Convex Integration: Embedding the flat torus into \mathbb{R}^3

Zawad Chowdhury

November 30, 2022

Convex Integration in 1D 000 The Case of the Torus

References

THE SQUARE TORUS

Figure: Cartoon of the square torus, from [5]

The Case of the Torus

THE SQUARE TORUS

Figure: Embedding the torus into \mathbb{R}^3 , from [5]

This embedding isn't isometric (has regions of positive curvature)

NASH-KUIPER THEOREM

Theorem (Nash-Kuiper Theorem)

Suppose (M^m, g) is a Riemannian maniforld with short smooth embedding $f: M \to \mathbb{R}^n$. There is a sequence of C^1 isometric embeddings $M \to \mathbb{R}^n$ which converge uniformly to f.

Proof is nonconstructive. How do you visualize the C^1 embedding of the Torus?

The Case of the Torus 0000 References

BORRELLI-JABRANE-LAZARUS-THIBERT'S CONSTRUCTION

Figure: Images of the isometric embedding of the torus. Note the fractal-like nature when you zoom in. Figure from [5].

DIFFERENTIAL RELATIONS

Definition

Let I = [0, 1]. Consider a subset $\mathcal{R}_x \subset \mathbb{R}^n$ of vectors for all points $x \in I$. The union $\mathcal{R} := \bigcup_{x \in I} \mathcal{R}_x$ is called a *differential relation*. A curve $F : I \to \mathbb{R}^n$ is a *solution* of \mathcal{R} if $F'(x) \in \mathcal{R}_x$ for all $x \in I$.

Problem: Find an approximation *F* to curve $f : I \to \mathbb{R}^n$ which is a solution of \mathcal{R} .

STEP 1: DEFINE LOOPS SATISFYING THE RELATION

For a given *x*, we take h(x, u) to be a function $\mathbb{R}/\mathbb{Z} \to \mathcal{R}_x$, such that

$$f'(x) = \int_0^1 h(x, u) du.$$

Figure: The loop h(x, u) for a fixed value of x, encircling the point f'(x). Figure 2.1 in [1].

STEP 2: WIND AROUND THE LOOPS

$$F(t) := f(0) + \int_0^t h(x, \{Nx\}) dx$$

Intuitively, *F* is integrating *h* along a periodic curve with period 1/N.

Figure: The path $x \mapsto (x, \{Nx\})$ winds *N* times around the cylinder and traces a path in \mathcal{R} (pictured in blue). Figure 2.2 in [1].

Lemma

There exists constant K so that $||F - f||_{\infty} \leq \frac{K}{N}$.

2D CONVEX INTEGRATION: APPROXIMATING FAMILIES OF CURVES

Cut \mathbb{T}^2 along a vector *V* to obtain cylinder *Cyl*, which can be embedded into \mathbb{R}^2 as the rectangle O + tV + sU.

Figure: The naive curve ϕ_t does not yield an isometry if convex integrated. Figure 2.5 in [1].

The Case of the Torus ○●○○

REDUCING THE ISOMETRIC DEFAULT

Definition

Let *f* be an embedding of Riemannian manifold (M, g) into \mathbb{R}^n . We call the difference between *g* and the pullback of the Euclidean metric the *isometric default* := $g - f^* \langle \cdot, \cdot \rangle_{\mathbb{R}^n}$.

Idea: To bound the isometric default, bound it's value for pairs (δ_s, δ_s) , (δ_t, δ_t) and (δ_s, δ_t) .

TORUS EMBEDDING CONSTRUCTION

- Simple case: Isometric default is primitive metric $\rho \ell \otimes \ell$.
 - ► Find approximation *F* on the cylinder.
 - Modify \overline{F} to \overline{F} which works on the torus (when glued along the edge)
- ► Turns out the natural embedding of the torus into ℝ³ has isometric default that can be decomposed into three primitive metrics.
 - Applying convex integration thrice can approximate metric better.
 - ▶ Apply this stage to a sequence of metrics g_k on T whose limit is an isometry.

THE CURVES FOR TORUS CONVEX INTEGRATION

Figure: The curve ϕ following the nonconstant vector *W* yields the isometry through convex integration. Figure 2.6 in [1].

Replace *U* by $W = U + \zeta V$, so that g(W, V) = 0. Apply convex integration to each curve $f \circ \phi(t, \cdot)$, constraining norm of derivative to be $\sqrt{g(W, W)}$.

The Problem: Torus Embeddings 000	Convex Integration in 1D 000	The Case of the Torus 0000	References

REFERENCES

- Vincent Borrelli, Said Jabrane, Francis Lazarus, and Boris Thibert. "Isometric embeddings of the square flat torus in ambient space". In: *Ensaios Matemáticos* 24 (2013), pp. 1–91.
- [2] Tobias H Colding and William P Minicozzi. *A course in minimal surfaces*. Vol. 121. American Mathematical Soc., 2011.
- [3] Manfredo Perdigao Do Carmo and J Flaherty Francis. *Riemannian geometry*. Vol. 6. Springer, 1992.
- [4] John Nash. "C1 isometric imbeddings". In: Annals of mathematics (1954), pp. 383–396.
- [5] Hevea Project. "The folder : flat tori finally visualized !" In: (). URL: http://heveaproject.fr/ENPageToreDossierDePresse.html.