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1 Introduction

Elliptic curves are one of the most well-studied objects in modern number
theory. Their study lies at the intersection of algebraic number theory and
algebraic geometry, and is the basis of rich theory in both fields. An insightful
connection between elliptic curves and modular forms lies at the heart of
Wiles’s proof of Fermat’s Last Theorem. Elliptic curves also have real world
applications in elliptic curve cryptography and integer factorization. For an
in-depth introduction to elliptic curves, see [4].

The p-adic numbers are analytic constructions, extending the rational num-
bers into a complete field Qp using a different metric from the one we are
used to (which produces R). In a sense, Qp captures all the modulo p power
information about elements of Q. This allows us to understand global prop-
erties of functions and objects by looking at their local properties in Qp for
all p. A wonderful introduction to the theory of p-adic numbers is provided
in [1].

In this paper, we will study the group of solutions to an elliptic curve defined
over Qp (i.e. Qp points on the curve). We can use these solutions to study
the points on the curve defined over Q, which has an isomorphism type that
is hard to calculate. We explicitly calculate this group E(Qp) in terms of the
p-adic integers Zp, and the solutions to the elliptic curve over Fp (which is
well understood). This leads to the following theorem:

Theorem 1.1. Let E be an elliptic curve defined over Qp, such that the
corresponding curve Ẽ with coefficients reduced into Fp is also an elliptic
curve. Assume there exists a homomorphism Ẽ(Fp) → E(Qp) which com-
posed with the reduction map gives the identity on Ẽ(Fp). Then we have the
group isomorphism

E(Qp) ∼= Zp × Ẽ(Fp).
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Remark 1.2. There are several details in the statement of the theorem which
might be unclear for now, such as how the reduced elliptic curve is well defined
for any elliptic curve over Qp. The statement is supposed to provide a brief
overview for now, and more details will be fleshed out in the rest of the paper.

1.1 Organization of the paper

This paper assumes familiarity with the theory of p-adic numbers. See [1]
for an excellent introduction to the topic, as well as a reference for results.
Properties of the p-adic valuation, the algebraic structure of Zp and Hensel’s
lemma are used in this paper without prior introduction.

The paper does not assume familiarity with algebraic geometry and the the-
ory of elliptic curves. Some background definitions are provided in section 2,
describing plane curves (with their properties like singularities, genus) and
the projective plane (with an introduction to Bezout’s Lemma). Then, sec-
tion 3 introduces elliptic curves, describing the group law and elliptic curves
over finite fields.

Then we begin studying elliptic curves specifically over Qp. A key tool is
the reduction map and the reduced elliptic curve Ẽ, which is introduced in
section 4. Finally, section 5 describes some important subgroups of E(Qp),
which leads to a proof for Theorem 1.1.

2 Background: Projective Geometry and Plane

Curves

Before we can begin working with elliptic curves, we must develop some
understanding of plane curves in general, and the spaces they live in.

2.1 Plane Curves

Broadly speaking, over a field k plane curves are the subsets of k2 comprised
of solutions to equations of the form f(x, y) = 0. In algebraic geometry, we
are interested in algebraic plane curves, where f is a polynomial. In the rest
of this paper, we only work with algebraic plane curves and thus often omit
the word algebraic.

Definition 2.1 (Plane Curve). Let f(x, y) =
∑
aijx

iyj ∈ k[x, y] be a poly-
nomial. Then the plane curve X is defined by the equation f(x, y) = 0. We
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define the degree of X to be the same as that of f .

While a plane curve X can be defined abstractly by some polynomial f , it
is concretely realized by its k-points, which are the solutions in k to the
equation f(x, y) = 0. The set of all such points is denoted X(k).

Example 2.2. We have a polynomial y2 − x3 which defines a plane curve
E. The point (0, 0) lies in E(Q). Similarly, E ′ is defined by y2− x3 + x and
both (0, 0), (1, 0) lie in E ′(Q).

We want to understand two properties of plane curves: its singularities and
its genus.

Definition 2.3. A plane curve X defined by the polynomial f is said to be
singular at a point P , if ∂f

∂x
and ∂f

∂y
are both 0 at the point P . A plane curve

with no singular points is said to be nonsingular or smooth.

Example 2.4. Continuing from Example 2.2, E is singular at the point (0, 0)
but E ′ is not. In fact, E ′ has no singular points and thus is a smooth curve.

