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Abstract

We derive a priori interior Hessian estimates and interior regularity for the o9
equation in dimension four. Our method provides respectively a new proof for the
corresponding three dimensional results and a Hessian estimate for smooth solutions
satisfying a dynamic semi-convexity condition in higher n > 5 dimensions.

1 Introduction

In this article, we resolve the question of the interior a priori Hessian estimate and regularity
for the oy equation
oy (DPu) = ) AN =1 (1.1)
1<i<j<n

in dimension n = 4, where \.s are the eigenvalues of the Hessian D?u.

Theorem 1.1. Let u be a smooth solution to (1.1) in the positive branch Au > 0 on
B1(0) C RY. Then u has an implicit Hessian estimate

|D*u(0)] < O(HUHCI(Bl(O)))

with HUHCl(Bl(O)) = HUHLOO(B1(O)) + HDUHLOO(Bl(o))'

From the gradient estimate for oj-equations by Trudinger [T2] and also Chou-Wang [CW]
in the mid 1990s, we can bound D?u in terms of the solution u in By (0) as

[ D*u(0)] < Cllull e (1, 0y))-

In higher n > 5 dimensions, our method provides a Hessian estimate for smooth solu-
tions satisfying a semi-convexity type condition with movable lower bound (1.2), which is
unconditionally valid in four dimensions by (2.3).
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Theorem 1.2. Let u be a smooth solution to (1.1) in the positive branch Au > 0 on
B1(0) C R™ with n > 5, satisfying a dynamic semi-convex condition
V3n2+1—n+1

Amin (D?*u) > —c(n) Au  with c(n) = 5 : (1.2)

Then u has an implicit Hessian estimate
|D*u(0)| < C(n, Hu“LOO(Bl(O)))’

One application of the above estimates is the interior regularity (analyticity) of C° viscos-
ity solutions to (1.1) in four dimensions, when the estimates are combined with the solvability
of the Dirichlet problem with C* boundary data by Caffarelli-Nirenberg-Spruck [CNS] and
also Trudinger [T1]. In particular, the solutions of the Dirichlet problem with C° boundary
data to four dimensional (1.1) of both positive branch Au > 0 and negative branch Au < 0
respectively, enjoy interior regularity.

Another consequence is a rigidity result for entire solutions to (1.1) of both branches
with quadratic growth, namely all such solutions must be quadratic, provided the smooth
solutions in dimension n > 5 also satisfying the dynamic semi-convex assumption (1.2), or
the symmetric one Apay (D*u) < —c(n)Aw in the symmetric negative branch case. Warren’s
rare saddle entire solution to (1.1) shows certain convexity condition is necessary [W|. Other
earlier related results can be found [BCGJ] [Y1] [CY] [CX] [SY3].

In two dimensions, an interior Hessian bound for (1.1), the Monge-Ampere equation
oy = det D?>u = 1 was found via isothermal coordinates, which are readily available under
Legendre-Lewy transform, by Heinz [H] in the 1950s. The dimension three case was done
via the minimal surface structure of equation (1.1) and a full strength Jacobi inequality by
Warren-Yuan in the late 2000s [WY]. In higher dimensions n > 4 any effective geometric
structure of (1.1) appears hidden, although the level set of non-uniformly elliptic equation
(1.1) is convex.

In recent years, Hessian estimates for convex smooth solutions of (1.1) have been obtained
via a pointwise approach by Guan and Qiu [GQ]. Hessian estimates for almost convex
smooth solutions of (1.1) have been derived by a compactness argument in [MSY], and for
semi-convex smooth solutions in [SY1] by an integral method. However, we cannot extend
these a priori estimates, including Theorem 1.2, to interior regularity statements for viscosity
solutions of (1.1), because the smooth approximations may not preserve the convexity or
semi-convexity constraints. Taking advantage of an improved regularity property for the
equation satisfied by the Legendre-Lewy transform of almost convex viscosity solutions,
interior regularity was reached in [SY2].

For higher order oy, (D?*u) = 1 with k > 3 equations, which is the Monge-Ampere equation
in k& dimensions, there are the famous singular solutions constructed by Pogorelov [P] in the
1970s, and later generalized in [U1l]. Worse singular solutions have been produced in recent
years. Hessian estimates for solutions with certain strict k-convexity constraints to Monge-
Ampere equations and oy, equation (k > 2) were derived by Pogorelov [P] and Chou-Wang
[CW] respectively using the Pogorelov’s pointwise technique. Urbas [U2] [U3] obtained
(pointwise) Hessian estimates in term of certain integrals of the Hessian for o) equations.
Recently, Mooney [M] derived the strict 2-convexity of convex viscosity solutions to (1.1),
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consequently, relying on the solvability [CNS] and a priori estimates [CW], gave a different
proof of the interior regularity of those convex viscosity solutions.

Our proof of Theorem 1.1 synthesizes the ideas of Qiu [Q1] with Chaudhuri-Trudinger
[CT] and Savin [S]. Qiu showed that in dimension three, where a Jacobi inequality is valid
(see Section 2 for definitions of the operators)

F;;0;;In Au > eFj;(In Au);(In Auw);,
a maximum principle argument leads to a doubling, or “three-sphere” inequality:

sup Au < C(n, ||ullcry0)) sup Au.
B1(0) B1/2(0)

(A lower bound condition on a3(D?u), satisfied by convex solutions of (1.1) in general dimen-
sions permitted Guan-Qiu to exclude the inner “sphere” term By /5(0) in the above inequality
for their eventual Hessian estimates earlier in [GQ)].) Iterating this “three-sphere” inequal-
ity shows that the Hessian is controlled by its maximum on any arbitrarily small ball. To
put it another way, any blowup point propagates to a dense subset of B;(0). To rule out
Weierstrass nowhere twice differentiable counterexamples, it suffices to find a single smooth
point; Savin’s small perturbation theorem [S] guarantees a smooth ball if there is a smooth
point. It more than suffices to establish partial regularity, such as Alexandrov’s theorem.
Chaudhuri and Trudinger [CT] showed that k-convex functions have an Alexandrov theorem
if £ > n/2. This gives a new compactness proof of Hessian estimate and regularity for (1.1)
in dimension three without minimal surface arguments, and also Hessian estimate for (1.1)
in general dimensions with semi-convexity assumption in [SY1], where a Jacobi inequality
and Alexandrov twice differentiability are available.

