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Abstract

Smooth embeddings of the torus into Euclidean space cannot pre-
serve its flat metric. But one can obtain a C1 embedding which is
isometric, by repeatedly applying the process of Convex Integration
on an initial embedding. This paper provides an exposition on this re-
sult, describing the ideas behind the explicit construction for isometric
C1 embeddings of flat tori into R3.

1 Introduction

The “donut-shaped” embedding of the flat torus T2 into R3 is one of the
fundamental introductory visuals of topology.But this embedding is geomet-
rically lacking, as it does not preserve distances. In fact, it is impossible to
create an isometric embedding of the torus into Rn which is also smooth.
Such an embedding must have a region of positive curvature, and would
violate the metric on the torus which must be flat everywhere.

In 1954, John Nash surprised the mathematical community by proving that
if you relax the smooth (or C∞) requirement to be simply C1, then there
does exist an embedding of the torus into R3 [4]. Later, Gromov developed
Complex Integration Theory which linked Nash’s theorem to other results in
differential topology. This theory was used in [1] to convert the Nash-Kuiper
process for C1 embedding of the sphere into an explicit algorithm. The
paper further uses the algorithm to generate the first images of an isometric
embedding of the torus, revealing that the structure of the embedded object
lies in-between a fractal and a smooth surface. The authors of the paper
have also prepared a great exposition on these results (see [5]) which focus
on the history and visuals without going into detail on the mathematics.
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Figure 1: Images of the isometric embedding of the torus. Note the fractal-
like nature when you zoom in. Figure from [5].

This paper follows [1] to provide a different kind of exposition, focusing on the
mathematical ideas underlying the isometric embedding. We discuss the key
ideas in the construction, skipping over rigorous proofs and technical details.
Section 2 introduces the ideas behind Convex Integration, by illustrating
the one-dimensional case of approximating a curve under constraints on the
derivative. Section 3 starts generalizing to the torus, showing how convex
integration can be applied in two dimensions and how it might constrain the
metric of the approximation. We use several assumptions to introduce the
theory simply. Section 4 provides the elements needed to complete the proof.

This paper assumes familiarity with the basic definitions of differential geom-
etry. See [3] for an introduction to the topic. Many results in this paper are
stated without proof, and for the rest only a sketch of the proof is provided.
Our exposition follows [1], and motivated readers can check the correspond-
ing lemmas and theorems there for proofs. We also omit the more technical
aspects of certain definitions and notation. For example, the constants deter-
mining the bounds in certain lemmas are dependant on various parameters,
which we do not track very closely.

2 Introduction to Convex Integration

Convex Integration essentially provides an approximation for a given func-
tion subject to certain constraints. In this section, we describe the one-
dimensional case for Convex Integration, to provide intuition for the two-
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Figure 2: The loop h(x, u) for a fixed value of x, encircling the point f ′(x).
Figure 2.1 in [1].

dimensional case used for the torus. In the one-dimensional case, we are
approximating a curve f : I := [0, 1] → Rn. To describe the constraints on
the approximation, we define differential relations and their solutions:

Definition 2.1. Consider a subset Rx ⊂ Rn of vectors for all points x ∈ I.
The union R := ∪x∈IRx is called a differential relation. A curve F : I → Rn

is a solution of R if f ′(x) ∈ Rx for all x ∈ I.

Differential relations thus impose a condition on the derivative of a curve.
For a curve f and differential relation R, Convex Integration allows us to
construct a solution of R that is C0 close to f (if certain conditions are met).
This happens in two steps: first we define a family of loops h(x, u) in Rx

such that f ′ is the average of h. Then we obtain the approximation F by
integrating h over a winding path in (x, u)-space, so that F ′(x) is always in
Rx, but in aggregate F turns out to be close to f . These steps are elaborated
below:

For a given x, we take h(x, u) to be a function R/Z → Rx, such that

f ′(x) =

∫ 1

0

h(x, u)du.

It turns out that a necessary and sufficient condition for such h to exist is for
f to be strictly short, i.e. for f ′(x) to be interior to the convex hull of Rx for
all x ∈ I. We assume that this condition holds for the cases we work with; it
is not hard to satisfy for the Rx we work with for the isometric embedding
problem.