Genus is more abstract as a concept, and so we do not provide a rigorous
definition in this paper. Intuitively, if the field k is embedded in C, one can
think about the curve X(C) which will be a compact Riemann surface. Then
the topological genus of the surface, which you can think of as the number of
holes, will equal the genus of the curve. See [2] for definitions of genus which
work in general.

Genus is more abstract. For our purposes, we will define the genus of a
plane curve X to be the topological genus of X(C). Notably, X(C) will be
a compact Riemann surface, and thus this definition is well defined if k is
embedded in C. There are rigorous definitions of the genus of a curve which
work in all cases, but we skip those in this paper.

Elliptic curves are smooth genus 1 projective plane curves. However, before
we can discuss them, first we must understand what spaces such a curve
would be defined over.

2.2 Affine and Projective Space

Definition 2.5 (Affine Space). Given a field k, the affine space An(k) is
simply the set of points with n coordinates in k. Formally,

An(k) = {(a1, . . . , an)|ai ∈ k} .

3



Zawad Chowdhury Elliptic Curves over p-adic Numbers

An(k) can be viewed as n copies of the field k.

Affine space is a good tool for visualization, but it has some algebraic defi-
ciencies. As an example, you can define lines in affine space as solutions to
the equation

c0 +
n∑

i=1

aici = 0

for constants ci ∈ k. Then it is not guaranteed that two lines will intersect
at a point in An(k). This makes algebraic geometry difficult, as the theory
would have to account for parallel lines and intersecting lines separately. We
compactify An(k) to create a space that does not have this difficulty.

Definition 2.6 (Projective Space). Given a field k, the projective space Pn(k)
is defined formally as

Pn(k) = (An+1(k)− {0})/x ∼ λx.

Thus it is the set of coordinates a = (a0, a1, . . . , an), not all zero, where two
tuples a and b are said to be the same if ai = λbi for some λ ∈ k. The
equivalence class of ai is written as [a0 : a1 : · · · : an].

The set An(k) is embedded into Pn(k) by (a1, . . . , an) 7→ [1 : a1 : · · · : an].
The points in Pn(k) which do not come from this embedding are thus of the
form [0 : a1 : · · · : an]. They form a copy of Pn−1(k). Thus we have the
equality of sets:

Pn(k) = An(k) t Pn−1(k) =
n⊔

i=0

Ai(k).

Note that if two points are in the same line through the origin, their coordi-
nates will be a multiple of each other. Thus another way to interpret Pn(k)
is as the space of lines through the origin in An+1(k). This interpretation
highlights how projective space is produced by the compactification. Setting
a0 = 1, we obtain a hyperplane such that any point on the hyperplane lies
on exactly one line through the origin. But this leaves all the lines which are
parallel to the hyperplane, which represent intersection points of similarly
oriented lines on the hyperplane.

We may now define curves in projective space.
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Definition 2.7 (Projective Curve). Let f(x, y, z) =
∑
aijx

iyjzl ∈ k[x, y] be
a homogenous polynomial, i.e. all of its terms have the same degree. Then
the projective curve X associated with f is

{[x : y : z] ∈ P 2(k)|f(x, y, z) = 0}.

A key result about projective curves is Bezout’s Theorem, which generalizes
our earlier notion that “any two lines have an intersection point”:

Theorem 2.8 (Bezout’s Theorem). Suppose k is an algebraically closed field.
Let F (x, y, z) = 0 and G(x, y, z) = 0 be curves in P2(k) of degree m and n
respectively, with no nontrivial common factor. Then the curves intersect at
exactly mn points, up to multiplicity.

Corollary 2.9. Let L be a line and E a plane curve of degree three over an
algebraically closed field k. Then, taking multiplicities into account, L and
E have three exactly intersection points.

3 Elliptic Curves

We are now ready to dive into the theory of elliptic curves. But first, what
is an elliptic curve?

Definition 3.1 (Elliptic Curve). An elliptic curve over a field k is a nonsin-
gular projective genus 1 curve equipped with a k-rational point O. We always
take O to be the point at infinity [0 : 1 : 0].