In higher dimensions n > 4, there are three new difficulties. Although the Holder estimate
for k-convex functions may not be valid for k& < n/2, we can replace it with the interior
gradient estimate for 2-convex solutions in [T2] [CW]; this gives an Alexandrov theorem.
The main hurdle is the Jacobi inequality, which fails for four and higher dimensions without
a priori control on the minimum eigenvalue \,,;, of D?u; the Jacobi inequality was discovered
in [SY1, SY3] for semi-convex solutions. Instead, we can only establish an “almost-Jacobi
inequality”, where € ~ 142\,,;,/Au in four dimensions. This choice of € degenerates to zero
for the extreme configurations (A1, Aa, A3, A1) = (a,a,a, —a+O(1/a)). At first glance, € — 0
means Qiu’s maximum principle argument fails; the positive term &|Vpb|? can no longer
absorb bad terms. On the other hand, for the extreme configurations, the equation becomes
conformally uniformly elliptic. The, usually defective, lower order term Ag|Du|? = 012, |
is large enough to take control of the bad terms. The dynamic semi-convexity assumption
(1.2) allows the outlined four dimensional arguments to continue working in higher n > 5
dimensions.

Using similar methods, a new proof of regularity for strictly convex solutions to the
Monge-Ampere equation is found in [SY4]. Extrinsic curvature estimates for the scalar
curvature equation in dimension four are found in [Sh], extending the dimension three result
of Qiu [Q2]. In forthcoming work, investigation will be done on conformal geometry’s oy
Schouten tensor equation with negative scalar curvature and the improvement of the W26+9
to Cb! estimate in [D] to a W2% to C™! estimate.
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In still higher dimensions n > 5, we are not even able to establish that In Au is sub-
harmonic, ¢ > 0, without a priori conditions on the Hessian. There is still the problem of
regularity for such solutions. Combining the Alexandrov theorem with small perturbation
[S, Theorem 1.3] only shows that the singular set is closed with Lebesgue measure zero.

2 Almost Jacobi inequality

In [SY3], we established a Jacobi inequality for b = In(Au + C(n, K)) under the semi-
convexity assumption A, (D?*u) > — K, namely the quantitative subsolution inequality

AFb = E]&]b Z &Tﬂjbibj =: €|Vpb|2,

where ¢ = 1/3, and for the sigma-2 equation F(D?u) = g3()\) = 1, we denote the linearized
operator by the positive definite matrix

(Fy) = Aul — D*u = \/205 + |D2u| I — D*u > 0. (2.1)

In dimension three, the above Jacobi inequality holds for C'(3, K) = 0 unconditionally;
see [SY3, p. 3207] and Remark 2.2. In dimension four, we can establish an inequality for
b = In Au without any Hessian conditions. The cost is that ¢ depends on the Hessian, and
e(D?u) — 0 is allowed. We obtain an “almost” Jacobi inequality.

Proposition 2.1. Let u be a smooth solution to oo(\) = 1, and b = In Au. In dimension
n =4, we have
Apb > e |Vpb|?, (2.2)

_2(1 dan)
o\ Aaw) T
In higher dimension n > 5, (2.2) holds for

:\/3n2+ —(n+1) <\/3n2+ —(n—l)_i_/\mm>

where

3(n—1) 2n Au

under the condition

Amin - _\/3712 +1—-(n—-1)

Au — 2n

Here, Amin 15 the minimum eigenvalue of D*u.

An important ingredient for Proposition 2.1 is the following sharp control on the minimum
eigenvalue.

Lemma 2.1. Let A = (A,...,\,) solve o9(A) =1 with \y +---+ X\, > 0 and A\ > Ay >
-« > \,. Then the following bound holds for n > 2 and is sharp:

o1(A) >
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Proof. The sharpness follows from the configurations

)\:(a,a,...,a,—(n;2>a+(n_ll)a). (2.4)

Next, if A\, > 0, we have
01 :/\1++>\n2n)\n

For A\, < 0, we write A’ = (A1,...,A,—1) and observe that A, = (1 — ao(XN))/o1(N). We
must have o9(\') > 1, as g1(\) > 0 from (2.1), so we write
o) __,, al) ‘
_/\n 02()\/) -1 0'2()\’)

We write o1(\)? in terms of the traceless part At of X and oo(\):

n—1
a1(X)? = — 5(202(N) + INE?).
It then follows
o1(A) 2(n—1) n
1 —
—An + n—2 n—2

As a consequence, we obtain the following quantitative ellipticity for equation (1.1).

Corollary 2.1. Let A = (A1,..., \,) solve f(A) = oo(N\) = 1, with \y +---+ A\, > 0. For
A > X > o>\, and f; = 0f /0N, we have

1 —1
—gflg(" )al,
n

01

1 n—1
1— — <fi<2l—=) oy, > 2.
( ﬂ)al‘f‘ ( n )Ul Z

Proof. The upper bound for f; = o7 — A\; comes from the easy bound n\; > ;. The sharp
upper bound for f, follows from (2.3):

(2.5)

n—2

Ji<fa=01—-A < (1+—n )(71.

