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Abstract
Wederive a priori interiorHessian estimates for semiconvex solutions to the sigma-2 equation.
An elusive Jacobi inequality, a transformation rule under the Legendre–Lewy transform, and
a mean value inequality for the still nonuniformly elliptic equation without area structure are
the key to our arguments. Previously, this result was known for almost convex solutions.

Mathematics Subject Classification 35J96 · 35B45

1 Introduction

In this paper, we prove a priori Hessian estimates for semiconvex solutions to the quadratic
Hessian equation

F
(
D2u

) = σ2 (λ) =
∑

1≤i< j≤n

λiλ j = 1

2

[
(�u)2 − ∣∣D2u

∣∣2
]

= 1. (1.1)

Here λi s are the eigenvalues of the Hessian D2u.

Theorem 1.1 Let u be a smooth semiconvex solution to σ2
(
D2u

) = 1 on BR (0) ⊂ R
n with

D2u ≥ − K I for any fixed K > 0. Then
∣∣D2u (0)

∣∣ ≤ C (n, K ) exp
[
C (n, K ) ‖Du‖2L∞(BR(0)) /R2

]
.

Given the gradient bound in terms of K -convex function u (x) (note that Trudinger’s
gradient estimates for σk equations need no semiconvexity of the solutions [12]), we can
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control D2u in terms of the solution u in B2R (0) as
∣
∣D2u (0)

∣
∣ ≤ C (n, K ) exp

[
C (n, K ) ‖u‖2L∞(B2R(0)) /R4

]
.

Onequick application of the above estimates is a rigidity result for entire semiconvex solutions
with quadratic growth to (1.1): every such solution must be quadratic.

Recall any solution to the Laplace equation σ1
(
D2u

) = �u = 1 enjoys a priori Hessian
estimates; yet there are singular solutions to the three dimensional Monge–Ampère equation
σ3

(
D2u

) = det D2u = 1 by Pogorelov [10], which automatically generalize to singular
solutions to σk

(
D2u

) = 1 with k ≥ 3 in higher dimensions n ≥ 4.
Sixty years ago, Heinz [7] achieved a Hessian bound for solutions to equation σ2

(
D2u

) =
1 in dimension two by two dimensional techniques.More than ten years ago, a Hessian bound
for σ2

(
D2u

) = 1 in dimension three was obtained via the minimal surface feature of the
“gradient” graph (x, Du (x)) in the joint work with Warren [15]. Along this “integral” way,
Qiu [11] has provedHessian estimates for solutions to the three dimensional quadraticHessian
equation withC1,1 variable right hand side. Hessian estimates for convex solutions to general
quadratic Hessian equations have also been obtained via a new pointwise approach by Guan
and Qiu [6]. Hessian estimates for almost convex solutions to (1.1) have been derived by a
compactness argument in [9]. Hessian estimates for solutions to Monge–Ampère equation
σn

(
D2u

) = det D2u = 1 and Hessian equations σk
(
D2u

) = 1 (k ≥ 2) in terms of the
reciprocal of the difference between solutions and their boundary values, were derived by
Pogorelov [10] and Chou–Wang [4], respectively, using Pogorelov’s pointwise technique.
Lastly, we also mention Hessian estimates for solutions to σk as well as σk/σn equations in
terms of certain integrals of the Hessian by Urbas [13,14], Bao et al. [1].

Note that the almost convexity condition for solutions in Guan and Qiu ([6] (15)) and
McGonagle et al. ([9], Theorem 1.1) is essential in both the respective arguments toward
Hessian estimates for quadratic Hessian equations. The mean value inequality in [15] used
the area structure of the equation. For semiconvex solutions, an elusive Jacobi inequality,
a transformation rule under Legendre–Lewy transform, and a mean value inequality cor-
responding to the still nonuniformly elliptic linearized operator without area structure are
essential in our proof of Theorem 1.1.

