁi- (1.8.1)

Hence we have the following.

Theorem 1.8.1 The boundary process X* on K* is a Markov chain on K* with Q-matriz
(gij); that is, X* is a continuous-time symmetric Markov chain on K* with jumping inten-
sities q;; for i # j and killing rates k;.

1.9 Green Function and Poisson Kernel

Recall that G* is the 0-resolvent of BMD X™* in D* and GG is the Green function of Brownian
motion X” in D. The next theorem gives the explicit expression for the Green function
G*(z,y) of X*.

Theorem 1.9.1 Let ®(z) = (¢1(x),...,pn(2)) and A an N x N-matriz whose (i,7)-
component p;; is the period of ¢; around the compact set K;. Then A is symmetric and
inwvertible. For any Borel measurable function f >0 on D*,

G f(x) = /D G* (2, 9)f (y)m(dy),

where

G*(z,y) = Gp(z,y) +2®0(z)A™" - ®(y) forz € D*and y € D. (1.9.1)

Proof. For any f € C.(D), by Theorem 1.5.3 and (1.5.8), G*f is X*-harmonic in O :=
D* \ supp[f] and that

G f(z) = Gpf(x +ZG* (1.9.2)

By the same reasoning for the construction of the function ¢; in (1.6.2), for each i €
{1,..., N}, there is a ¢, € C.(E) so that 0 < ¢y < 1, ¢; € CX(D), 1;(x) = 1 if and only
if x € K;, and that ¢; and 1; have disjoint support for i # j. Now fix i € {1,...,N}. For

€ (0,1), let n. be the boundary of the connected component of {z € E : ¢;(x) > 1—¢} that
contains K;. Again by Sard’s theorem, there is a set \V; having zero Lebesgue measure so that
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for every € € (0,1)\N;, 7. is a C*°-smooth (d—1)-dimensional hypersurface. Take a decreas-
ing sequence {g,,n > 1} € (0,1) \ NV; with lim, ,,.ey = 0. Since {z € E: p;(z) > 1 —¢,}
decreases to K;, we may assume that each 7., is contained inside O. Let us call the con-
nected component of R?\ 7. that contains K; the interior of n.. Since f € C.(D), G*f is
X*-harmonic in a neighborhood of @ and so it has zero period at a by Theorem 1.6.6.

Moreover,
Gpf € Wy2(D) with AGpf = —2f. (1.9.3)

By computing the period of both side of (1.9.2) at af, we deduce from the Green-Gauss
formula that

al , Rle
_ : 1 IGpfly)
— - Jim / DIy (y)oay)
= dm [ W)AGHIW) + V) VoI ) dy
nreo n J D\int(ney,)
= 2 [ biy) Fly)dy - / Vii(y) - VO f(y)dy (1.9.4)
D

Since 1; — ¢; is a bounded function in W07’€ (D), by (1.9.3),

/ vy ) VGpfly)dy = Q/D(l/%(y) —i(y)) f(y)dy.

Thus we have from (1.9.4) that
N
>opG i) = 2 /D i) f (w)dly - /D Veuly) - VG f(y)dy

. /D i) f (9)dy.

In the last equality we used the fact that Gpf € Wolf(D) and ¢; is D-orthogonal to WOI”eQ(D).
Since {¢;;1 < i < N} are linearly independent as functions on D and a}’s are non-polar,
the above identity implies that A is invertible and

(GF (@), G (@) =247 [ 8" f0)
Here the superscript “tr” stands for vector transpose. This together with (1.9.2) establishes

(1.9.1). Since G*(z, () is symmetric in z and ¢, it follows from (1.9.1) that A" is symmetric
and so is A. This completes the proof of the theorem. a

We call the kernel G*(x,y) the Green function of X* in D*.
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Lemma 1.9.2 For each © € D*, y — G*(z,y) extends to be an E*-quasi-continuous X*-
harmonic function on D*\ {z}. If K; C KJ for each j, then y — G*(z,y) extends to be a
continuous X *-harmonic function on D*\ {z}.

Corollary 1.9.3 For each j € {1,...,N}, the period of y — Gp(x,y) and y — G*(af,y)
around K; are —2p;(x) and 20;, respectively.