In the case of our problem, the differential relation R constrains the norm of
the derivative. Thus its shape is spherical and the loops h can be constructed
from f and R as a circular loop whose speed is regulated by the Bessel
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function. See Section 2.2 of [1] for details of the construction and references
to further theory.

Figure 3: The path x 7→ (x, {Nx}) winds N times around the cylinder and
traces a path in R (pictured in blue). Figure 2.2 in [1].

Then, for a given positive integer N , we define

F (t) := f(0) +

∫ t

0

h(x, {Nx})dx

where {Nx} is the fractional part of Nx. Intuitively, F is integrating h along
a periodic curve with period 1/N . As N increases, each individual period
gets closer to a single loop h(x, ·) whose integral is f ′(x). Summing over the
N periods, F is roughly equal to a Riemann sum of f ′ and hence close to f .
This can be formally stated as:

Lemma 2.2. Given a curve f , differential relation R and positive integer
N , define h and F as above. Then F is a solution of R and

∥F − f∥∞ ≤ K

N
.1

In other words, given a curve f we can find F which is C0 close to f and
satisfying the relation R.

3 Convex Integration over the torus

Convex Integration gives us a method to approximate curves. How do we
generalize this to an embedding of a surface, and how does it help preserve

1For any function g, its C0 norm is defined as ∥g∥∞ := supp∈D ∥g(p)∥, where D is the
domain of g
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metrics? For the first question, we treat our embedding as a family of parallel
curves. Convex Integration guarantees that there is an approximate map F
which is C0 close to f . But by carefully choosing the curves representing the
embedding, we can also ensure that the directional derivatives of the maps
are close. This allows us to control the metric, making F an almost isometric
embedding.

To understand the context of almost isometric, we define the isometric de-
fault:

Definition 3.1. Let f be an embedding of Riemannian manifold (M, g) into
Rn. We call the difference between g and the pullback of the Euclidean metric
the isometric default := g − f ∗ ⟨·, ·⟩Rn.

In this section, we will focus on the simpler case where the isometric default
is something called a primitive metric. We show that the convex integration
process in this case yields an approximation whose isometric default can be
made arbitrarily small.2 The primitive metric depends on the parameter ρ,
which is some positive function ρ : T2 → R+. ρ appears in several of the
bounds in this section.

3.1 The Naive Choice of Parallel Curves

We produce coordinates for T to construct our function F explicitly. Assume
(for this section) that we can pick V ∈ ker ℓ with co-prime integer coordi-
nates. Then the path starting at an arbitrary origin O and going along V is
a simple closed curve on T2. We can therefore cut along the path and obtain
a cylinder Cyl. Take U to be orthogonal to V with ∥U∥ ∥V ∥ = 1. Then the
rectangle determined by the taking vectors U and V from the origin O in R2

is a fundamental domain of T2 under the action of Z2. Thus we can represent
points on the cylinder Cyl on this rectangle as O+ tV + sU for t ∈ R/Z and
s ∈ I.

The most obvious method of producing F by convex integration might be to
consider Cyl as a collection of curves φt : I → Cyl with φt(s) = O+tV +sU .
To satisfy the isometry condition along the curve φt, we want to constrain
the norm of the derivative along the curve:∥∥∥∥∂(F ◦ φt)

∂s

∥∥∥∥ =
√
µ(U,U)

2In the general case, we shall show following Nash that the actual difference of the
metrics is a sum of primitive metrics, and thus can be resolved by successive applications
of the Convex Integration process.
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This is the condition analogous to Rx from section 2, from which we can de-
fine an F by convex integration. This condition means that F ∗ ⟨·, ·⟩R3 (U,U) =
µ(U,U). Also, the fact that V ∈ ker ℓmeans that F ∗ ⟨·, ·⟩R3 (V, V ) = µ(V, V )+
O(1/N). We have the metrics agreeing for two pairings, but the third pair-
ing leads to issues. If we compute the pullback metric for the pair (U, V ),
it turns out to be fundamentally different from µ(U, V ). Therefore convex
integration along the curves φt does not product an almost isometry.