The bulk of Sect. 2 is devoted to establishing the Jacobi inequality, Proposition 2.1,∑
Fi j bi j ≥ ∑

Fi j bi b j with Fi j the linearized operator, b = 1
4 ln λmax

(
D2u

)
, and u (x)

the semiconvex solution. The difficult nature of the fully nonlinear equation (1.1) is that its
linearized operator matrix

(
Fi j

)
is not uniformly elliptic; see (2.3) and (2.4). What saves us

is that the PDE for the Legendre–Lewy transform of u(x) is uniformly elliptic, found in the
joint work with Chang [3]. By the transformation rule Proposition 2.3, the subharmonic b in
original variables corresponds to a subharmonic b in new variables for the linearized operator
of the new, uniformly elliptic equation. In new variables, the localmaximumprinciple implies
a mean value inequality for the subharmonic b,which upon pulling back to original variables
yields the mean value inequality in Proposition 2.4. The Hessian estimate becomes possible
in Sect. 3. The Jacobi inequality combined with the divergence structure of Fi j allows us to
bound the integral in terms of ‖Du‖L∞ .

The Hessian estimates for general solutions (K = ∞) to quadratic Hessian equation
σ2

(
D2u

) = 1 in higher dimension n ≥ 4 still remain an issue to us.
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2 Preliminaries

Taking the gradient of both sides of the quadratic Hessian equation (1.1), we have

�F Du = 0, (2.1)

where the linearized operator is given by

�F =
n∑

i, j=1

Fi j∂i j =
n∑

i, j=1

∂i
(
Fi j∂ j

)
, (2.2)

with
(
Fi j

) = �u I − D2u =
√
2 + ∣

∣D2u
∣
∣2 I − D2u > 0. (2.3)

Here without loss of generality, we assume �u > 0. Otherwise the smooth Hessian D2u
would be in the �u < 0 branch of the Eq. (1.1). Given the semiconvexity condition, the
conclusion in Theorem 1.1 would be trivially true.

In passing, we add a quick proof of the quantitative ellipticity for Eq. (1.1) (again on the
positive branch):

2

(n + 1) λ1
≤ Fλ1 ≤ (n − 1) λ1, (2.4)

(√
2 − 1

)
λ1 ≤ Fλi ≤ (n − 1) λ1 for i ≥ 2,

which was first proved by Lin–Trudinger [8], under the convention λ1 ≥ λ2 ≥ · · · ≥ λn .

The upper bound is straightforward. For the lower bound,

D1σ2 =
√

|λ|2 + 2 − λ1 =
∣∣λ′∣∣2 + 2

√
|λ|2 + 2 + λ1

≥ 2

σ1 + λ1
≥ 2

(n + 1) λ1
;

and when i ≥ 2,

Diσ2 =
√

|λ|2 + 2 − λi >

√
λ21 + λ2i − λi ≥

(√
2 − 1

)
λ1,

since function
√

λ21 + λ2i − λi is decreasing in terms of λi .

The gradient square |∇Fv|2 for any smooth function v with respect to the inverse “metric”(
Fi j

)
is defined as

|∇Fv|2 =
n∑

i, j=1

Fi j∂iv∂ jv.

2.1 Jacobi inequality

Ourobjective in this subsection is to get aquantitative subsolution inequality for themaximum
eigenvalue.

Proposition 2.1 Let u be a smooth solution to (1.1) σ2 (λ) = 1. Suppose that λ1 > λ2 ≥
· · · ≥ λn ≥ − K and λ1 ≥ �(n, K ) for some sufficiently large � (n, K ) at x = p. Set
b = ln λ1. Then we have at p

�F b ≥ ε |∇Fb|2 (2.5)

for ε = 1/4, say.
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Proof Step 1. Differentiation of maximum eigenvalue.
We derive the following formulas for smooth function b = ln λ1

|∇Fb|2 = (
b′)2

n∑

k=1

fku
2
11k (2.6)

and

�F b =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b′
[
2
∑

i> j −uii1u j j1 + ∑
k>1

2 fk
λ1−λk

u2kk1

]
+ b′′ f1u2111 (I)

+∑
i>1

[
2b′ + 2b′

λ1−λi
f1 + b′′ fi

]
u211i (II)

+∑
i> j>1 2b

′
(
1 + fi

λ1−λ j
+ f j

λ1−λi

)
u2i j1 (III)

(2.7)

at p, where D2u is assumed to be diagonalized and f (λ) = σ2 (λ).
To this end, we start with the partial derivatives of the distinct eigenvalue λ1 with respect

to arbitrary unit vector e ∈ R
n at p

∂eλ1 = ∂eu11,

∂eeλ1 = ∂eeu11 +
∑

k>1

2
(∂eu1k)2

λ1 − λk
,

which can be reached for example by implicitly differentiating the characteristic equation

det(D2u − λ1 I ) = 0

near any point where λ1 is distinct from the other eigenvalues.
Thus we get (2.6) at p

|∇Fb|2 =
n∑

k=1

Fkk
(
b′)2 u211k = (

b′)2
n∑

k=1

fku
2
11k .