The 7 = 1 lower bound goes as follows:

2+ 1(0, Aay .. ., A2 2 1
=0 — A\ = > > —.
fl ! ! O'1+)\1 01+)\1 01

The i > 2 lower bounds for f; = 01 — \; are true if \; < 0. For \; > 0,

21 ... A2
At A i AL (1—i") oy,

o1 =2+ PE> (A

in the last inequality. O

fi=o1—=XAi>01—

where we used



Remark 2.1. A sharp form of (2.5) for the i > 2 lower bounds and rougher upper bounds
was first shown in [LT, (16)]. A rougher form of the lower bounds in (2.5), enough for our
proof of doubling Proposition 3.1, also follows from [CW, Lemma 3.1], [CY, Lemma 2.1],
and [SY1, (2.4)].

Proof of Proposition 2.1. Step 1. Expression of the Jacobi inequality. After a rotation at
x = p, we assume that D?*u(p) is diagonal. Then (F};) = diag(f;), where f(\) = o2(\). The
following calculation was performed in [SY3, p. 4] for b = In(Au + J) for some constant J.
We repeat it below with J = 0, for completeness. We start with the following formulas at

T =Dp:

(2.6)

|va|2 Zfz

&ZAu 0;Au)?
AFb_Zf,[ . <(Au)3 (2.7)

Next, we replace the fourth order derivatives 0;;Au =, _, Ojugk in (2.7) by third deriva-
tives. By differentiating (1.1), we have

ApDu = (Fjjuiji) iy = 0. (2.8)

Differentiating (2.8) and using (2.1), we obtain at z = p,

n n n n
E fian'AU = E Apuy, = E Fijaijukk = - E GkFijaijUk
i=1 k=1 i, k=1 ij,k=1

n

= Z —(Augdi; — ugij)ugi; = Z ugy — Z (Auy)2.
k=1

i,j,k=1 i,5,k=1

Substituting this identity into (2.7) and regrouping terms of the forms ugoa, Ugao: Yoo,
and (Aug)?, we obtain

AFb— { Z uz]k+

1<j<k

DRSS (0+2) duy

i#j

Accounting for (2.6), we obtain the following quadratic:
(AFb - 5|va‘ o1 2> 3 Z u]j’b + Z Uigs — Z(l + 5fi/01>(Aui)27
1#] i i

where ¢ := 1 + ¢ here. As in [SY3], we fix i and denote ¢t; = (u114, .- ., Unn;) and e; the i-th
basis vector of R™. Then we recall equation (2.9) from [SY3] for the i-th term above:

Q :=3lt| — 2(ei, t)* — (1L + 5fi/o){(1,...,1),1)%

The objective is to show that ¢ > 0. The idea in [SY3] was to reduce the quadratic form
to a two dimensional subspace. In that paper, ) > 0 was shown under a semi-convexity
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assumption of the Hessian. Here, we show how to remove this assumption in dimension four.
For completeness, we repeat that reduction below.

Step 2. Anisotropic projection. Equation (2.8) at © = p shows that (Df,¢;) = 0, so @
is zero along a subspace. We can thus replace the vectors e; and (1,...,1) in @ with their

projections:
Q =3t —2(E,t)* — (1 +df;/o1){L,1)?

e (e.0)) (L....1).Df)
e;
E=e— 2 Zlper o, )= N Zlpye
DIF e D= g
Their rotational invariants can be calculated as in [SY3, equation (2.10)]:
f? 2(n—1) (n—1)o1fi
EPf=1-— ", ) = E-L=1—~——+"- 2.9
= e o Y

The quadratic is mostly isotropic: if ¢ is orthogonal to both F and L, then Q = 3|¢|> > 0,
so it suffices to assume that ¢ lies in the {F, L} subspace. The matrix associated to the

quadratic form is
Q=3-2FQF—nL®L,

where n = 1+ f; /o1 = 1+ (1+4¢)fi/o1. Since Q is a quadratic form, its matrix is symmetric
and has real eigenvalues. In the non-orthogonal basis {E, L}, the eigenvector equation is

(3—2\5’\2 —2E-L) (a) _¢ (a)
—nL-E 3—n|L’)\p B)
The real eigenvalues of this matrix have the explicit form

1
£ = 3 (tr + Vir?2 — 4det> ,
where the trace and determinant are given by
tr=6—2|E[> —n|L|?,  det =9—6|E|>=3n|L]>+2n[|Ef|L]> — (E- L)?].

It thus suffices to show that ¢tr > 0 and det > 0.

Step 3. Non-negativity of the trace of the quadratic form. In [SY3], the trace was shown
positive; indeed, by (2.9),

- /2 SN ([, 20n-1)
o (o) (o) (o)
fi (3 — 5)0’1 + 5)\1

>3—-0— =
01 01
n—2
23—5(1+ )ZO,
n
for any

§< " 2.10
~2(n—1) (2.10)



using the bound (2.3) in the case that A\; < 0.

Step 4. Non-negativity of the determinant of the quadratic form. Our new contribution
here is to analyze the determinant in general. Again by (2.9), the determinant is

62 30f, s\ [200— 1)
=D m+3<l+<n) DfP
0fi\ [2(n—Dorfi nf? 12(n—1)
*2(1+01)[ DfP  IDJF | IDJP
30 fi Ofi (”_1)01fi dfi f2
() e A (R s

Since f; = 01— \; and 0F = 2+ |\|?, we get |Df|* = (n—1)0% — 2, so we obtain an inequality
in terms of y := f;/oy:

et |IDfJ? >—3(n—1)5+4<”_1) (1_|_5f1) {6—271 (1—1—5]2)} ﬁ
O'lfz 7 " E

> (n—1)(4—30)+ [6—2n+4(n—1)(5]y—2n(5y2

(2.11)

= Q5(y)-

Remark 2.2. In three dimensions, the almost Jacobi inequality (2.2) becomes a full strength
one Apb > 3 |V #b|?, because in (2.11), Qa3 (y) = gi—; (14 3X;/o1) > 0 by (2.3). This was
observed in [SY3, p. 3207].

