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Abstract. We survey special Lagrangian equation and its related fully nonlin-
ear elliptic and parabolic equations: definition, geometric background, basic
properties, and progress. These include the rigidity of entire solutions, a priori
Hessian estimates, construction of singular solutions, existence, the counter-
parts in the parabolic-curvature flow-settings, and open problems.
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1. Introduction

1.1. Definition of the equation

We start with a scalar function u with its gradient Du and Hessian D2u. The
real symmetric matrix D2u has n many real eigenvalues λ1, . . . , λn. Adding them
together, we have the Laplace equation

Δu = λ1 + · · ·+ λn = c;

multiplying them together, we have the Monge–Ampère equation

ln detD2u = lnλ1 + · · ·+ lnλn = c. (1.1)

Switching from the logarithm function to the inverse tangent function, we then
have the special Lagrangian equation

arctanD2u = arctanλ1 + · · ·+ arctanλn = Θ. (1.2)
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Figure 1. Elliptic equation corresponds to a monotonic function

The fundamental symmetric algebraic combination of those eigenvalues forms the
general σk-equation

σk(λ) :=
∑

1≤i1<···<ik≤n

λi1 · · ·λik = c.

General analytic combinations generate general second-order equations

F (D2u) = f(λ) = 0. (1.3)

If f(λ) is monotonic in λi, then the equation is elliptic (Figure 1). In principle,
when the defining function f is convex (or concave), the regularity of solutions is
easier to study; otherwise, it is more complicated.

1.2. Special Lagrangian submanifold background of the equation

If a half-codimensional graph (x, F (x)) ∈ Rn × Rn has a potential u such that
F (x) = Du(x), then it is called a Lagrangian graph. Certainly, the vector field F (x)
having a potential is equivalent to it being irrotational. Meanwhile, if the tangent
space T of the Lagrangian submanifold is perpendicular to JT at each point, with
J being the complex structure of Rn × Rn = Cn, then F (x) has a potential.
Special Lagrangian submanifold means its volume is minimizing compared to all
submanifolds (Lagragian or not) with the same boundary.

Harvey–Lawson[14] showed that the “gradient” graph (x,Du(x)) is volume
minimizing if and only if u satisfies special Lagrangian equation (1.2), by apply-
ing the fundamental theorem of calculus to a calibration, namely the real closed n

form Re(e−
√−1Θdz1∧· · ·∧dzn). One obtains odd- as well as even-dimensional vol-

ume minimizing submanifolds from solving the special Lagrangian equation. Pre-
viously, the only known high-codimensional volume minimizing submanifolds were
real even-dimensional complex submanifolds; the volume minimality was proved
through applying the fundamental theorem of calculus to the real closed 2k form
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Figure 2. Lagrangian submanifold

1
k!ω

k by Wirtinger, where ω = 1
2
√−1

∑n
i=1 dzi ∧ dz̄i. Moreover, the volume mini-

mality of codimensional one minimal graph (x, f(x)) over convex domains can also
be proved by applying the fundamental theorem of calculus to variable coefficient
n form

1√
1+ |Df |2

[
dx1∧···∧dxn+

n∑
i=1

(−1)
i−1

fidx1∧···∧ d̂xi∧···∧dxn∧dxn+1

]
.

This form is closed because f satisfies the minimal surface equation

div

(
Df/

√
1 + |Df |2

)
= 0.

Interestingly, there is an analogous presentation for the Monge–Ampère equa-
tion. Indeed, consider spacelike Lagrangian submanifolds in Rn×Rn with pseudo-
Euclidean ambient metric dx2 − dy2 or dxdy; we can show that a spacelike “gra-
dient” graph of u is volume maximizing if and only if u satisfies Monge–Ampère

equation (1.1). In passing, let us recall the potential |x|−1
for the three-dimensional

gravitational field − (x1,x2, x3) |x|−3 satisfies the Laplace equation Δ |x|−1 = 0.