From
∂eeb = b′∂eeλ1 + b′′ (∂eλ1)2 ,

we conclude that at p

∂eeb = b′
[

∂eeu11 +
∑

k>1

2
(∂eu1k)2

λ1 − λk

]

+ b′′ (∂eu11)2 ,

and

�Fb =
n∑

γ=1

Fγ γ ∂γ γ b

=
n∑

γ=1

Fγ γ b
′
(

∂γ γ u11 +
∑

k>1

2

(
u1kγ

)2

λ1 − λk

)

+
n∑

γ=1

Fγ γ b
′′u211γ . (2.8)

Next we substitute the fourth order derivative terms ∂γ γ u11 in the above by lower order
derivative terms. Differentiating equation (2.1)

∑n
α,β=1 Fαβu jαβ = 0 and using (2.3), we

obtain
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�Fui j =
n∑

α,β=1

Fαβu jiαβ =
n∑

α,β=1

−∂i Fαβu jαβ =
n∑

α,β=1

− (�ui δαβ − uiαβ

)
u jαβ

=
n∑

α=1

− (�ui − uiαα) u jαα +
∑

α �=β

uiαβu jαβ =
∑

α �=β

(
uiαβu jαβ − uiββu jαα

)
.

Plugging the above identity with i = j = 1 in (2.8), we have at p

�Fb = b′
⎡

⎣
∑

i �= j

(
u2i j1 − uii1u j j1

)
+

n∑

γ=1

∑

k>1

2Fγ γ

u21kγ
λ1 − λk

⎤

⎦ +
n∑

γ=1

b′′Fγ γ u
2
11γ .

Regrouping those terms u♥♥1 (with u111), u11♥, and u♥♣1 in the last expression, noting
Fγ γ = fγ at p, we obtain (2.7).

Step 2. Convexity of the level set of the equation {M | F (M) = 0}.
We rewrite the cross terms 2

∑
i> j −uii1u j j1−2D2F

(
D2u1, D2u1

)−2
∑

i> j u
2
i j1 inside

(I) of (2.7) in a “positive” way

2
∑

i> j

−uii1u j j1 =
∑

i �= j

−ti t j =
(|λ|2 + 2

) |t |2 − 〈λ, t〉2
σ 2
1

, (2.9)

wherewe denoted ti = uii1. In fact, squaring the Eq. (2.1)
∑n

i=1 fi ti = 0 at p, or equivalently

σ1 (t1 + · · · + tn) = λ1t1 + · · · + λntn,

we have

σ 2
1

⎛

⎝|t |2 +
∑

i �= j

ti t j

⎞

⎠ = 〈λ, t〉2 .

Hence, the above “positive” way follows from Eq. (1.1) σ 2
1 = |λ|2 + 2.

Step 3. Consequence of semiconvexity λi ≥ − K
We are ready to prove the Jacobi inequality (2.5). Note that all the “off-diagonal” terms

in (III) of (2.7) are nonnegative; it follows that

�Fb − ε |∇Fb|2 ≥ (I ) − ε
(
b′)2 f1t

2
1 + (I I ) − ε

(
b′)2 ∑

i>1

fi u
2
11i .

Now

(I I ) − ε
(
b′)2 ∑

i>1

fi u
2
11i = (

b′)2 ∑

i>1

[
2λ1 + 2λ1

λ1 − λi
f1 − (1 + ε) fi

]
u211i

(2.3)≥ (
b′)2 ∑

i>1

λ1

[

2 − (1 + ε)

√
|λ|2 + 2 − λi

λ1

]

u211i ≥ 0

for
λ1 ≥ C (n, K , ε) with ε < 1,

where we used (2.11) for the last inequality.
Plugging (2.9) in (I ) of (2.7), we have

(I ) − εb′2 f1t21 = 1

λ1σ
2
1

⎧
⎪⎨

⎪⎩

(|λ|2 + 2
) |t |2 − 〈λ, t〉2 + σ 2

1

∑
k>1

2 fk
λ1−λk

t2k
− (1 + ε)