We write ¢s5(y) = ¢1(y) + e7(y). The remainder:

r(y) = -3(n—1)+4(n— 1)y —2ny* = =3(n — 1) + 2ny <@ — y) > —3(n—1),

where we used 0 <y = f;/o1 < fn/o1 < 2(n —1)/n; see (2.5) in Corollary 2.1. To estimate
q1(y), let us solve 0 = q;(y) =n — 1+ 2(n + 1)y — 2ny*:

yn = , yn = —. .
2n 2
Then ¢1(y)/(y;f —y) = 2n(y — y,, ). This linear function is minimized at the endpoint y = 0,
so if y —y > 0, we conclude

4s(y) > —2ny, (yy —y) —3(n — 1)e > —2ny, <yn f"> —3(n—1) =0,

L 2ny,, B &
©T 3(n—1) (y;1r 01)

V2 +1l—-(n+1) (V3nP+1—-(n—-1) A,
T 3m-1) T

2n ol
—§(§+a>‘

provided

(2.13)



The condition y —y =y — (J:—; > 0 for all 7 is equivalent to dynamic semi-convexity,

An - Vv3n2+1—(n—-1)

o1 2n

If n = 4, all solutions satisfy this unconditionally, using (2.3).

Let us now check that the trace condition (2.10) is also satisfied. It suffices to have
e < 1/2. Writing € = ¢(n)(c,+A,/01), it can be shown that ¢(n) is an increasing function of n
bounded by (v/3—1)/3 < 1/4, and ¢, is a decreasing function bounded by (v/13—1)/4 < 2/3.
Combined with A, /o1 < 1/n < 1/2 (see Lemma 2.1), we find that ¢ < 7/24 for n > 2.

This completes the proof of Proposition 2.1 in dimension n = 4 and higher dimension
n > 5. O

3 The doubling inequality

We now use the almost-Jacobi inequality in Proposition 2.1 to show an a priori doubling
inequality for the Hessian.

Proposition 3.1. Let u be a smooth solution of sigma-2 equation (1.1) on B4(0) C R™. If

n =4, then the following inequality is valid:

sup Au < C(n)exp (C(n)||u||201(33(0))> sup Au.
B3(0) B1(0)

If n > 5, the inequality is true, if we suppose also that on Bs(0), there is a semi-convexity
type condition

(P2 AT T
Amin(D”1) > e, o = m+l-n+1 (3.1)
Au 2n

Proof. The following test function on B3(0) is taken from [GQ, Theorem 4] and [Q1, Lemma
4):
P.s, = 2Inp(z) + a(z - Du—u) + B|Dul?/2 + Inmax(b, v ). (3.2)

Here, p(x) = 3% — |z|?, and b = b — maxp, ()b for b = InAu. We also define I' := 4 +
|| oo (Bs0)) + D[ Lo (By(0)) to gauge the lower order terms, and denote by C' = C(n)
a dimensional constant which changes line by line and will be fixed in the end. Small
dimensional positive «, and smaller positive constants «, 5 depending on v and I'; will be
chosen later. We also assume summation over repeated indices for simplicity of notation,
where it is impossible in Section 2.

Suppose the maximum of P,s, occurs at * € By(0). If b(x*) < 71, then we conclude
that for C' large enough,

1
glz(agi P.gy < C +3al + §ﬁF2 +Inyt. (3.3)

So we suppose that b(z*) > 1. If |2*| < 1, then again we obtain (3.3), so we also assume
that 1 < |z*| < 3.



After a rotation about x = 0, we assume that D?*u(z*) is diagonal, u; = \;, with
Al > Ay > - > A\, At the maximum point z*, we have DF,3, = 0,

b;
_%_oPi + arpug + Buriy
_oli | azi\; + Bui;,
p
and for 0 > D?*P,3, = (0;jPagy), we get
8 by biby
0> < B TJ Qppp] + a(zruijr + uij) + Buruigr + wirur) + ?] a 62j> 39

Contracting with Fj; = doy/0u;; and using
F jWijk = O F jUWi = 20'2 = 2 Ejéij = (n — 1)0’1,

as well as diagonality at x*, (Fi;) = (fid;;) for f(A) = o2(A), we obtain at maximum point

x,

fip?

1Yt 162
0 > Fij&-jPaﬁw > —4(n — 1)2 —2— f L
p p?

RE
Under the assumption that n = 3,4, or instead that n > 5 with Hessian constraint (3.1),
almost-Jacobi inequality Proposition 2.1 is valid, and we get for larger C,

+ BN +

91 flpz 24 fsz le_)?
> —(C— —2—+ — | == - = 3.6
02 -CZ -y e (4 2 ) -5 (36)

If the nonnegative coefficient of f;b?/b is positive, we can proceed as in Qiu’s proof. In the
alternative case, we must use the [ term. We start with the latter case. Note that from
(2.3) in Lemma 1, condition (3.1) A\,/Au > —1/2 = —¢, is automatically satisfied for n = 4,
and \,/Au > —1/3 > —¢, /2 for n = 3.