1.3. Algebraic form of the equation

From the eigenvalues λ1, . . . , λn of D2u we define a complex number

z := (1 +
√−1λ1) · · · (1 +

√−1λn) = (1− σ2 + · · · ) +√−1(σ1 − σ3 + · · · ).
Denoting the phase by Θ = arctanD2u, z can also be written as

z =
√
(1 + λ2

1) · · · (1 + λ2
n)(cosΘ +

√−1 sinΘ).

Obviously, z is perpendicular to complex number − sinΘ+
√−1 cosΘ (Figure 3),

such that u satisfies

Σ := cosΘ(σ1 − σ3 + · · · )− sinΘ(1− σ2 + · · · ) = 0. (1.4)
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Figure 3. Phase Θ = arctanD2u

Note that σk has a divergence structure; thus, when u satisfies (1.2), that is, Θ
is a constant, (1.4) is also an equation in divergence form. In particular, equation
(1.4) has the following special forms:

• n = 2,Θ = 0: σ1 = 0;
• n = 2 or 3, Θ = ±π

2 : σ2 = 1;

• n = 3,Θ = 0 or ±π: σ3 = σ1, that is detD
2u = Δu.

It is worth noticing that the induced metric of the “gradient” graph of u is g =
I + (D2u)D2u, such that its volume element becomes√

det g =
√
(1 + λ2

1) · · · (1 + λ2
n) = cosΘ(1− σ2 + · · · ) + sinΘ(σ1 − σ3 + · · · ).

When Θ is constant, the above volume element also has a divergence structure.

1.4. Level set of the equation

As mentioned above, the ellipticity of equation (1.3) means the defining function f
is monotonic. Actually, we can also give a geometric description of the ellipticity.
Consider the level set of f in λ-space; the ellipticity of the equation is equivalent
to the fact that the normal of the level set N := Dλf falls into the positive cone
Γ; namely all components of N are positive. Further, uniform ellipticity means
N is uniformly inside the positive cone Γ, or all components of the unit normal
N/|N | have a fixed lower and upper bound. For example, Figure 4 illustrates
the level sets of the three-dimensional special Lagrangian equations. In [32] we
observed that the level set of the special Lagrangian equation is convex if and
only if |Θ| ≥ (n − 2)π2 . Naturally, (n − 2)π2 is called the critical phase. Solutions
are better behaved when their equations are convex. Indeed, we have Bernstein
type results for special Lagrangian equations with supercritical phase, and a priori
estimates and regularity in the critical and supercritical cases. On the other hand,
singular solutions do exist in the subcritical case.
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Figure 4. Level sets of Θ in λ-space (n = 3)

2. Results

2.1. Outline

Once equations are given, the first question to answer is the existence of solutions.
Smooth ones cannot be reached at once, in general; worse, they may not even exist.
The usual way to compromise is to first search for weak solutions, in the integral
sense if the equation has divergence structure, or in the “pointwise integration by
parts sense”, namely, in the viscosity sense if the equation enjoys a comparison
principle. After obtaining those weak solutions, one studies the regularity and
other properties of the solutions, such as Liouville or Bernstein type results for
entire solutions. All these depend on a priori estimates of derivatives of solutions:

‖D2u‖L∞(B1) ≤ C(‖Du‖L∞(B2)) ≤ C(‖u‖L∞(B3)).