σ 2
1

λ21
λ1 f1︸︷︷︸

<1+0.5λ′2

t21

⎫
⎪⎬

⎪⎭
.
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Observe that

f1 = σ1 − λ1 =
√

|λ|2 + 2 − λ1 =
∣
∣λ′∣∣2 + 2

√
|λ|2 + 2 + λ1

<
0.5

∣
∣λ′∣∣2 + 1

λ1
, (2.10)

where λ′ = (λ2, . . . , λn). We see that λ1 f1 < 1 + 0.5
∣
∣λ′∣∣2 and

|λk | ≤ C (n, K ) for k ≥ 2 (2.11)

from (2.10) (cf. [3], p. 663). Indeed by the assumption λn ≥ −K and
∣
∣λ′∣∣ ≤ nλ1, we have

− (n − 2) K + ∣
∣λ′+

∣
∣ ≤ λn + · · · + λ2 =

∣
∣λ′∣∣2 + 2

√
|λ|2 + 2 + λ1

< 2 +
∣
∣λ′∣∣2

(1 + 1/n) |λ′| ≤ 2 + ∣
∣λ′−

∣
∣ +

∣
∣λ′+

∣
∣

(1 + 1/n)
,

where λ+ = (λ2, . . . , λm) and λ− = (λm+1, . . . , λn) for λ2 ≥ · · · ≥ λm ≥ 0 ≥ λm+1 ≥
· · · ≥ λn . Solving the above inequality for |λ+| , we get (2.11)

|λ+| < (n + 1) [2 + 2 (n − 2) K ] = C (n, K ) .

Consequently, λ1 (x) is a distinct eigenvalue, thus smooth near x = p if

λ1 (p) > Csmooth (n, K ) ; (2.12)

c (n) ≤ λ1 f1 ≤ C (n, K ) ; (2.13)

and also
σ 2
1

λ21
= 1 + o (1) and σ 2

1
2 fk

λ1 − λk
= [2 + o (1)] λ21

for large enough λ1 and k ≥ 2, after recalling (2.4). Denoting t ′ = (t2, . . . , tn). It follows
that

λ1σ
2
1

[
(I ) − εb′2 f1t21

] ≥
{
λ21 + [1 − ε − o (1)]

(
1 + 0.5

∣∣λ′∣∣2
)}

t21 +
{
[3 + o (1)] λ21 + ∣∣λ′∣∣2 + 2

} ∣∣t ′
∣∣2

−λ21t
2
1 − ∣∣λ′∣∣2 ∣∣t ′

∣∣2 − 2t1
∣∣λ′∣∣ λ1

∣∣t ′
∣∣

︸ ︷︷ ︸
redistribute

≥

{
[1 − ε − o (1)]

(
1 + 0.5

∣∣λ′∣∣2
)}

t21 + {
[3 + o (1)] λ21 + 2

} ∣∣t ′
∣∣2

−
[
(1 − ε − o (1))

(
1 + 0.5

∣∣λ′∣∣2
)]

t21 − |λ′|2
(1−ε−o(1))

(
1+0.5|λ′|2

)λ21

∣∣t ′
∣∣2

≥
{
[3 + o (1)] − 2

1 − ε − o (1)

}
λ21

∣∣t ′
∣∣2 ≥ 0

for ε < 1/3, say ε = 1/4 for simple notation and large enough smooth

λ1 ≥ �(n, K ) > Csmooth (n, K ) (2.14)

with Csmooth (n, K ) from (2.12).
We have proved the pointwise Jacobi inequality (2.5) in Proposition 2.1. ��
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2.2 Integral Jacobi inequality

Eventually in the proof of our Theorem 1.1, we use the following integral form of (2.5).
From now on, repeated indices represent summation, unless otherwise indicated.

Proposition 2.2 Let u be a smooth K -convex (namely, D2u ≥ − K I ) solution to F
(
D2u

) =
σ2 = 1 on B3, and define the Lipschitz quantity

b = ε ln max(�, λmax ) = 1

4
lnmax(�, λmax ),

where the sufficiently large � = �(n, K ) is from (2.14). Then for all nonnegative ϕ ∈
C∞
c (B3), there holds the inequality

0 ≥
∫

B3
Fi jϕi b j + ϕFi j bi b j dx . (2.15)

Proof It is easy to see that the Lipschitz function b (x) is smooth away from the level set
{ x | λmax (x) = �} .By Sard’s theorem, we perturb� a tiny bit, still denoted by�, so that the
Lipschitz b (x) is smooth away from a zero measure set. Integrating by parts the pointwise
Jacobi inequality (2.5) multiplied by ϕ, over a family of approximated domains of B3 from
the complement of the above zero measure set, we reach the integral Jacobi inequality (2.15).