Proof. Computing the period around K; on both sides of (1.9.1), we have by Theorem 1.6.6
and Lemma 1.9.2 that for = € D, the period of y — Gp(z,y) around K; equals

“20(0) A (1, D) = —20() - ) = —2p;(a).

Here e; denotes the unit vector in the positive direction of the x;-axis. Since G*(aj,y) =
2®(af) A~ - @(y), its period around Kj is

O

Without loss of generality, we may and do assume that JF is smooth. We use ¢ to denote
the Lebesgue surface measure on 0F. Define

K*(z,2) = 196w, z) for z € D* and z € OF.

2  On,
Here n, denotes the inward normal vector field for £ on 0F. Since y — G*(z,y) vanishes
continuously on 0F, K*(x,z) > 0 for x € D* and z € JE. Note that for each fixed z € OF,
x — K*(z,z) is an X*-harmonic function in D*. We call K* the Poisson kernel of X*. For
each z € 9D, define

19Gp(z:2) forx € D
KD(.T,Z) = 2 on. ’*
0 for x € K*,

which is the classical Poisson kernel for Brownian motion in D (more precisely, on the part
of OF C OF). By (1.9.1), we have for z € D* and z € 0F,

K*(z,2) = Kp(z,2) + ®(2) A" (’9@@_1522) (1.9.5)

Recall that X is Brownian motion in R%.

Lemma 1.9.4 For every bounded continuous function f on OF,

E.[f(X;,); X, € O] = . Kp(z,2)f(z)o(dz) forx € D.
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Proof. When D is a bounded smooth domain, this is a classical result. So the main point of
the proof is to take care of the case when 0K may be non-smooth and that £ may be possibly
unbounded. We first assume that f € C,(0F) is nonnegative. Let Dy be an increasing
sequence of bounded smooth subdomains of D so that Uys1 Dy, = D, D;,NK; = (), the relative
interior of 0EN 0Dy, contains 0ENODy and OF C Up>10Dy. Clearly Gp, (z,y) < Gp(x,y)
and limy_,o Gp, (x,y) = Gp(z,y) for x,y € D. For x € Dy, and z € 0Dy, define

0Gp, (z,z
KDk(xaz): gl’lgk) )

Y

where n') is the unit inward normal vector field of Dy, on dDj. Tt is well known (cf. [16])

that
E.[f(Xep, ); Xop, € OE] = / Kp, (z,2)f(2)o(dz) for every x € Dy (1.9.6)
OENODy,
By the strong Markov property of X, one has
Gp(z,y) = Gp, (z,y) + E, [GD(XTDk,y);XTD,c € D] forz € Dyandy € D. (1.9.7)

For each z € OF, let ¢ > 0 so that B(z,2¢) N D¢ = (). Fix some yy € B(z,e) N D. By the
boundary Harnack principle for Brownian motion, there is a constant ¢ > 1 so that

Gp(z,y) <C5aE(y)
Gp(r,90) ~ bar(yo)

for every x € B(z,2¢)°N D and y € B(z,¢).

Here dsg(y) denotes the Euclidean distance between y and 0F. Taking y — z along the
normal direction at z gives

Kp(z,2) <_C
Gp(,y0) ~ dar(yo)
It follows from (1.9.7)

for every x € B(z,2¢)°N D. (1.9.8)

Kp(z,z) = Kp,(z,z) + E, |:KD<XTDk7Z);XTDk eD for x € D and z € OFE N 0Dy,
Similarly, for z € Dy and z € OE N 0Dy,
Kp,,,(2,2) = Kp, (,2) + Eq [KDM(XTDk,z);XTDk € Dys1| = Kp, (1, 2).
Thus in view of (1.9.8), we have
Kp(z,z) =t ]}LIEOKDk(a:, z) for x € D and z € OF.

Now taking £k — oo in (1.9.6), we have by the monotone convergence theorem that the
theorem holds for nonnegative f € C,(0F) and hence for general f € C,(OF). O
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Theorem 1.9.5 (i) For each x € D*, [, K*(x,2)o(dz) < 1; the equality holds if E is
bounded.