Given the L∞ bound of the Hessian, the ellipticity of the above fully nonlinear
equations becomes uniform, we can apply Evans–Krylov–Safonov theory (for the
ones with convexity/concavity, possibly without divergence structure) or Evans–
Krylov–De Giorgi–Nash theory (for the ones with convexity/concavity and diver-
gence structure) to obtain C2,α estimates of solutions. For the special Lagrangian
equation, this C2,α estimate can also be achieved via geometric measure theory;
for the Monge–Ampère equation, earlier in the 1950s, Calabi reached C3 estimates
by interpreting the cubic derivatives in terms of the curvature of the correspond-
ing Hessian metric g = D2u. In turn, iterating the classic Schauder estimates, one
gains smoothness of the solutions, and even analyticity, if the smooth equations
are also analytic.
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2.2. Rigidity of entire solutions

The classic Liouville theorem asserts every entire harmonic function bounded from
below or above is a constant. Thus every semiconvex harmonic function is a qua-
dratic one, as its double derivatives are all harmonic with lower bounds, hence
constants. Similarly, every entire (convex) solution to the Monge–Ampère equation
detD2u = 1 is quadratic. This was first proved in two-dimensional case by Jörgens,
later in low dimensions by Calabi, and in all dimensions by Pogorelov. Also, Cheng–
Yau had a geometric proof. For the special Lagrangian equation arctanD2u = Θ,
Yuan [31] showed every entire convex solution is quadratic. Actually the convexity
condition can be relaxed to a semiconvex one

D2u ≥ − tan
π

6
− ε(n),

where ε(n) is a small-dimensional constant. On the other hand, Yuan [32] replaced
the convexity condition of solutions with the phase condition on the equation

|Θ| > (n− 2)
π

2

for a rigidity result. This shows the phase (n−2)π2 is indeed a critical one: all entire
solutions to the special Lagrangian equation with supercritical phase must be
quadratic. It is a Bernstein type result. Chang–Yuan [4] proved a similar Liouville
type result for the σ2-equation: If u is an entire solution to σ2(D

2u) = 1 such that

D2u ≥
(
δ −

√
2

n(n− 1)

)
I,

for any small fixed δ > 0, then u is quadratic. In all the above rigidity results,
certain convexity of the solutions u or lower bound of the Hessian D2u is needed.
Otherwise, there are counterexamples. For example, when n = 2 , u = sinx1e

x2 is
a nontrivial solution to arctanD2u = 0. Whereas for n = 3 , Warren [27] found a
precious explicit solution

u = (x2
1 + x2

2)e
x3 − ex3 +

1

4
e−x3

to the equation arctanD2u = π
2 or σ2(D

2u) = 1.
In the following, we present the idea of showing the rigidity of entire solutions

to special Lagrangian equation in the two-dimensional case as an example. Given
an entire solution u to arctanλ1 + arctanλ2 = Θ > 0. First, notice that every
dihedral angle arctanλ1 or arctanλ2 between the tangent plane of the “gradient”
graph (x,Du) ⊂ R2 × R2 and x plane has a lower bound Θ − π/2. So after
we rotate the x coordinate plane to another one x̄ = x cosΘ/2 + y sinΘ/2, the
original tangent plane and the new coordinate x̄ plane form the new dihedral
angles (arctanλ1 −Θ/2, arctanλ2 −Θ/2). Those two angles fall into the interval
(−π/2 + Θ/2, π/2−Θ/2) . This means the old “gradient” graph is still a graph
in the new coordinate system x̄ and ȳ = −x sinΘ/2 + y cosΘ/2. Further, it is
another “gradient” graph (x̄, Dū) corresponding to a new potential ū. It is easy
to see the Hessian D2ū of the new potential ū is bounded, and moreover, its
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eigenvalues satisfy equation arctan λ̄1 + arctan λ̄2 = 0. Thus, we have obtained
an entire harmonic function ū with bounded Hessian; in turn, ū is quadratic.
From this, we know the “gradient” graph is a plane. Therefore, the original entire
solution u is quadratic.

For higher-dimensional special Lagrangian equation with supercritical phase,
via a similar coordinate rotation, we get a new entire solution to special Lagrangian
equation with critical phase. Applying Evans–Krylov’s C2,α estimates (really its
scaled version in the entire space), we know the new Hessian is a constant matrix.
Therefore, the original entire solution u is quadratic.