��

2.3 Legendre–Lewy transform

In the integral approach of [15] toward Hessian estimates for (1.1) with n = 3, a mean value
inequality, pertaining to the area structure on the Lagrangian minimal surface (x, Du(x)) ∈
R
2n, is used to bound b(x) at x = 0 by its integral. However, for n > 3, an area-like structure

is unclear to us.
To construct a mean value inequality for subsolution b, in principle, we would apply the

local maximum principle, but the ellipticity constants for the linearized operator of σ2 = 1
are not uniform. To circumvent this, we show that b is a subsolution of a new uniformly
elliptic operator after a change of variables, which we describe below.

The K -convexity of u ensures that the smallest canonical angle of the “Lewy-sheared”
“gradient” graph (x, Du(x)+Kx) is uniformly positive, i.e. θmin := arctan(λmin +K ) > 0.
This means we can make a well defined Legendre reflection about the origin,

(x, Du(x) + Kx) = (Dw(y), y), (2.16)

where w(y) is the Legendre transform of u + K
2 |x |2. Note that y(x) = Du(x) + Kx is a

diffeomorphism.
We show here that this transformation preserves the linearized operator of any fully non-

linear PDE, not just F
(
D2u

) = σ2. Geometrically, this is clear for K = 0 and the special
Lagrangian equation

∑n
i=1 arctan(λi ) = 
, since at the level of “gradient” graphs, the trans-

formation is just a reflection, or a π/2-U (n) rotation followed by a conjugation, so it only
changes the constant phase 
.

Proposition 2.3 [Transformation rule] Let u solve F(D2u(x)) = 0, and its Legendre–Lewy
transform w(y) solve G(D2w(y) = −F(−K I + D2w(y)−1) = 0. Then LF ≈ LG, in the
sense that for all smooth functions ϕ, we have

∂F

∂Mi j
(D2u(x))

∂2ϕ

∂xi∂x j
(x) = ∂G

∂Ni j
(D2w(y))

∂2ϕ∗

∂ yi∂ y j
(y), (2.17)
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where ϕ∗(y) = ϕ(x(y)).

Equivalently, the right hand side will not have first order terms ∂ϕ(x(y))/∂xi .

Proof We will transform the left hand side of (2.17) into its right. First,

∂ϕ

∂x j
= ∂ yk

∂x j

∂ϕ∗

∂ yk
= (K δ jk + u jk)ϕ

∗
k .

Consequently,

Fi j∂i (∂ jϕ) = Fi j ui jkϕ
∗
k + Fi j (K δ jk + u jk)ϕ

∗
k�(K δi� + ui�).

The first term on the right hand side vanishes via the equation:

Fi j ui jkϕ
∗
k = ϕ∗

k
∂

∂xk
F(D2u(x)) = 0.

So it remains to verify that

(K δi� + ui�)
∂F

∂Mi j
(D2u(x))(K δ jk + u jk) = ∂G

∂Ni j
(D2w(y)), (2.18)

which is a little clearer in the eigenvalue dependent case

F(M) = f (λ(M)),G(N ) = g(μ(N )) = − f (−K + 1/μ(N )),

since if the Hessian D2u(p) is diagonal at x = p , then K δi� + ui� = (K + λi )δi�, so that
at p, the putative equality is

(K + λi )
2 fi = gi . (2.19)

Since (λi + K )2 fi = (1/μi )
2∂ f /∂λi = ∂g/∂μi , the result follows in this case.

Let us now return to the general situation. Using the chain rule for F(M − K I ) =
−G(M−1), we get

Fi j (M − K I ) = ∂

∂Mi j
(−G(M−1))

= − ∂G

∂Nk�

∣∣∣∣
M−1

∂(M−1)k�

∂Mi j

= ∂G

∂Nk�

∣∣∣∣
M−1

(M−1)ki (M
−1)� j ,

so upon multiplying by K δi� +ui� = Mi�, we obtain (2.18); in turn, the equivariance (2.17).
��

Remark 2.1 The disappearance of gradient terms Dϕ∗ (y) in the right hand side of (2.17)
depends on u solving F(D2u) = 0. For comparison, without any equation for function
u (x) , the Laplace–Beltrami operator

�g(x)ϕ(x) := 1√
det g(x)

∂

∂xi

(√
det g(x) gi j (x)

∂

∂x j
ϕ(x)

)

corresponding to the induced metric

g(x) = dx2 + dy2
∣∣
L =

(
I + (D2u(x))T D2u(x)

)
dx2
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on the “gradient” graph L = (x, Du(x)) ∈ R
n × R

n is invariant under any rotation in R
2n,

in particular the Legendre transform,

�g(x)ϕ(x) = �g(y)ϕ
∗(y).