(ii) For every bounded measurable function f on OF, the function
H* f(x) := K*(x,z)f(z)o(dz), =z¢€ D*
OF

1s well defined and is a bounded X*-harmonic function in D*. Moreover, for any point
z € OF at which f is continuous,

lim H'f(x) = f(2). (1.9.9)

z—z,x€D

(iii) For every bounded continuous function f on OF,

E.[f(X{ ); X{ € 0E] = . K*(z,2)f(2)o(dz) for every x € D*.  (1.9.10)

Proof. (i) Let U; be relatively compact smooth sub-domains of F so that K; C U;, U;NU; =
() for i # j. When E is bounded, it follows from (1.9.5) and the Green-Gauss formula that
for x € D*

K*(z,2)0(dz) = Kp(z,2)o(dz) + ®(x) A 88@_32)
oE oE OF z

_ Kp(z,2)o(dz) + @(x)A™ Z/U an

o(dz)

OF

= Kp(z,2)o(dz) + ®(z) A~ - Al

= Kp(z,2)o(dz) —I—Z:QOZ
BYo)

= P.(X, €6E+ZPX € K;)
- 1.

We used Lemma 1.9.4 for the second to the last equality.

When E is unbounded, let {Ey,k > 1} be an increasing sequence of bounded smooth
subdomains of E so that Uy>1E, = E, Up>10E), = OF, the relative interior of 0Dy NOE
contains 0Dy N OFE, and that U; C Ey for j = 1,...,N. Let Dy := E; \ K, D; = D, U
{a3,...,ay}. The Green function of Brownian motion X in Dy is denoted by Gp, and
the Green function of the BMD in Dy is denoted as G, . Similar notations applies to the
Poisson kernels Kp, and K}, . Recall from Theorem 1.3.1 that the part process X “Di of
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BMD X~ in D* killed upon leaving Dj is the BMD in Dj. By the same argument as that
for (1.9.7)-(1.9.8), we have for every z € JF, there is ¢ > 0 and yo € D N B(z,¢) so that

K*(x,z)
G*(2,90) ~ dar(Yo)

for every x € B(z,2¢)°N D (1.9.11)

and that
K*(2,2) = K, (v,2) + B, | K* (X7, 2); X7 € D*] for € D and » € 9E N Dy,
k k

Similar relation holds with K}, and Dy, in place of K* and D* and thus we have

+1

Kp,,,(v,2) > K}, (x,2) for x € Dy and 2 € 9E N IDy.
It follows from the above two displays that

K*(x,z) =t klim Kp, (v,2) forx € D" and z € OF. (1.9.12)
—00
By Fauto’s lemma, for every z € D*,
K*(x,z)o(dz) < lim Kp, (2, 2)o(dr) < lim Kp, (v, z)o(dz) = 1.
OF k—=oo JopnoE,, k—oo Jop,

This establishes (i).
(ii) The first part follows from the fact that for each z € OF, v — K*(x, z) is X*-harmonic
in D*, (i) and Fubini’s theorem. It follows from (1.9.5) that

OF

Hf@) = | Kpla.)f(:)o(d2) + 3 (e,

for some constants ¢y, ..., cy. Defining f(z) = ¢; for z € K;, we then have by Lemma 1.9.4
that Hf (z) = E, [f(X,,)] for x € D. Property (1.9.9) now follows from the corresponding
result for Brownian motion.

(iii) Clearly by the strong Markov property of X*, h(x) := E,[f(X} )] is a bounded X*-
harmonic function in D*. Since the part process X* of X* in D is just the Brownian motion
killed upon leaving D, we conclude from the corresponding classical result for Brownian
motion that h is continuous up to the boundary 0D* = OF with boundary value f. On the
other hand, we know from (ii) that Hf is also a bounded X*-harmonic function in D* that
is continuous up to the boundary 0D* = OF with the same boundary value f. Thus when E
is bounded, by the maximum principle, we must have h = Hf. When E is unbounded, let
E}, be an increasing sequence of bounded smooth domains approximating E as in the proof
of (i) above, Dy = E, \ K and D; = D U{aj,...,ay}. Define 7 :=inf{t > 0: X] ¢ D;}.
Since