The above Liouville type result for the σ2-equation can be proved in a similar
way. As for the rigidity of entire semiconvex solutions to the special Lagrangian
equation with subcritical phase, more effort is required, because the new equation
loses convexity.

2.3. A priori estimates for Monge–Ampère equation

In the 1950s, Heinz [15] studied a priori estimates for the two-dimensional Monge–
Ampère equation, a particular case is the following: If u is a solution to the equation
detD2u = 1 in the unit ball, then

|D2u(0)| ≤ C(‖u‖L∞(B1)).

Later, this result was achieved in the higher-dimensional case by Pogorelov [19],
but with a strict convexity restriction. Chou–Wang [10] proved similar estimates
for “k-strictly” convex solutions to σk-equation by adapting Pogorelov’s technique.
Trudinger [22], Urbas [23], and Bao–Chen [1] obtained a priori Hessian bound in
terms of the integral of the Hessian for solutions to σk-equation and its quotient
forms. Bao–Chen–Guan–Ji [2] proved a priori Hessian estimates for strictly convex
solutions to the quotient σn/σk type equations. If no strict convexity restriction is

assumed, then Pogorelov [19] constructed his famous singular C1,1− 2
n solution to

the Monge–Ampère equation detD2u = 1. Caffarelli provided merely Lipschitz so-
lution to the Monge–Ampère equation with variable right-hand side. Furthermore,
Caffarelli–Yuan obtained Lipschitz and C1,α, with α being any rational number in
(0, 1− 2

n ], singular solutions to the Monge–Ampère equation detD2u = 1.

2.4. A priori estimates for special Lagrangian equation with critical
and supercritical phases

For special Lagrangian equation with critical and supercritical phases

arctanD2u = Θ, |Θ| ≥ (n− 2)
π

2
, (2.1)

Wang–Yuan [24] proved the following a priori estimates for the Hessian (Figure
5): Suppose u is a smooth solution to special Lagrangian equation (2.1) in n-
dimensional (n ≥ 3) unit ball B1 ⊂ Rn. Then for |Θ| ≥ (n− 2)π2 ,

|D2u(0)| ≤ C(n) exp
(
C(n)‖Du‖2n−2

L∞(B1)

)
; (2.2)
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Figure 5. A priori estimate for Hessian D2u

and for |Θ| = (n− 2)π2 ,

|D2u(0)| ≤ C(n) exp
(
C(n)‖Du‖2n−4

L∞(B1)

)
. (2.3)

Combined with the gradient estimates for equation (2.1) by Warren–Yuan [30]

max
BR(0)

|Du| ≤ C(n)
(
oscB2R(0)

u

R
+ 1
)
,

we immediately obtain the estimate for D2u in terms of solution u itself. Actually
the gradient estimates for equation (2.1) can be improved slightly [33]

max
BR(0)

|Du| ≤ C(n) oscB2R(0)
u

R
.

For n = 3, earlier onWarren–Yuan [29, 30] proved a priori Hessian estimates in the
critical and supercritical cases. Chen–Warren–Yuan [9] showed similar estimates
for convex solutions to the special Lagrangian equation. Warren–Yuan [28] derived
Hessian estimates for solutions to two-dimensional special Lagrangian equation

|D2u(0)| ≤ C(2) exp

(
C(2)

| sinΘ| 32 ‖Du‖L∞(B1)

)
.

From the minimal surface example by Finn [13] via Heinz transformation [16],
one sees that the above Hessian bound in terms of linear exponential of gradient
is sharp. For n ≥ 3, corresponding sharp Hessian estimates are not known. As
applications of the above a priori estimates, we immediately know all C0 viscosity
solutions to (2.1) are smooth, and even analytic. For comparison, in the 1980s
Caffarelli–Nirenberg–Spruck [3] obtained the interior regularity for solutions with
C4 smooth boundary data to the special Lagrangian equation (1.2) with |Θ| =
[n−1