This is because, by design, the invariant Laplace-Beltrami operator

�g = gi j∂i j + gi j�k
i j∂k,

carries over those first order derivative terms.

We now prove the mean value inequality using a transformation argument. We suppose
Du(0) = 0 and K is K + 1 in transform (2.16) for simplicity.

Proposition 2.4 [Mean value inequality] Let u be a smooth K -convex solution to (1.1) on
B3(0). If b ∈ C(B3) is a viscosity subsolution of the linearized operator (2.2), then the
following inequality holds:

b(0) ≤ C(n, K )

∫

B1
b(x)�u(x) dx . (2.20)

Proof Let usfirst verify that transformedviscosity subsolutionb∗(y) := b(x(y)) is a viscosity
subsolution of the transformed linearized operator (2.17). We denote y(B3) := (K (·) +
Du)(B3) the dual domain under the coordinate inversion. Suppose that ψ(y) ∈ C2(y(B3))

touches b∗(y) from above near y0 ∈ y(B3). Then ψ∗(x) := ψ(y(x)) touches b(x) from
above near x0 = x(y0), so

Fi j
∂2ψ∗

∂xi∂x j
(x0) ≥ 0.

We recall x �→ Kx + Du(x) is a diffeomorphism: letting ϕ(x) = ψ(y(x)) ∈ C2, it follows
from transformation rule (2.17) that ϕ∗(y) = ψ(y) satisfies the desired inequality at y0.

It was first shown in [3] that the equation solved by the vertical coordinate Lagrangian
potential w(y),

G(D2w) = − F(D2u) = − σ2(−K I + (D2w)−1) = − 1,

is conformally, uniformly elliptic for K -convex solutions u, in the sense that for Hi j :=
σn(λ(D2w))Gi j , the operator Hi j∂i j is uniformly elliptic:

c(n, K )I ≤ (Hi j ) = σn(1/λ)(Gi j ) ≤ C(n, K )I .

This can also be seen from (2.13) and (2.4) using the change of variables (2.19).
Since u ∈ C∞(B3) is K -convex, the gradient map y(x) = Du(x) + Kx is uniformly

monotone, and we have a lower bound |y(xI ) − y(xI I )| ≥ |xI − xI I | for each xI , xI I ∈ B3,
if, abusing notation for simplicity, K is K + 1 in our Legendre–Lewy transform (2.16). It
follows that the dual domain contains the unit ball:

y(B1) = (K (·) + Du)(B1(0)) ⊃ B1(0).

Since b∗(y) is a subsolution of a uniformly elliptic operator, it follows from the local maxi-
mum principle [2, p. 36] that b∗ satisfies a mean value inequality:

b∗(0) ≤ C(n, K )

∫

By
1

b∗(y)dy.
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Returning to x variables and using x(By
1 ) ⊂ B1, we obtain

b(0) ≤ C(n, K )

∫

B1
b(x) det(D2u(x) + K I )dx .

Using λi ≤ C(n, K ) with i ≥ 2 (for the small eigenvalues) from (2.11), as well as c (n) ≤
λmax = λ1 < �u, we get

b(0) ≤ C(n, K )

∫

B1
b(x)λmax (x) dx ≤ C(n, K )

∫

B1
b(x)�u(x) dx,

as required. ��
Remark 2.2 Without going through the Legendre–Lewy transform, we do not see a direct
proof for Proposition 2.4. In the original x-coordinates, in general, without the K-convexity
assumption on the solution u (x) ,we have a weaker-quadratic-weight mean value inequality
than the one with the linear weight �u in Proposition 2.4. In fact, given any smooth positive
subsolution a (x), such as �u, of linearized operator (2.2), an easy modification of the local
maximum principle [5, Theorem 9.20] yields the weighted mean value inequality

a(0) ≤ C(n)

∫

B1

(‖DF‖n
det DF

)
a(x)dx,

where ‖DF‖ is the maximum eigenvalue of (Fi j ). By the eigenvalue bounds (2.4) of (Fi j ),
we have ‖DF‖n

det DF
≤ C(n)λ21 < C(n)(�u)2,

leading to the (ineffective!) mean value inequality

a(0) ≤ C(n)

∫

B1
a(x)(�u)2dx .