CASE —¢, < \,/Au < —¢,/2: Tt follows from (2.5) that f,A2 > c¢(n)o}. For larger C,
0> —G% + Bo} — sz—
Using (3.4) and ellipticity (2.5), we obtain
Bod < C% +C(a? + B2T2)0
If the small parameters satisfy
o < B/(30), B <1/(30T3), (3.7)

we obtain p*0? < C/B. Since o1 = /2 + [A\[2 > V2, we have 07 > 2In oy, and we conclude
from (3.2) and (3.7) that

Py <C+Inp . (3.8)
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We next show that Qiu’s argument goes through, in the case that “almost” Jacobi be-
comes a regular Jacobi.

CASE \,/Au > —c¢, /2. It follows that, after enlarging C, (3.6) can be reduced to

: B
0>-—cZ - cf”Z BN+ (b= O)fik.
p b?
Using b(z*) > %B(ZE*) + %’y‘l, we assume that v satisfies
1L
so after enlarging C' again, we can further reduce it to
flpz 2
0> o2t ol + BfiA; +bfz—. (3.10)
p

SUBCASE 1 < |z*| < 3 and 2% > 1/n: If the small parameters satisfy the condition
< a/(2nl), (3.11)
we then obtain from (3.4),

C 1 C
. 1*\2/\2__>_2)\2__.
(a/n ﬂ ) 1 p2_8n2a 1 pg

— DN

5 =

@‘Il =
DN | —

We assume that this gives a lower bound, or that C'/p? < a?\?/(16n?):

ATt (312)

For if not, we get p?\? < C'/a?. Since \; > o1/n, we can get p*Ilno; < C'/a?. Using (3.2)
and (3.7), we would obtain
Pugy <C+2lna (3.13)

It follows then, from (3.12) and (2.5), that (3.10) can be simplified to
01 -
0 Z —C? + bfl(oﬂ)\f)

From (2.5), there holds fi\? > o1 /n?, so we conclude p?b < C/a?. By (3.2) and (3.7), we
conclude a similar bound (3.13):

P,y <O+ 2lna L.

SUBCASE 1 < |z*| < 3 and z} > 1/n for some k > 2: Let us first note that o1/p <
Cfrpi/p?, by (2.5). We apply b > v~ to (3.10):

flpz

0>-C=+ +ﬁsz2+v‘1f2—.
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Using the DP = 0 equation (3.4) and enlarging C', we obtain

fib? 2 1P —1.2¢ 242 —172 32 £\2
0= _67 + BN+ fi? — Oy o fiwi Ay = Oy B2 i
£ (3.14)
> S = O+ TR ((179) = Oy (Ta)? = Oy (6.
The first term is handled if vy~ is large enough:
vt >20.
We choose «a, 5 as follows:
a=~YT,  B=7°T% (3.15)

Let us check that the previous «, 8 conditions (3.7) and (3.11) are satisfied for any v~! > 2C,
if C is large enough:

o? 1 1 I'B

24 o .
57T =2acr T30 o 4C? S op

Finally, the coefficient of T2 f;\? in (3.14) is

1 A4
76—077—07”=76(1—07—075)276( —5——) > 0.

Overall, we obtain a contradiction to (3.14).
We conclude that for all large v~! > 2C and «, (3 satisfying (3.15), the maximum of Py,
obeys the largest of the P bounds (3.3), (3.8), and (3.13):

gl&(m); Py < C+Inmax(y ™', 7 a?) = C + In(I*y79).
5 (0

We now choose large =1 = 2C' = C(n). By (3.2), we obtain the doubling estimate

ma;
50 71 < exp exp (C’ +In FQ) = exp(CT?).
maXBl(o) 01

O

We now modify the doubling inequality to account for “moving centers”. We may control
the global maximum by the maximum on any small ball.

Corollary 3.1. Let u be a smooth solution of sigma-2 equation (1.1) on B4(0) C R". If
n =4, or if lower bound (3.1) holds for n > 5, then the following inequality is true for any

y € Byy3(0) and 0 <r < 4/3:
sup Au < C(n, 7, ||ullc1(y(0))) sup Auw. (3.16)

B2(0) Br(y)
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Proof. We first note that
B1(0) € Bays(y) C Bsys(y) € Ba(0),

for any |y| < 1/3. By Proposition 3.1, we find an inequality independent of the center:

sup A < C(n)exp (C)[ull2s o)) sup Au (3.17)

Bs/3(y) By/3(y)
We iterate this inequality about y using the rescalings

(5N (4
uk-l—l(‘r): Z U, g(x_y)—i_y? Uy = U, k:071727"'

It follows that each wy, satisfies (3.17). Denoting

5\ 2
Cy = C(n)exp O(n)HukH%’l(Bg(O)) <C(n)exp || C(n)|ullersso | »
4

we obtain for k =1,2,...,
5 (4\"

sup Au < CoCy---Cy, sup Au < C(k,n, ||ullcryo)) sup  Au, re=-1|=

Bs 3(y) Brys (4) Bryys () 3\

Letting rp11 < r < ry for some k, we combine this inequality with Proposition 3.1 again, to
arrive at (3.16). O

Remark 3.1. In the uniformly elliptic case, or a”b;; > a“b;b; for \I < (a”) < AT, it follows
from Trudinger [T3, p. 70] that a local Alexandrov maximum principle argument gives an
integral doubling inequality:

A
sup b < C (n,r, X) (L4116l 2n (B2 (0)) -

B1(0)

In the o5 case, we can find an integral doubling inequality by modifying Qiu’s argument, but
the non-uniform ellipticity adds a nonlinear weight to the integral:

sup In Au < C(n,T)F2 (1 + H(Au)Q/” In AuHLn(BT(O)) )
B1(0)

