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Abstract. We construct singular solutions to special Lagrangian equa-
tions with subcritical phases and minimal surface systems. A priori
estimate breaking families of smooth solutions are also produced cor-
respondingly. A priori estimates for special Lagrangian equations with
certain convexity are largely known by now.

1. Introduction

In this paper, we construct singular solutions to the special Lagrangian
equation

(1.1)
n∑
i=1

arctanλi = Θ

with subcritical phase |Θ| < (n− 2)π/2, where λi are the eigenvalues of
D2u, and the minimal surface system for k-vector valued functions of n-
variables

(1.2) 4gU =

n∑
i,j=1

1
√
g
∂xi
(√
ggij∂xjU

)
= 0,

where the induced metric

g = I + (DU)T DU.

Equation (1.1) is the potential equation for (1.2) with solutions U = Du.
The Lagrangian graph (x,Du (x)) ⊂ Rn × Rn is called special and in fact
volume minimizing when the phase or the argument of the complex num-
ber

(
1 +
√
−1λ1

)
· · ·
(
1 +
√
−1λn

)
is constant Θ, or equivalently u satisfies

equation (1.1); see the work [HL1, Theorem 2.3, Proposition 2.17] by Har-
vey and Lawson. The phase (n− 2)π/2 is said critical because the level
set {λ ∈ Rn|λ satisfying (1.1)} is convex only when |Θ| ≥ (n− 2)π/2 [Y2,
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Lemma 2.1]. In dimension three, when |Θ| = π/2 or |Θ| = 0, π, equation
(1.1) also takes the quadratic and cubic algebraic forms respectively

(1.3) σ2

(
D2u

)
= λ1λ2 + λ2λ3 + λ3λ1 = 1

or

(1.4) 4u = detD2u.

We state our first main result.

Theorem 1.1. There exist C1,1/(2m−1) (m = 2, 3, 4, · · · ) viscosity solu-
tions um to (1.1) with n = 3 and each Θ ∈

(
−π

2 ,
π
2

)
, such that um ∈

C1,1/(2m−1) (B1) ∩ C∞ (B1\{0}) for B1 ⊂ R3 but um /∈ C1,δ for any δ >
1/ (2m− 1) .

Rotating forth and back, we obtain our second (“smooth”) result.

Theorem 1.2. There exist a family of smooth solutions uε to (1.1) in B1 ⊂
R3 with n = 3 and each fixed Θ ∈

(
−π

2 ,
π
2

)
such that

‖Duε‖L∞(B1) ≤ C but
∣∣D2uε (0)

∣∣→∞ as ε→ 0.

For each uε with small ε fixed in Theorem 1.2, the Hessian
∣∣D2uε (0)

∣∣
(in the max eigenvalue norm) is strictly larger that its nearby values in the
three dimensional domain of the solution to a now uniformly elliptic equation
(1.1). (It can be seen by Property 2.4 in Section 2 and tracing the eigen-
value dependency in Section 4.) This violates the maximum principle. In
contrast to the two dimensional fully nonlinear uniformly elliptic equations,
it is classically known that the Hessian of any solution enjoys the maximum
principle (cf. [GT, p. 301]). To the solutions in the above two theorems, by
adding quadratics of extra variables in higher dimensions n ≥ 4, we imme-
diately get the corresponding counterexamples for (1.1) with all subcritical
phases |Θ| < (n− 2)π/2. Furthermore, we convert our counterexamples to
the ones for minimal surface system (1.2).

Theorem 1.3. There exist a family of weak solutions Um to (1.2) in B1 ⊂
R3 with n = 3, k = 3, and m = 2, 3, 4, · · · such that

Um ∈W 1,p (B1) for any p <
2m+ 1

2m− 2
but Um /∈W 1, 2m+1

2m−2 (B1) .

Furthermore, there exist a family of smooth solutions U ε to (1.2) in B1 ⊂ R3

with n = 3 and k = 3 such that

‖U ε‖L∞(B1) ≤ C but |DU ε (0)| → ∞ as ε→ 0.

The vector valued functions Um are taken as Dum with um from The-
orem 1.1, thus the first part of the theorem gives a negative answer to
Nadirashvili’s question whether there is an ε improvement of W 2,1 solutions
to special Lagrangian equation (1.1) in general. We are grateful for this
question. In terms of minimal surface system (1.2), the question would be
whether there is an ε improvement of W 1,1 solutions.
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For special Lagrangian equation (1.1) with critical and supercritical phases
|Θ| ≥ (n− 2)π/2 in dimension two and three, with very large phase |Θ| ≥
(n− 1)π/2 in general dimensions, a priori Hessian and gradient estimates,
and consequently, armed with the solvability of the Dirichlet problem with
smooth boundary data to the now convex special Lagrangian equation (1.1)
in the critical and supercritical phase cases, the regularity of C0 viscosity
solutions were derived in [WY1] [WY2] [WY3] [CWY]. In passing, we also
mention that the existence and uniqueness of the C0 viscosity solution for the
Dirichlet problem to strictly elliptic equation (1.1) is known (cf. [CWY, p.
594]). In recent years, there has been a new approach toward the existence
and uniqueness of C0 viscosity or weak solution for the Dirichlet problem
to strictly elliptic as well as degenerate elliptic fully nonlinear equations by
Harvey and Lawson [HL2] [HL3].