Still, there follows an L∞ Hessian bound for the solutions u (x) to (1.1) in terms of the L3

norm of the Hessian D2u, improving a result in [14].

3 Proof of Theorem 1.1

By scaling v (x) = u (Rx) /R2, we assume R = 3, and we assume Du(0) = 0 and K is
K +1 in (2.16) for simplicity. By Proposition 2.1, b(x) is a smooth subsolution of linearized
operator (2.2) when λmax (x) ≥ �(n, K ) is sufficiently large. Redefining it as

b (x) = max

{
1

4
ln λmax (x) ,

1

4
ln�(n, K )

}
,

we see that b (x) , as the maximum of two smooth subsolutions, is a viscosity subsolution
of linearized operator (2.2). By Proposition 2.4, we conclude it satisfies the mean value
inequality

b(0) ≤ C(n, K )

∫

B1
b(x)�u(x)dx .

Our next step is to apply the integral Jacobi inequality. Introducing a cutoff function ϕ = 1
on B1 and ϕ = 0 outside B2, we integrate by parts:

∫

B1
b(x)�u(x) dx ≤

∫

B2
ϕ2b(x)�u(x) dx
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≤ −
∫

B2
ϕ2Db · Du dx − 2

∫

B2
(ϕb)Dϕ · Du dx .

The second term is easy to control if we invoke b ≤ C(n, K ) ln λmax ≤ C(n, K )λmax ≤
C(n, K )�u:

−2
∫

B2
(ϕb)Dϕ · Du dx ≤ C(n, K )‖Du‖L∞(B2)

∫

B2
�u dx ≤ C(n, K )‖Du‖2L∞(B2).

For the first term, we start with

−
∫

B2
ϕ2Db · Du dx ≤ C(n)‖Du‖L∞(B2)

∫

B2
|Db| dx .

Next, the idea is to bound |Db| by Fi j bi b j . Assume that D2u(x) is diagonal at x = p, with
uii = λi and λ1 ≥ · · · ≥ λn . Write |Db(p)| ≤ ∑n

i=1 |bi (p)|. For i = 1:

|b1| ≤ f1b
2
1 + 1/ f1 ≤ f1b

2
1 + C(n)λmax ,

since f1 ≥ c(n)/λ1 from (2.4). For each fixed i ≥ 2:

|bi | ≤ fi b
2
i + 1/ fi ≤ fi b

2
i + C(n),

since fi ≥
(√

2 − 1
)

λ1 ≥
(√

2 − 1
)√

2/n from (2.4) and (1.1). We conclude that in B2,

|Db| ≤ Fi j bi b j + C(n)�u,

where we used �u ≥ √
2n/ (n − 1). Therefore, we see there is one term left to estimate:

∫

B2
|Db| dx ≤

∫

B2
Fi j bi b j dx + C(n)‖Du‖L∞(B2).

Let � be another cutoff, defined by �(x) = 1 on B2, and � = 0 outside B3. Applying the
integral Jacobi inequality (2.15) with ϕ = �2, we can write
∫

B3
�2Fi j bi b j dx ≤ −2

∫

B3
Fi j�i (�b j ) dx ≤ 1

2

∫

B3
�2Fi j bi b j dx + 2

∫

B3
Fi j�i� j dx

or ∫

B3
�2Fi j bi b j dx ≤ 4

∫

B3
Fi j�i� j dx .

Thus, it remains to estimate this final integral. Assume again that D2u(x) is diagonal at
x = p. Then at p, it is easy to estimate the integrand:

Fi j�i� j = fi�
2
i ≤ C

n∑

i=1

fi = C · (n − 1) �u.

We conclude the final integral has the desired bound:
∫

B3
Fi j�i� j dx ≤ C(n)‖Du‖L∞(B3).

Putting all the above pieces together, we conclude

b(0) ≤ C(n, K )‖Du‖2L∞(B3).

which completes the proof of Theorem 1.1.
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