This definition is quite abstract, and so to concretely work with elliptic curves
we often look at their defining equations. These are called Weierstrass equa-
tions, and have the following form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with the ai ∈ k. To create a projective curve, we look at the projectivization
of the Weierstrass equation (i.e. homogenize it with a third variable):

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

Notice that if (X, Y, Z) is a solution to the equation, then (λX, λY, λZ) will
be a solution too. Thus we can define solutions of the equation over P2(k),
and these solutions make up the elliptic curve E(k).
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Remark 3.2. If k is a field of characteristic p 6= 2, 3, we can perform a
change of coordinates to go from the full Weierstrass equation to one of the
form

y2 = x3 + Ax+B

and it can be shown that the curve is nonsingular if and only if a quantity
∆ = −16(4A3 + 27B2) (called the discriminant) is nonzero.

3.1 Group Law of an Elliptic Curve

One of the most interesting properties about elliptic curves is that the set of
rational points inherits an abelian group structure. Thus if E is an elliptic
curve defined over field k, there exists a commutative “addition” operation
E(k) × E(k) → E(k). This operation can be defined geometrically by the
following rules:

1. The distinguished point O = [0 : 1 : 0] is the identity of the group. Ge-
ometrically, this is the point at infinity in the vertical direction (where
two lines parallel to the y-axis meet).

2. By Theorem 2.9, any line L intersects E at three points P,Q,R (with
multiplicity). When the line is defined over k, all of these points are in
E(k), and the group law states that P +Q+R = O.

Remark 3.3. The group law determines the elliptic curve E(k), and it is
defined in terms of intersections of lines. Thus we can make a linear change
in variables to x, y, and the resulting elliptic curve E ′(k) will be isomorphic
to E(k) as groups.

Example 3.4. Consider a point P ∈ E(k) such that P 6= O. Then from the
Weierstrass equation, we can see that the third coordinate of P is not zero,
and thus P is a point on the plane curve. The vertical line through P thus
passes through O, and therefore it intersects the curve at a third point −P .

Example 3.5. Consider the equation y2 = x3 − 36x. The projective closure
of this equation Y 2Z = X3 − 36XZ2 can be checked to be nonsingular, and
thus defines an ellliptic curve. One can easily find two solutions of this
equation: P = (0, 0), and Q = (−2, 8). They both lie on the line y = −4x.
Taking the third intersection of this line with the curve, we get a third point
R = (18,−72). Thus by the group law, P +Q = −R = (18, 72).

Consider the line X = 0. It intersects the curve at [0 : 1 : 0] = O and
[0 : 0 : 1] = P . The line is tangent to the curve at P , thus it has multiplicity
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2. Thus we have P + P + O = O, or 2P = O. Therefore P is a point of
order 2 on this elliptic curve (also known as a 2-torsion point).

3.2 Elliptic Curves over Finite Fields

One interesting case for our exploration is when the field of definition of the
elliptic curve is set to be the finite field Fq. Recall the definition:

Definition 3.6. The field Fq is the unique field of q elements. Such a field
exists if and only if q is the power of a prime p. One can construct this
field by fixing an algebraic closure of Fp, and then taking the roots of the
polynomial xq − x.

E(Fq) is a subset of P2(Fq), and thus it is a finite abelian group. The number
of elements of this group is approximately q:

Theorem 3.7 (Hasse-Weil Bound). Let #E(Fq) be the number of points in
the elliptic curve E(Fq). Then

|#E(Fq)− (q + 1)| ≤ 2
√
q.

Using this bound, one can find an algorithm to compute the order of E(Fq)
by finding the order of a generic element. This operation involves O(

√
q)

operations. An algorithm of Schoof vastly improves this, computing #E(Fq)
in O((log q)O(1)) operations, which is polynomial in the number of digits of
q. Thus it can calculate the value for q ≈ 280 in a few seconds.

Example 3.8. Let E be the elliptic curve y2 = x3 + 2x+ 1 over F3. By the
Hasse-Weil bound, we have 2 ≤ #E(Fq) ≤ 10. In fact, over F3 every element
satisfies x3 = x = −2x. Also, y2 = 1 has two roots. Thus this elliptic curve
has 6 solutions over F2

3. Including the point at infinity, we get 7 projective
solutions. The group E(Fq) must be the only group of 7 elements, Z/7Z.

Example 3.9. Let E be the elliptic curve y2 = x3 + 2x + 2 over F3. Then
there are no solutions to this equation besides the point at infinity, and thus
E(F3) = {O}. The group is the trivial group.