2 ]π. Another direct consequence is that every entire solution with quadratic
growth to critical phase special Lagrangian equation

arctanD2u = (n− 2)
π

2
is quadratic.
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We briefly explain the possible reason and the idea in obtaining the Hessian
estimates. Heuristically, the Hessian of any solution to (2.1) in certain norm is
strongly subharmonic, such that its reciprocal is superharmonic. Thus, if this su-
perharmonic quantity is zero somewhere, then it is zero everywhere. That is, if
the Hessian is unbounded at one point, then it must be unbounded everywhere.
Roughly, this contradicts the graphical picture of the corresponding “gradient”
graph (x,Du). A key point in the argument is to show

Δg
1√

1 + λ2
max

≤ 0,

where λmax is the maximal eigenvalue of D2u, and Δg is the Laplace operator
with respect to the induced metric of the Lagrangian submanifold. The above
superharmonicity inequality is equivalent to the Jacobi inequality

Δg ln
√
1 + λ2

max ≥ |∇g ln
√
1 + λ2

max|2.
The outline of the argument is to start from the mean value inequality on the

minimal Lagrangian graph, relying on the Sobolev inequality, Jacobi inequality,
and the divergence structure of σk(D

2u), then to control the integral average of

the logarithm of the maximal eigenvalue ln
√
1 + λ2

max in terms of the gradient
of the solution. The process can be viewed as an arduous nonlinearization of the
mean value equality proof for the a priori estimate of the Hessian in terms of the
gradient of a harmonic function.

2.5. Singular solutions to special Lagrangian equation with subcritical phase

For the special Lagrangian equation with subcritical phase |Θ| < (n − 2)π2 , the
above a priori Hessian estimates are not valid. Nadirashvili–Vladuct [17] first con-

structed C1, 13 singular solutions to three-dimensional special Lagrangian equation

3∑
i=1

arctanλi = 0.

For the three-dimensional special Lagrangian equation with arbitrary subcritical
phase |Θ| ∈ (−π

2 ,
π
2 ), Wang–Yuan [25] constructed C1,r singular solutions, where

r = 1
2m−1 ∈ (0, 1

3 ],m = 2, 3, . . . . To produce higher-dimensional singular solutions
to subcritical special Lagrangian equation, we only need to add quadratics in terms
of the extra variables to those three-dimensional singular solutions. The main new
tool in [25] is a partial U(n) coordinate rotation, the difficulty lies in proving that,
after the rotation of preliminary solutions, the special Lagrangian submanifold
is still a graph. The concrete construction goes as follows: first consider critical
phase special Lagrangian equation |Θ| = π

2 ; its algebraic equivalent form is the
σ2-equation

σ2(D
2u) = λ1λ2 + λ2λ3 + λ3λ1 = 1. (2.4)

We construct a family of approximate polynomials P of order 2m such that the
dihedral angles between the tangent plane of the corresponding “gradient” graph
and the x coordinate plane are roughly (0−, π

4 ,
π
4 ) (Figure 6). Then taking this fam-
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Figure 6. Construction of dihedral angles

ily of approximate solutions as initial data, we obtain a family of exact solutions
u to equation (2.4) by Cauchy–Kowalevskaya. Next, we make a U(3) coordinate
rotation of −π

2 , namely the Legendre transformation of u, to get singular ũ with

roughly the dihedral angles (π2
−,−π

4 ,−π
4 ) satisfying the special Lagrangian equa-

tion with zero phase. Finally using a “horizontal” rotation which keeps the z1
plane invariant, we can adjust the phase of ũ to any subcritical one, to obtain the
desired singular solutions.

3. Curvature flows with potential

3.1. Lagrangian mean curvature flow in Euclidean space

Under mean curvature flow, a submanifold is being deformed according to its mean
curvature in the ambient space. The (effective) equation is

∂tX = H = ΔgX,

where X(·, t) is a family of immersed submanifolds with time parameter, H is the
mean curvature, and g is the induced metric from the ambient space. A known fact
is that the Lagrangian structure of Lagrangian submanifolds is preserved under
the mean curvature flow Smoczyk [20].