Figure 4: The naive curve φt does not yield an isometry if convex integrated.
Figure 2.5 in [1].

3.2 Shifting U to produce directional derivative bounds

To get the actual isometry F , we replace U by W = U + ζV , with ζ =
−µ(U, V )/µ(V, V ). This is chosen so that µ(W,V ) = 0. We therefore replace
φt with the integral curve φ(t, ·) : I → Cyl, which starts at O + tV at s = 0
and then follows W (thus ∂φ/∂s = W ). In U, V coordinates, we can write
this as

φ(t, s) = O + sU + ψ(t, s)V

for some function ψ : R/Z× I → R with ψ(t, 0) = t.

Now, we apply the convex integration process to each curve f ◦ φ(t, ·). We
now want to constrain the norm of the derivative to be

√
µ(W,W ). This

leads to defining a function h(t, s, u) (analogous to h(x, u) from section 2)
such that

(W · f)(φ(t, s)) = ∂(f ◦ φ)
∂s

(t, s) =

∫ 1

0

h(t, s, u)du.
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Figure 5: The curve φ following the nonconstant vectorW yields the isometry
through convex integration. Figure 2.6 in [1].

Then we obtain the map F : Cyl → R3 satisfying

F ◦ φ(t, s) := f(O + tV ) +

∫ s

0

h(t, u, {Nu})du.

Applying Theorem 2.2, we see that F and f are C0-close as F ◦ φ and f ◦ φ
are close and φ is a diffeomorphism. In fact, we can get something stronger:
the derivative of F with respect to t is also obtained from the corresponding
derivative of f by a convex integration process. Thus we have

Lemma 3.2. If F is produced by convex integration from f and h for a given
N , we have ∥∥∥∥∂(F ◦ φ)

∂t
− ∂(f ◦ φ)

∂t

∥∥∥∥
∞

≤ K

N

where K depends only on the C2 norm of h.

This essentially bounds ∥V · F − V · f∥, as ∂φ/∂t = (∂ψ/∂t)V and thus

∥V · F − V · f∥ =

∣∣∣∣∂ψ∂t
∣∣∣∣−1 ∥∥∥∥∂(F ◦ φ)

∂t
− ∂(f ◦ φ)

∂t

∥∥∥∥ .
Turns out, we can get a similar bound on ∥W · F −W · f∥ in terms of U and
the metric difference ρ (where µ = f ∗ ⟨·, ·⟩R3 + ρℓ⊗ ℓ):

Lemma 3.3.
∥W · F −W · f∥ ≤

√
7 ∥U∥ ∥ρ∥1/2∞ .
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Now, (U, V ) is an orthogonal basis with respect to the Euclidean metric,
which means

∥dF − df∥ ≤ ∥U · F − U · f∥
∥U∥

+
∥V · F − V · f∥

∥V ∥
.

Since W = U + ζV we can bound the first term with the inequality

∥U · F − U · f∥ ≤ ∥W · F −W · f∥+ |ζ| ∥V · F − V · f∥ .

This shows that the differential maps are close:

Lemma 3.4.
∥dF − df∥∞ ≤

√
7 ∥ρ∥1/2∞ +K/N.

We can also use Theorem 3.2 to bound the difference of the pullbacks of the
metrics under φ. This shows that the metrics are close:

Lemma 3.5.

∥µ− F ∗ ⟨·, ·⟩R3∥∞ ≤ K

N

∥∥dφ−1
∥∥2

∞ .