This nonlinear doubling inequality can be employed to reach Theorems 1.1 and 1.2, as in
Section 5, Step 3.
4 Alexandrov regularity for viscosity solutions

We modify the approach of Evans-Gariepy [EG] and Chaudhuri-Trudinger [CT] to show the
following Alexandrov regularity. In [EG, Theorem 1, section 6.4], the Alexandrov theorem is

13



seen to arise from combining a gradient estimate with a “I¥??! estimate” for convex functions.
The latter can be heuristically understood from the a priori divergence structure calculation

/ | D?u da g/ Audr < C(n)|[ull L5, (0))-
B1(0) B1(0)

However, for k-convex functions, there is no gradient estimate, in general, and only Holder
and W™ estimates for k > n/2. We are not able to use Chaudhuri and Trudinger’s result in
dimension n = 4. Yet, 2-convex solutions of o5 = 1 have an even stronger interior Lipschitz
estimate, by Trudinger [T2], and also Chou-Wang [CW], with a similar “IW?*! estimate” from
Au = /2 + |D?ul?, so the method of [EG] and [CT] can be applied verbatim. We record
the modifications below, for completeness.

Proposition 4.1. Let u be a viscosity solution of sigma-2 equation (1.1) on By(0) with
Au > 0. Then u is twice differentiable almost everywhere in B4(0), or for almost every
x € By(0), there is a quadratic polynomial QQ such that

s lu(y) — Qy)| = o(r?).

We begin the proof of this proposition by first recalling the weighted norm Lipschitz
estimate [TW, Corollary 3.4, p. 587] for smooth solutions of oo = 1, Au > 0 on a smooth,
strongly convex domain 2 C R™:

sup d”+1|u( )= /\u!dw (4.1)

7y
z,yeQizty |z —

where d, , = min(d,,d,), and d, = dist(z, 0§2). By solving the Dirichlet problem [CNS] with
smooth approximating boundary data, this pointwise estimate holds for viscosity solution
u, if Q@ CC By4(0), i.e. w is locally Lipschitz. By Rademacher’s theorem, u is differentiable
almost everywhere, with Du € L{2 equal the weak (distribution) gradient. By Lebesgue
differentiation, for almost every x € By4(0),

lim | Du(y) — Du(z)|dy = 0. (4.2)

r—0 B7($)
For second order derivatives, we next recall the definition [CT, p. 306] that a continuous
2-convex function satisfies both Au > 0 and o9 > 0 in the viscosity sense. Since viscosity
solution u to oy = 1 and Au > 0 is 2-convex, we deduce from [CT, Theorem 2.4] that the

weak Hessian 0%u, interpreted as a vector-valued distribution, gives a vector-valued Radon
measure [D?u] = [u"]:

/ugpij dr = /gpd/ﬂ, p € C5°(B4(0)).
Let us outline another proof. Noting that > ki Djju > Au — Apax > 0 for 2-convex

smooth function u, where the last inequality follows from (2.1) with 205 > 0, via smooth
approximation in C°/L> norm, we see that ;' and also p¢ for any unit vector on R™ in [CT,
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(2.7)], are non-negative Borel measures, in turn, bounded on compact sets, that is, Radon
measures for 2-convex continuous u. Readily p/» for 2-convex continuous w in [CT, (2.6)] is
also a Radon measure. Consequently, for 2-convex continuous u, Dju = p/» — u' and also
Deeu = pf» — pf in [CT, (2.8)] are Radon measures. This leads to another way in showing
that the Hessian measures Dyju = p¥ = (u°+* — p°-¢) /2 with e, = (9; + ;) /v/2 and
e_ = (0;—0;) /v/2 in [CT, (2.9)], are Radon measures for all 1 < 4,5 < n and 2-convex
continuous u.

By Lebesgue decomposition, we write [D?u] = D*u dz+[D?uly, where D?u € L}, denotes

the absolutely continuous part with respect to dx, and [D?u], is the singular part. In
particular, for dz-almost every x in By4(0),

lim |D*u(y) — D*u(x)|dy = 0, (4.3)
r—0 Br(z)

1

lim —|[[D*ul,[| (B, (x)) = 0. (4.4)
r—0 7

Here, we denote by ||[D?ul;|| the total variation measure of [D?*uls. In fact, these conditions
plus (4.2) are precisely conditions (a)-(c) in [EG, Theorem 1, section 6.4]. We state their
conclusion as a lemma, and include their proof of this fact in the Appendix.

Lemma 4.1. Let u € C'(B4(0)) have a weak gradient Du € L;,. which satisfies (4.2) for a.e.
x, and a weak Hessian 0*u which induces a Radon measure [D*u] = D*udx+ [D?u)s obeying

conditions (4.3) and (4.4) for a.e. x. Then for a.e. x € B4(0), it follows that

][;T (z)

Choose z for which conditions (4.2), (4.3), and (4.4) are valid. Let h(y) = u(y) — u(z) —
(y — ) - Du(0) = (y — ) - D*u(0) - (y — x)/2. Using

u(y) — u(x) — (y —2) - Dulx) — 5y~ DDu(@)y — x)|dy = o(r?).  (45)

‘é(gmwwyzdﬂx (4.6)

we will upgrade this to the desired [|A|| (5, 4@y = 0(r*). The crucial ingredient is a point-
wise estimate: for 0 < 2r <4 — |z,

M) =AG) _ O
y,2€Br(x),y#£2 |y - Z‘ r

£y +or, ()
Bar(z)

where C' = C'(n)|D?*u(x)|. This was shown as [CT, Lemma 3.1] for k-convex functions with
k > n/2 using the Holder estimate [TW, Theorem 2.7], and [EG, Claim #1, p. 244] for
convex functions using a gradient estimate, respectively.