Meanwhile, we consider the following fully nonlinear parabolic equation sat-
isfied by potential u(x, t)

∂tu = arctanD2u. (3.1)

Differentiating both sides of the equation with respect to space variables, we have

∂t(x,Du) =
n∑

i,j=1

gij∂ij(x,Du), (3.2)

where parabolic coefficients gij are the inverse of the induced metric g = I +
D2uD2u of the “gradient” graph (x,Du) in Euclidean space (Rn×Rn, dx2+dy2).
The normal projection of the right-hand side of this equation (3.2) is the mean
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curvature, thus the effective part of the deformation of the “gradient” graph is
indeed equal to its mean curvature. In dimension one, (3.1) and (3.2) respectively
simplify to

∂tu = arctanuxx and ∂tux =
uxxx

1 + u2
xx

.

For the initial value problem for the potential equation (3.1) of the Lagrangian
mean curvature flow, in the periodic case, namely the gradient Du0 of initial
data u0 is a lift to Rn of a map from Tn into itself, applying Krylov’s theory for
fully nonlinear uniformly parabolic equation with concavity, Smoczyk–Wang [21]
showed, under the “uniform” convexity assumption 0 ≤ D2u0 ≤ C or equivalently

−(1− δ)In ≤ D2u0 ≤ (1− δ)In, δ > 0,

on the initial data, the long time existence of solutions to equation (3.1). Chau–
Chen–He [5] removed the periodicity assumption on Du0; their a priori estimates
deteriorate as δ → 0. For weak solutions to equation (3.1) with continuous initial
data on R

n, Chen–Pang [8] proved the long time existence and uniqueness of
continuous viscosity solutions. For the standard heat equation ut = Δu, it is worth
noting here that there are the Tikhonov nonuniqueness example and the finite time

blow-up solution u (x, t) = 1√
1−t

exp
(

x2

4(1−t)

)
. The contrasting phenomena can be

explained by the heat conduction coefficient being uniform for the standard heat
equation, but degenerate for fully nonlinear parabolic equation (3.1) when the
spatial Hessian becomes unbounded. Moreover, saddle solutions to (3.1) could
blow up in finite time at the second spatial derivative level.

Here, we explain a result on long time existence of smooth solutions with
almost convexity by Chau–Chen–Yuan [6]. If initial potential u0 satisfies

−(1 + η)I ≤ D2u0 ≤ (1 + η)I, (3.3)

where η = η(n) is a small-dimensional positive constant, then the potential equa-
tion (3.1) of the Lagrangian mean curvature flow has a unique long time solution
u(x, t) : Rn × [0,∞) → R1 such that u is smooth for t > 0; and moreover

1) −√
3I ≤ D2u(x, t) ≤ √

3I for any t > 0;
2) ‖Dlu‖L∞(Rn) ≤ Clt

2−l, for any t > 0, l ≥ 3;

3) Du(x, t) is C
1
2 with respect to t at t = 0.

Relying on this result, via the U(n) coordinate rotation technique described
in the above, we immediately obtain long time existence of smooth solutions and
related estimates to equation (3.1) with locally C1,1 convex initial data or initial
data u0 with a large phase arctanD2u0 ≥ (n− 1)π2 .

We point out that one cannot apply Krylov’s theory for fully nonlinear uni-
formly parabolic equation with convexity here under the almost convexity (3.3),
as the convexity condition fails. To overcome the difficulty, Chau–Chen–Yuan used
approximation and the compactness of the solution space. The key tools are the
uniqueness of solutions by Chen–Pang and the parabolic Schauder estimate for
the potential equation (3.1) of the Lagrangian mean curvature flow with certain
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convexity but not the “full” convexity condition. And not surprisingly, the a priori
estimates by Nguyen–Yuan [18] are based on the Bernstein–Liouville type results
for the corresponding elliptic special Lagrangian equation.