3.3 Extending the map from the cylinder to the torus

So far, we have constructed an almost isometric map F on the cylinder
Cyl that is C0-close to the map induced on Cyl by f . But F will not
generally coincide on the two boundaries of Cyl, which means we cannot
simply quotient it into a map on T2. To do that, first we make a modification
to define a new map F̄ such that

F̄ ◦ φ(t, s) = F ◦ φ(t, s)− w(s)(F ◦ φ(t, 1)− f ◦ φ(t, 1))

where w : I → I is a smooth S-shaped function. It turns out that if f and
w are smooth, then F̄ quotiented by the boundary ∂Cyl is a smooth map on
T2. Using all the previous results, we can then show that F̄ is the desired
almost isometric map:

Theorem 3.6 (One Step Theorem). Let f : T2 → R3 be a smooth embedding
such that the pullback metric of f differs from the Euclidean metric by the
primitive metric ρℓ⊗ ℓ. Define F̄ as above. Then we have

1.
∥∥F̄ − f

∥∥
∞ ≤ K1/N and

∥∥F̄ − f
∥∥
∞ ≤ 2

√
7 ∥U∥ ∥ρ∥1/2∞ ,
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2.
∥∥dF̄ − df

∥∥
∞ ≤ K2/N +

√
7 ∥ρ∥1/2∞ ,

3.
∥∥V · F̄ − V · f

∥∥ ≤ K3/N ,

4.
∥∥W · F̄ −W · f

∥∥ ≤
√
7 ∥U∥ (1 + ∥w′∥∞) ∥ρ∥1/2∞ , and

5.
∥∥µ− F̄ ∗ ⟨·, ·⟩R3

∥∥
∞ ≤ K4/N .

In the end, this theorem will represent each step of Convex Integration we
apply. Thus it is called the One Step theorem, as it produces our desired
approximations in one step.

4 Isometric embeddings of the square flat torus

The previous section we saw how to build an almost isometry when the
isometric default g − f ∗ ⟨·, ·⟩R3 is a primitive metric ρℓ ⊗ ℓ. This section
covers the general case where this default is any metric.

For the case of the torus, it turns out that we can always decompose the iso-
metric default of an embedding f into three components. These components
are of the form ℓi ⊗ ℓi, obtained from the following linear forms:

ℓ1 := dx, ℓ2 :=
1√
5
(dx+ 2dy), ℓ3 :=

1√
5
(dx− 2dy).

Thus the isometric default lies in the open cone

C := {ρ1ℓ1 ⊗ ℓ1 + ρ2ℓ2 ⊗ ℓ2 + ρ3ℓ3 ⊗ ℓ3|ρ1, ρ2, ρ3 > 0}

This might seem like an impressive fact, but a standard donut-shaped parametriza-
tion of the torus (with a suitable choice of minor radius and major radius)
satisfies the condition of lying in this cone. But since the isometric default
is uniformly captured by three primitive metrics, three successive convex
integrations is enough to build an almost isometry which is close to f .

First, we define a crucial piece of notation. Note that the almost isometry
f̄ obtained from Theorem 3.6 depends only on the initial embedding f , the
metric µ and the parameter N . Thus we notate this function as

IC(f, µ,N) := f̄ .3

3The term IC is from the original paper and probably stands for intégration convexe,
which is convex integration in french.
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For the final result, we shall apply the convex integration thrice, addressing
a different component of the cone C at each step. First, suppose D1 = g −
f ∗ ⟨·, ·⟩R3 . Then set µ1 := f ∗ ⟨·, ·⟩R3 + ρ1(D1)ℓ1 ⊗ ℓ1, and f1 := IC(f, µ1, N1).
Then, for N1 large enough, the new isometric default D2 := g−f ∗

1 ⟨·, ·⟩R3 has
ρ1 component almost 0, and ρ2, ρ3 components unchanged.

Then we set µ2 := f ∗
1 ⟨·, ·⟩R3 + ρ2(D2)ℓ2 ⊗ ℓ2 and built the almost isometry

f2 := IC(f1, µ2, N2). Then, for N2 large enough, the isometric default D3 :=
g − f ∗

2 ⟨·, ·⟩R3 has ρ1, ρ2 ≈ 0 and ρ3(D3) ≈ ρ3(D2). Then finally we set µ3 :=
f ∗
2 ⟨·, ·⟩R3+ρ3(D3)ℓ3⊗ℓ3 and f3 := IC(f2, µ3, N3) which is an almost isometry
for the metric g (for N3 large enough). We denote this last immersion as

IC(f, g,N1, N2, N3).