4 The Reduced Elliptic Curve

We now begin the study of elliptic curves defined over the p-adic numbers.
An important tool in this endeavor is reduction modulo p.
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For any element x ∈ Zp, taking the first digit of the p-adic expansion defines
a natural reduction map which we call x (mod p). In the rest of this paper,
we use x̃ to refer to x mod p for x ∈ Zp.

Definition 4.1 (Reduced Elliptic Curve). Let E be an elliptic curve defined
over Qp, with a Weierstrass equation whose coefficients are in Zp. Reducing
every coefficient mod p, we obtain a new Weierstrass equation over Fp, which
we call the reduced elliptic curve and refer to by Ẽ(Fp).

We can similarly reduce points in P2(Qp).

Definition 4.2 (Reduction of a Point). Let P ∈ P2(Qp) be a point. We can
adjust coordinates to write P = [x : y : z], where x, y, z ∈ Zp and at least one
is in Z×p . The reduction of P is then defined to be P̃ = [x̃ : ỹ : z̃] ∈ P2(Fp).

Now, if P ∈ E(Qp) and E has a Weierstrass equation with coefficients in
Zp, we have P̃ ∈ Ẽ(Fp). Thus the reduction map P2(Qp) → P2(Fp) is well
defined when restricted to a map E(Qp)→ Ẽ(Fp).

Remark 4.3. Based on the above discussion, we can only reduce elliptic
curves with a Weierstrass equation with coefficients all in Zp. In fact, this is
all elliptic curves defined over Qp! Consider the change of variables (X, Y ) =
(u−2x, u−3y). This produces a Weierstrass equation with the coefficient ai
replaced by uiai. Now, we can choose u such that uiai ∈ Zp for all i. Since
this is a linear change in variables, we have a Weierstrass equation with
coefficients all in Zp for the original elliptic curve, which can thus be reduced
mod p.

5 Computing E(Qp)

Our main goal is to compute the structure of E(Qp), as described in Theorem
1.1. In that theorem, the group splits into Zp and Ẽ(Fp). Thus we expect
the structure of E(Qp) to come in part from the reduction mod p, and in part
from some subgroup isomorphic to Zp which does not contain information
about reduction. We first study some subgroups which fit this bill.

5.1 Some key subgroups of E(Qp) and Ẽ(Fp)

Proposition 3.2.5 in [5] establishes an isomorphism between the nonsingular
points on a degree three curve and the additive or multiplicative group of
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the field of definition. Thus, we can define an abelian group

Ẽns(Fp) = {P ∈ Ẽ(Fp) | P nonsingular}.

We define E0 to be the preimage of this group under the reduction map:

E0(Qp) = {P ∈ E(Qp) | P̃ ∈ Ẽns(Fp)}.

We hope to split E0 into two: the part that carries information about its
reduction into Ẽns, and the part which doesn’t. The latter must be trivial
under the reduction map, which motivates the following definition:

E1(Qp) = {P ∈ E(Qp) | P̃ = O}.

To relate these three groups, we need a standard algebraic construction called
an exact sequence.

Definition 5.1 (Exact Sequence). A sequence of groups G0, G1, . . . Gn with
homomorphisms fi : Gi−1 → Gi for i = 1, . . . n is said to be exact at Gi if
im fi = ker fi+1. The whole sequence

G0
f1−→ G1

f2−→ . . .
fn−→ Gn

is said to be exact if it is exact at each Gi.

Example 5.2. For the sequence 0 → A
f−→ B, the image of the first map

is {0}. Thus the sequence is exact if and only if ker f is trivial, i.e. if f is
injective.

Example 5.3. For the sequence A
f−→ B → 0, all of B is in the kernel of the

second map. Thus the sequence is exact if and only if im f = B, i.e. if f is
surjective.

Exact sequences are relevant for us due to the following lemma.

Theorem 5.4 (Splitting Lemma). Consider a short exact sequence of abelian
groups

0→ A
f−→ B

g−→ C → 0.

If there exists a homomorphism h : C → B such that g ◦ h is the identity on
C, then there is an isomorphism B ∼= A⊕ C.

Proof. See [3] for the proof of the lemma in its full generality.
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Theorem 5.4 gives us a blueprint to relate E0, E1 and Ẽns. Intuitively, re-
duction is like a quotient, and E1 is the kernel of that quotient. This leads
us to a key theorem.