3.2. Lagrangian mean curvature flow in pseudo-Euclidean space and
Kähler–Ricci flow on Kähler manifold

We have introduced the parabolic version of the special Lagrangian equation

∂tv = arctanD2v. (3.4)

For the Monge–Ampère equation, we can consider its parabolic version too

∂tv = ln detD2v. (3.5)

Again differentiating the equation with respect to spatial variables, we have

∂t(x,Dv) =

n∑
i,j=1

gij∂ij(x,Dv),

where parabolic coefficients gij are the inverse of the induced metric g = D2v of the
spacelike “gradient” graph in pseudo-Euclidean space (Rn × Rn, dxdy). Similarly,
the normal projection of the right-hand side of this equation is the mean curvature;
thus, the effective part of the deformation of the “gradient” graph is indeed equal
to its mean curvature. We can also consider the parabolic complex Monge–Ampère
equation, which is satisfied by a real-valued scalar function v on complex space Cm

∂tv = ln det ∂∂̄v. (3.6)

Differentiating the equation with respect to spatial variables twice, we have

∂tgik̄ = −Rik̄

where gik̄ = vik̄ is the Kähler metric and Rik̄ = −∂i∂̄k ln det ∂∂̄v is the Kähler–
Ricci curvature. Thus the second-order parabolic potential equation (3.6) actually
corresponds to the Kähler–Ricci flow in geometric analysis.

We investigate a class of self-similar solutions to the above three parabolic
equations, that is, shrinking solitons in the form

v(x, t) = −tu

(
x√−t

)
.

If the above-defined v satisfies the three parabolic equations (3.4), (3.5), and (3.6)
respectively, then the profile u respectively satisfies the following three elliptic
equations:

arctanD2u =
1

2
x ·Du(x)− u(x), (3.7)

ln detD2u =
1

2
x ·Du(x)− u(x), (3.8)

ln det ∂∂̄u =
1

2
x ·Du(x)− u(x). (3.9)

For shrinking solitons, Chau–Chen–Yuan [7] proved the following rigidity result:
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1) If u is an entire smooth solution to equation (3.7) on Rn, then u(x) = u(0)+
1
2

〈
D2u(0)x, x

〉
.

2) If u is an entire convex smooth solution to equation (3.8) on Rn, and satisfies

D2u(x) ≥ 2(n−1)
|x|2 near ∞, then u is quadratic.

3) If u is an entire complex convex (pluri-subharmonic, ∂∂̄u ≥ 0) smooth solu-
tion to equation (3.9) on Cm, and satisfies ∂∂̄u(x) ≥ 2m−1

2|x|2 near ∞, then u

is quadratic.

In fact, after differentiating the parabolic equations with respect to the time
variable, Chau–Chen–Yuan observed that the phase function corresponding to
shrinking solitons satisfies a second-order elliptic equation with an “amplifying”
force term on the whole space. In dimension one, this elliptic equation can be
interpreted in terms of acceleration being proportional to velocity. Hence, the
changing rate of the phase function cannot be non-zero; in turn, the phase is
constant. Further, notice that the right-hand side of the self-similar equation is
the “excess of the potential from being quadratic” so we see that the smooth
potential must be quadratic.

Let us explain more the argument for the above result by Chau–Chen–Yuan,
using the first case as an example. Let Θ = arctanD2u. Simple calculation shows
that given solution u to equation (3.7), the phase function Θ satisfies∑n

i,j=1
gij∂ijΘ(x) =

1

2
x ·DΘ(x), (3.10)

Where, gij being the inverse of the induced metric g = I +D2uD2u, has an upper
bound. The above second-order elliptic equation with the “amplifying ” force term
allows us to construct a suitable barrier, so that we can prove that Θ attains its
minimum at a finite point. Then the strong minimum principle forces Θ to be a
constant. Finally, Euler’s theorem on homogeneous functions, applied to equation
(3.7), leads to the desired quadratic conclusion of u.