Proof of (4.7). To establish (4.7), we first let g(y) = u(y) — u(x) — (y — x) - Du(z); then
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o2(D%*g(y)) = 1 with Ag(y) > 0, so gradient estimate (4.1) yields

M sup lg(y) — g(2)|

y,2€B(x),y#z |y - Z’

= dist(| 0B, (z) |, 0By, (x))"** sup lsw) = 9(=)|
ly — 2|
y,2€ BT(ZB) yF£z

< sp A l9(y) — g(2)]
y7Z€B2T(x)7y7£Z 7 |y - Z‘

(4.1)
<) [ lawldy
Bay(z)

< C(n) /B Iy + COIDu) (48)

where d, , := min(2r — |y — z|,2r — |z — z|). Next, we polarize
(y— ) Du(2) - (y—2) = (2 —2) - D'u(z) - (z —2) = (y —w+ 2 — ) - D*u(2) - (y — 2),

which gives

h(y) —h —
T‘n+1 sup | (y) (Z)| S Tn+1 sup |g(y) g(2)| + C’(n)r”+2|D2u(x)|.
y,2€Br(x),y#2 |y - Z| y,2€Br(z),y#z |y - Z|
This inequality and (4.8) lead to (4.7). O

The rest of the proof follows [EG, Claim #2, p. 244] or [CT, Proof of Theorem 1.1,
p. 311] verbatim. We summarize the conclusion as a lemma and include its proof in the
appendix.

Lemma 4.2. Let h(y) € C(B4(0)) and x € B4(0) satisfy integral (4.6) and pointwise (4.7)
bounds for 0 < 2r <4 — |x|. Then SUPB, (x) |h(y)| = o(r?).

This completes the proof of Proposition 4.1.

Remark 4.1. In fact, Proposition 4.1 holds true for (continuous) viscosity solutions to
or (D*u) = 1 for 2 < k < n/2 in n dimensions, because the needed conditions (4.1)-(4.4)
in the proof are all available. The twice differentiability a.e. for all k-convex functions and

k > n/2, without satisfying any equation in n dimensions, is the content of the theorems by
Alexandrov [EG, p. 242] and Chaudhuri-Trudinger [CT].

5 Proof of Theorems 1.1 and 1.2

Step 1. After scaling 4%u(x/4), we claim that the Hessian D?*u(0) is controlled by ||ul|c1(s,(0))-
Otherwise, there exists a sequence of smooth solutions u of (1.1) on By4(0) with bound
|urllcr(y0)) < A, but [D?uy(0)] — oo, in either dimension n = 4, or in higher dimension
n > 5 with dynamic semi-convexity (3.1). By Arzela-Ascoli, a subsequence, still denoted
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by uy, uniformly converges on Bs(0). By the closedness of viscosity solutions (cf.[CC]), the
subsequence uy converges uniformly to a continuous viscosity solution, abusing notation, still
denoted by u, of (1.1) on B3(0); we included the non-uniformly elliptic convergence proof in
the appendix, Lemma 6.1. By Alexandrov Proposition 4.1, we deduce that u is second order
differentiable almost everywhere on B;(0). We fix such a point z = y inside B/3(0), and let
Q(z) be such that u — Q = o|x — y|?).

Step 2. We apply Savin’s small perturbation theorem [S] to vy = ux — Q. Given small
0 <r < 4/3, we rescale near y:

1
U(T) = T—ka(rf +y).
Then
] lur(rZ +y) = u(r? + Y=o | [u0T +y) = Q0T +y)llr~m,0)
19kl o= (5, 0) < = + r2
up(re +y) —ulrz + oo
< Nz + ) 7{2 D@ |

for some modulus o (r) = o(r?)/r?. And also vy, solves the elliptic PDE in B;(0)

G(D*w) = Aw + AQ — /2 + |D*w + D2Q% = 0.

Note that o5(D?*Q) = 1 with AQ > 0, so G(0) = 0 with G(M) smooth. Moreover, |D*G| <
C(n), and G(M) is uniformly elliptic for |M| < 1, with elliptic constants depending on n, Q.

Now we fix r = r(n,Q, o) =: p small enough such that o(p) < ¢;/2, where ¢, is the small
constant in [S, Theorem 1.3]. As u;, uniformly converges to v, we have |||z (B, (o)) < ¢1 for
all large enough k. It follows from [S, Theorem 1.3] that

lur — Qllo2a(B, 1) < C(n,Q,0),

with o = a(n, Q, o) € (0,1). This implies Aux < C(n,Q,0) on B,3(y), uniform in k.
Step 3. Finally we apply doubling inequality (3.16) in Corollary 3.1 to ug with r = p/2:

gu(p) Auk < C(na p/2> HukHcl(Bg(O)))C(nv Qa U) < C(na Qa g, A)
2(0

We deduce a contradiction to the “otherwise blowup assumption” at x = 0.

Remark 5.1. In fact, a similar proof directly establishes interior regularity for viscosity
solution u of (1.1) in four dimensions, and then the Hessian estimate, instead of first obtain-
ing the Hessian estimate, then the interior regularity as indicated in the introduction. By
rescaling @(Z) = u(rx + xo)/r? at various centers, it suffices to show smoothness in By (0), if
u € C(B5(0)). By Alexandrov Proposition 4.1, we let © = y be a second order differentiable
point of u in By/3(0), with quadratic approximation Q(z) and error o at y. By Savin’s small
perturbation theorem [S, Theorem 1.3], we find a ball B,(y) with p = p(n,Q, o) on which
u is smooth, with estimates depending on n, @, 0. Using [CNS], we find smooth approxima-
tions u, — u uniformly on By4(0), with |Duy(x)| < C(||ul|z(B4(0))) in B3(0) by the gradient
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estimate in [T2] and also [CW]. By the small perturbation theorem [S, Theorem 1.3], it
follows that u, — u in C** on B,s(y). Applying doubling (3.16) to u; with r = p/2, we
find that Auy, < C(n, Q, 0, ||ul L=(B.i(0)) on B2(0). By Evans-Krylov, uy — u in C*%(B4(0)).
It follows that u is smooth on By (0).