Theorem 5.5. The sequence

0→ E1(Qp)→ E0(Qp)→ Ẽns(Fp)→ 0

is exact, where the second map is inclusion and the third map is the reduction
map.

Proof. First let us understand what it would mean for this sequence to be
exact. First, all the maps must be group homomorphisms. Thus the exact-
ness of the sequence would imply that the reduction map E0(Qp)→ Ẽns(Fp)
is a group homomorphism. Note that this homomorphism would then have
kernel E1(Qp). The kernel is a subgroup of the preimage, and thus the set
inclusion E1(Qp)→ E0(Qp) would also be a group homomorphism.

Now, set inclusions are naturally injective. This means we naturally have ex-
actness at E1(Qp). Also, the image of this inclusion is by definition the kernel
of the reduction map, giving us exactness at E0(Qp). Finally, for exactness
at Ẽns(Fp), we must show that the reduction map from E0 is surjective.

Therefore, to prove the theorem it suffices to show that the reduction map
E0 → Ẽns is a group homomorphism, and is surjective. The proofs of these
facts are straightforward calculations, which we omit for brevity. The details
can be found in 3.2.4 and 3.2.5 in [6], or in 7.2.1 in [5].

Once we show that the reduction map is a surjective group homomorphism,
by the above discussion it follows that the sequence is exact.

5.2 Proof of Theorem 1.1

We now try to understand the structure of the groups E1 and Ẽns, in an
attempt to pinpoint the group E(Qp).

Theorem 5.6. Let E be an elliptic curve defined over Qp for odd prime p.
Then E1(Qp) ∼= Zp.

Proof Sketch. We only do a brief sketch of the key ideas of the proof, as the
details regarding formal groups are beyond the scope of this paper. Note that
by Remark 4.3, we can find a Weierstrass equation for E with coefficients
ai ∈ Zp. Now, Section 4 of [5] develops the theory of formal groups of an
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elliptic curves. It defines two power series x(z), y(z) written in terms of the
coefficients ai, such that (x(z), y(z)) is a solution to the Weierstrass equation
(formally, i.e. all the terms cancel). If we have z ∈ pZp, then the power series
x(z), y(z) converge to values in Qp.

The group structure of the formal group shows that these power series also
respect the group law. Thus any z ∈ pZp generates an element x(z), y(z) of
the formal group, which therefore is isomorphic to pZp as a group.

Following Proposition 4.2.2 in [5], we have an isomorphism between E1(Qp)
and the formal group. Thus we conclude that E1(Qp) ∼= pZp. But Zp

∼= pZp

as groups, and thus we have E1(Qp) ∼= Zp.

Now, Ẽns consists of all the nonsingular points. If Ẽ were itself an elliptic
curve, we would have Ẽns = Ẽ. In that case, since the reduction map is a
surjective group homomorphism, we would also have E0 = E. This is the
case referred to in Theorem 1.1, which we are now ready to prove:

Theorem 5.7 (Restatement of Theorem 1.1). Let E be an elliptic curve
defined over Qp, such that the corresponding curve Ẽ with coefficients reduced
into Fp (using Remark 4.3 if needed) is also an elliptic curve. Assume there
exists a homomorphism Ẽ(Fp) → E(Qp) which composed with the reduction
map gives the identity on Ẽ(Fp). Then we have the group isomorphism

E(Qp) ∼= Zp × Ẽ(Fp).

Proof of Theorem 1.1. Since Ẽ is non-singular, we have an exact sequence
from Theorem 5.5:

0→ Zp → E(Qp)→ Ẽ(Fp)→ 0.

Here the equivalence E1
∼= Zp follows from Theorem 5.6. Now, by hypothesis

we have a group homomorphism which is a right inverse to the reduction map.
Then, by the Theorem 5.4, the exact sequence splits. Therefore, E(Qp) ∼=
Zp × Ẽ(Fp).

The group E(Qp) is a wildly infinite structure, which is a priori hard to
understand. But Theorem 1.1 shows that in many cases, E(Qp) has a repre-
sentation in terms of two objects that are easier to understand. One is the
ring Zp, which we can efficiently represent in terms of p-adic expansions (see
[1] for details). The other is the group Ẽ(Fp), which is small by the Hasse-
Weil Bound (Theorem 3.7). Therefore, this theorem provides a first step in
building a richer understanding of the elliptic curve over p-adic numbers.
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