As a matter of fact, in the above case of Monge–Ampère, the inverse square
lower bound on the induced metrics is a concrete condition for the metric being
complete. Now if we assume the metric is complete (abstractly), then the above
rigidity result for the shrinking solitons in the Monge–Ampère case (complex as
well as real) is also true. This is contained in Drugan–Lu–Yuan [12]. The further
observation is that the radial derivative of the phase is the negative of the scalar
curvature of the corresponding Kähler metric (3.10). On the other hand, the scalar
curvature for self-shrinking solitons is nonnegative. In turn, the phase function
attains its maximum at the origin. Similarly we arrive at the rigidity conclusion
by applying the strong maximum principle. Heuristically, the non-negativity of
scalar curvature R can be seen from its equation

ΔgR ≤ 1

2
rRr +R− 1

m
R2.

If R attains its minimum somewhere, then 0 ≤ Rmin − R2
min/m. It follows that

R ≥ 0. The proof can actually be realized when the metric is complete.
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Ding–Xin [11] and Wang [26] respectively proved a Bernstein type result
for self-similar real Monge–Ampère equation (3.8) and one-dimensional complex
Monge–Ampère equation (3.9); namely every entire solution is quadratic.

4. Problems

Problem 1. Can one find a pointwise argument for the a priori Hessian estimates
to the special Lagrangian equation? Our proof is in integral form. If possible, it
would represent a push-forward for a long time open problem on Hessian estimates
for the quadratic symmetric Hessian equation σ2(D

2u) = 1. The desire for such a
pointwise way is because so far, we have not seen any structure in high dimensions
(n ≥ 4), as in the low-dimensional case (n ≤ 3) for this equation, resulting in
an effective mean value inequality to be employed. Recall for codimension one

minimal surface equation div
(
Df/

√
1 + |Df |2

)
= 0, one has the classic gradient

estimates for solutions

|Df (0)| ≤ C (n) exp
[
C (n) ‖f‖L∞(B1)

]
.

The proof by Bombieri–De Giorgi–Miranda in the 1960s and its simplification by
Trudinger in the 1970s are both in integral form. In the 1980s, Korevaar found a
strikingly simple pointwise argument. They are all based on the Jacobi inequality

Δg ln
√
1 + |Df |2 ≥ |∇g ln

√
1 + |Df |2|2.

Problem 2. Construction of nontrivial entire solutions to the special Lagrangian
equation with critical phase arctanD2u = (n− 2)π/2 in high dimensions (n ≥ 3).
The construction in dimension three by Warren is through separating variables
with adjustment. The key for a systematic method is to search for nontrivial super
and sub solutions. This is because we already have the follow-up tool to finish,
namely the Hessian estimates in term of the solutions. A more urgent problem
is the existence or nonexistence of nontrivial homogeneous-order two solutions to
the special Lagrangian equation with subcritical phase in high dimension (n ≥ 5).
The rigidity and regularity for general special Lagrangian equation hinge on it.

Problem 3. Is every entire smooth solution to self-similar complex Monge–Ampère
equation ln det ∂∂̄u = 1

2x·Du(x)−u(x) quadratic? As mentioned above, it is indeed
so in complex dimension one. Now there is known quite a lot of nontrivial entire
solutions with corresponding Kähler metric being complete and non-flat to the
complex Monge–Ampère equation ln det ∂∂̄u = 0, but the self-similar term on the
right-hand side of the self-similar equation should still have a strong effect to force
entire solutions to be trivial. Just as in the cases of self-similar codimension one
minimal surface equation and self-similar special Lagrangian equation, rigidity is
available, because of the self-similarity. Once self-similarity is removed, nontrivial
entire solutions do exist in both cases.
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[16] K. Jörgens, Über die Lösungen der Differentialgleichung rt−s2 = 1. Math. Ann. 127
(1954), 130–134.
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