B [f(X7_); X7 € OF] = Kp, (2, 2) f(2)o(dz) for every x € D*,
o

and limy_, f(X;fZ,)l{X** coE} = f(XEZ)l{Xg cory Pg-a.s., we have by (1.9.12) and the
= —

monotone convergence theorem that (1.9.10) holds for nonnegative f € C,(OF) and hence
for general f € Cy(OF). The proof of the theorem is now complete. O
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1.10 Applications to Conformal Mappings

The classical Riemann mapping theorem asserts that any simply connected planar domain
can be conformally mapped onto the upper half space H. The Riemann mapping theorem
also holds for multiply connected domains. BMD can be used to give an “explicit” comformal
mapping that maps multiply connected planar domains into the canonical slit domains.

In this section, let d = 2. Denote by H the upper half plane in C =2 R?. We consider the
set

N
D=H\K, where K=|]K; (1.10.1)

j=1
for mutually disjoint compact continua K, --- , Ky contained in H such that for H \ K; is
connected for each j. Let K* = {af, - ,aX} obtained from H by regarding each continuum

K; as a one point a}. Denote by Z" = (Z,P) the absorbing Brownian motion on H and
by Z* = (Z7,P?) the BMD on D* = DU K*.
Forr>0,let ', ={z=x+iy:y=r} and

v*(2) := lim r - P}(or, < o0), z€ D" (1.10.2)

7—00

Theorem 1.10.1 (i) The function v* on D* is well defined and is Z*-harmonic on D*.

(i)

, admits a unique harmonic conjugate u* such that f(z) = u*(2) +iv*(z), z € D, is
analytic on D and

£(2) :z—l—g—l—o(%), PR (1.10.3)

for some positive constant a.

(iii) Suppose that each OK; is a pzecewzse Lipschitz curve. Then the analytzc function f is

a conformal mapping from H \ UZ | Ki onto H'\ UZ 1 CZ, where C,, 1 <i<N, are
mutually disjoint horizontal line segments in H.

We refer the reader to [7] for a proof of the above theorem. We remark here that the
way of constructing v* in the above theorem is due to G. Lawler [14], where the excursion
reflected Brownian motion on the N-connected domain is utilized in place of BMD. The
condition “each OK; is a piecewise Lipschitz curve” imposed in Theorem 1.10.1(iii) is a
technical assumption. It can be dropped with some extra work.

The complex Poisson kernel K7,(x, z) presented in the previous section plays an important
role for the chordal Komatu-Loewner equation in multiply connected domains. See [7] for
details.
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Chapter 2

Notes

Chapter 1 is a self-contained introduction to Brownian motion with darning (BMD) and
its basic properties. BMD is a particular case of symmetric Markov processes with darning
presented in Chapter 7 of Chen and Fukushima [2]. Some material presented in sections §1.1,
§1.2, §1.4 and §1.5 can be derived from the more general results in [2, Chapter 7]. But the
presentation here (including some of the proofs) is new and more direct. We took the view
point that BMD is obtained from Brownian motion by “shorting” on each compact set K,
in spirit with “shorting” in electric network or excursion-reflected random walk described
in the first paragraph of [14, Section 5.1]. Theorem 1.2.1 is taken from [2, Theorem 4.3.8],
which is an extension of Theorems 1.5.2.3 and 1.7.1.1 in Bouleau-Hirsh [1]. Some of the
results presented in sections §1.1, §1.2, §1.4 and §1.5 are new; for example, Theorem 1.2.2
holds for any compact sets K; without additional regular points assumption on K;. Most
examples in §1.1 appeared here for the first time. Theorems 1.3.2 and 1.3.3 are new. Section
§1.6 is new and holds for any dimension. Some of its two-dimensional version has been given
in [7]. Sections §1.7 and §1.9 are based on [7], while some of its presentation here is new.
Section §1.8 is new.

As mentioned in the text, most of the results covered in Sections §1.1-1.6 can be extended
easily to diffusions with darns and even to Markov processes with darns. We plan to spell
these out in a future expansion of this Lecture Notes.

29
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