From interior regularity, a compactness proof for a Hessian estimate would then fol-
low by an application of the small perturbation theorem. Suppose u; — u uniformly but
| D?u;,(0)] — oo. We observe that the limit u is interior smooth. Applying Savin’s small
perturbation theorem to u; — u, which solves a fully nonlinear elliptic PDE with smooth
coefficients, implies a uniform bound on D?u(0) for large k, a contradiction.

Remark 5.2. By combining Alexandrov Proposition 4.1 with [S, Theorem 1.3] as above,
we find that general viscosity solutions of 0o = 1 on B(0) C R™ with Au > 0 have partial
regularity: the singular set is closed with Lebesgue measure zero. The same partial regu-
larity also holds for (k-convex) viscosity solutions of equation o, = 1, because Alexandrov
Proposition 4.1 is valid for such solutions as noted in Remark 4.1.

6 Appendix

Proof of Lemma 4.1. Choose x € B4(0) for which conditions (4.2), (4.3), and (4.4) are valid.
Given r > 0 small enough for By.(z) C B4(0), we just assume x = 0. Letting n.(y) =
e7"n(y/e) be the standard mollifier, we set u®(y) = 7. * u(y) for |y| < r. Letting Q*(y) =
u(0) + y - Du®(0) +y - D*u(0) - y/2, we use Taylor’s theorem for the linear part:

() — Qly) = / (1 - t)y - [De(ty) — D*u(0)] -y dt.

Letting ¢ € C?(B,(0)) with |¢(y)| < 1, we average over B, = B,(0):

][T o) (1w () — QO (y))dy = /01(1 — 1) (][ o(y)y - [D*uf(ty) — D*u(0)] - ydy) dt o

_ /0 ‘1 t;t (]{9 p(t72)z - (D () — DPul0)] -zdz) dt.

The first term converges to the Radon measure representation of the Hessian:

g (t) == / ot '2)z - D*uf(2) - zdz
Brt
— u(2)0;(2" 2 p(t ' 2)dz ase — 0
B'rt

= / ot 12)2 2 dp
B'rt

= / ot '2)z - D*u(z) - zdz +/ ot 12)2' 2 du .
B'rt

B'rt
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It also has a bound which is uniform in e:

<
3
~
3
+
(V]
|
—~
3
~+
3

/B 1B(0) 1 B-(C)] d| D] (€)

= en(rt)"
2

<

— en(rt)n

= oDl (B

- (rt +¢)n

< Cr.

win(rt, &) | Dl (Byis.)

In the last inequality, we used (4.3) and (4.4), and denoted by | D?ul| the total variation
measure of [D?u]. Note also, by (4.2),

| Du(0) = Du(0)] < / 1e(2)| Du(z) — Du(0)[d=

€

< C+ |Du(z) — Du(0)|dz

= 0(1);

By the dominated convergence theorem, we send € — 0 in (6.1):

[(Bre)

£ et -y < s [ 1p2u) - Druoyiazar+ 002 [ IEESE 0
= o(r?)

T

using (4.3) and (4.4). Taking the supremum over all such [¢(y)| < 1, we conclude f, |h(y)|dy =
o(r?). This completes the proof. O

Proof of Lemma 4.2. Given x € B,4(0) such that (4.6) and (4.7) are true, we let 0 < 2r <
4 —|z| and 0 < e < 1/2. Then by (4.6),

er?

[{z € B,(z) : |h(2)| > er?}| < i/B " |h(2)|dz

= to(r™)

<e|B(z)],
provided r < 79(e,n, h). Then for each y € B, /»(x), there exists z € B,(z) such that

|h(2)] < er? and ly — z| <er.
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By (4.7) and (4.6), we obtain for such v,

|i(y) — h(2)]
h(y) < |h(z)| + ——er
h(y)] < [h(z)] -
<er?+ C(n)e][ |h(¢)|d¢ + C(n, h)er?
Ba,(z)
< O(n, h)er®.
We conclude supp (. [h(y)| = o(r?). O

The following is standard, but for lack of reference, we include a proof.

Lemma 6.1. If uy — u is a uniformly convergent sequence of viscosity solutions on By(0)
of a fully nonlinear elliptic equation F(D*u, Du,u,x) = 0 continuous in all variables, then
u is a viscosity solution of F' on By(0).

Proof. We show it is a subsolution. Suppose for some xy € B;(0), 0 < r < dist(xy, 9B1(0)),
and smooth @ that Q > u on B,.(zy) with equality at xy. Set

Q: = Q +elr —xo]* — .
We observe that
ug(z0) — Qo(x0) > u(w0) — Qm0) +€* —0(1) > 0
for k = k(e) large enough. In the ring B.(x¢) \ B:/2(%0), we have
ur(z) — Q=(2) <u(z) — Q(z) —*/4+ &' +0(1), <0

for € = £(r) small enough, and k = k(e) large enough. This means the maximum of uy — Q.
occurs at some in x, € B, /2(:170). Since uy, is a subsolution, we get

0 < F(D2Q5(ZL’E), DQa(xa)> Qa(-ra),xa) — F(DZQ(.QT()), DQ(Z’Q), Q(ZUO), xD)?

as € — 0. This completes the proof. ]
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