Now if N1, N2, N3 all tend to infinity, the C0 proximity property in the One
Step Theorem (Theorem 3.6) suggests that the limit immersion is the initial
immersion f , which is not an isometry. Also finite values of Ni only pro-
vide approximations of an isometry. Therefore we must repeat the process
indefinitely to produce the desired isometry.

The key idea is to consider a sequence gk of metrics that converges to the
flat metric dx⊗ dx+ dy ⊗ dy. Then we define the recursive sequence Fk by

Fk := IC(Fk−1, gk, Nk,1, Nk,2, Nk,3),

which should converge to an isometry. To iterate this process, we start with
F0 = f an initial embedding, and must ensure that the isometric default
at each step Dk := gk − F∗

k−1 ⟨·, ·⟩R3 lies in the cone C. To ensure this, we
establish the following result, which allows us to stage an almost isometric
approximation with respect to a new metric ḡ from one with respect to g:

Theorem 4.1 (Stage Theorem). Let g and ḡ be two Riemannian metrics on
T2 and let f : T2 → R3 be an immersion such that

1. ḡ − g ∈ C∞(T2, C),4

2. g − f ∗ ⟨·, ·⟩R3 ∈ C∞(T2, C).

Then there exist integers N1, N2 and N3 such that the immersion

f̄ := IC(f, g,N1, N2, N3)

satisfies

4Note that g ∈ C∞(T2, C) essentially means that g lies in the cone C at every point of
T2.
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1. f̄(0, 0) = f(0, 0),

2. ḡ − f̄ ∗ ⟨·, ·⟩R3 ∈ C∞(T2, C),

3.
∥∥g − f̄ ∗ ⟨·, ·⟩R3

∥∥
∞ ≤ ∥g − ḡ∥∞,

4.
∥∥df̄ − df

∥∥
∞ ≤ 11 ∥g − f ∗ ⟨·, ·⟩R3∥1/2∞ .

The first two results ensure that this result can recursively build a sequence
of immersions. The last two are used to prove that the limit is an isometry.
The 11 in the final condition is an artifact of a constant chosen in the proof
of the theorem. One can pick a bigger number for this bound, and obtain
the result for smaller values of the Ni.

To actually build this sequence, we use the sequence gk constructed by

∆ := ⟨·, ·⟩R2 −F∗
0 ⟨·, ·⟩R3 ; gk := F∗

0 ⟨·, ·⟩R3 + δk∆

for an increasing sequence δk converging to 1. Here we are assuming F0

is our initial immersion, and that ∆ ∈ C∞(T2, C). Then we recursively
obtain Fk from Fk−1 by applying the Stage Theorem (Theorem 4.1) with
g = gk−1, ḡ = gk. Note that the first hypothesis condition of the theorem
holds as gk − gk−1 = (δk − δk−1)∆ ∈ C∞(T2, C), and the second hypothesis
condition holds inductively. Then, subject to one final condition, we can
build an isometry:

Theorem 4.2. Suppose the sequence δk satisfies
∑√

δk − δk−1 <∞. Then
teh sequence Fk is C1-converging towards a C1 isometric immersion F∞ :
T2 → R3.

Proof. Using the last two results of the Stage Theorem, we obtain the bound

∥dFk − dFk−1∥∞ ≤ 22 ∥gk − gk−1∥1/2∞ = 22
√
δk − δk−1 ∥∆∥1/2∞ .

The series
∑√

δk − δk−1 converges, and so the sequence Fk does C1 con-
verged to a C1 map F∞. Now, the third result of the stage theorem states
that

∥gk −F∗
k ⟨·, ·⟩R3∥∞ ≤ ∥gk+1 − gk∥∞ .

Taking the limit as k → ∞, we obtain

∥⟨·, ·⟩R2 −F∗
∞ ⟨·, ·⟩R3∥∞ ≤ 0

and thus F∞ is a C1 isometry.
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Therefore, for an appropriate choice of δk, we can build a sequence of metrics
which converge to the flat metric, and apply the stage theorem recursively to
apply several layers of convex integration to our initial immersion to obtain
an isometry.
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