Recently Nadirashvili and Vlăduţ [NV] constructed beautiful C1,1/3 singu-
lar viscosity solutions to (1.1) with subcritical phases |Θ| < π/2 in dimension
three, relying on “brutal force” calculations (for the approximate solutions)
and a hard and deep topological result in [EL] (for the injectivity of the
gradient maps).

For minimal surface equations, namely (1.2) with k = 1, the gradient
estimate in terms of the height of the minimal surfaces, is the classic result
by Bombieri-De Giorgi-Miranda [BDM], from which it follows the regularity
of weak or viscosity solutions. For smooth solutions to (1.2) with n = 2,
Gregori [G] extended Heinz’s Jacobian estimate to get a gradient bound in
terms of the heights of the two dimensional minimal surfaces with any codi-
mension. For smooth solutions to general minimal surface system (1.2) with
certain constraints on the gradients themselves, a gradient estimate was ob-
tained by Wang [W], using an integral method developed for codimension
one minimal graphs. Nonetheless, there do exist singular W 1,2− weak so-
lutions (in fact Lagrangian) to (1.2) with n = 2; see Osserman [O]. Now
gradient estimates for (1.2) with k = 2 and n ≥ 3 still remain mysterious
and challenging.

Our construction goes as follows. In the first stage, we solve the special
Lagrangian equation (1.1) with the critical phase by Cauchy-Kowalevskaya.
The approximate solutions or initial data for the relatively “easier” corre-
sponding quadratic equation (1.3) are built up via a systematic procedure,
which allows us to have the approximation at arbitrarily high order (Prop-

erty 2.1 and 2.2), and eventually those highly (“oddly” C1,1/(2m−1)) singular
solutions in Theorem 1.1 and Theorem 1.3. In the second stage, we take an
“inversion” π

2 rotation of the solutions from the first stage to obtain those
singular solutions with phase 0 (Proposition 3.1). The singular solutions
with other subcritical phases are achieved via a preliminary “horizontal”
rotation before the “inversion” π

2 rotation (Step 1 of Section 3). Some re-
marks are in order. Those U (n) rotations are “obvious” to produce for the
U (n) invariant special Lagrangian equation (1.1). But it is by no means
easy to justify that the special Lagrangian submanifold is still a graph in
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the rotated new coordinate system, thus a valid equation (1.1) to work on.
(Earlier development of those U (n) rotations for (1.1) can be found in [Y2]
[Y3].) Here our elementary analytic justification for the “inversion” π

2 rota-
tion (Proposition 3.1) avoids a hard and deep topological formula of [EL],
which was employed in [NV]. Lastly we point out that the Legendre transfor-
mation (usually used for convex functions), is just the “inversion” π

2 rotation
followed by a conjugation for converting “gradient” graph (x,Du (x)) to the
one (Du∗ (y) , y) (now with saddle potentials u and u∗). In the third stage,
we kick in a little bit extra to the preliminary “horizontal” rotations of Stage
2, then after the same “inversion” π

2 rotation, we make up a corresponding
little bit “backward” rotation to finally generate the desired family of smooth
solutions in Theorem 1.2, which break a priori Hessian estimates for special
Lagrangian equation (1.1) with subcritical phase. Note that here one cannot
produce those a priori estimate breaking family of smooth solutions by the
usual way, that is to solve the Dirichlet problem with smooth approximate
boundary data of the boundary value of a singular solution, as Theorem
1.1 shows the non-solvability of smooth solution to the Dirichlet problem to
(1.1) of subcritical phase even with smooth boundary data. The Dirichlet
problem to the saddle branch of (1.4) or the equivalent (1.1) with n = 3 and
Θ = 0 was “invited” by Caffarelli, Nirenberg, and Spruck in [CNS].

In closing, we point out that any further regularity beyond continuity for
continuous viscosity solutions to general special Lagrangian equation (1.1)
is unknown. We are also curious to know whether there exist other C1,α (no
better) singular solutions to (1.1) with, in particular, irrational exponents
α between those odd reciprocals 1/ (2m− 1) . Meanwhile, we guess that all
C1,α for α > 1

3 solutions to special Lagrangian equation (1.1) with n = 3

should be regular (analytic). This regularity for C1,1 solutions to (1.1) in
dimension three was shown in [Y1]. Earlier on, Urbas [U, Theorem 1.1]
proved the regularity for better than Pogorelov solutions, namely all C1,α

for α > 1 − 2
n (convex) solutions to the (dual) Monge-Ampère equation

ln detD2u = lnλ1 + · · ·+lnλn = c are C3,β and eventually analytic. Finally
recall that the singularities of Pogorelov-like singular solutions to Monge-
Ampère equation extend (in fact, must, by Caffarelli [C]) to the boundary of
the domain of the solutions; while the singularity of singular solutions so far
constructed to special Lagrangian equation is in the interior of the domain.

2. Cauchy-Kowalevskaya with critical phase Θ = π
2

As a preparation for the constructions in the next three sections, we solve
the following special Lagrangian equation with critical phase in dimension
three by Cauchy-Kowalevskaya. The quadratic nature of the equation at the
critical phase is easier to work with than the cubic nature of the equations
otherwise.
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Our approximate solution P (x) to the equation

(2.1)


σ2

(
D2u

)
= 1

2

[
(4u)2 −

∣∣D2u
∣∣2] = 1 or

∑3
i=1 arctanλi = π

2

u3 (x1, x2, 0) = P3 (x1, x2, 0)
u (x1, x2, 0) = P (x1, x2, 0)

is a polynomial of degree 2m

P =
1

2

(
x2

1 + x2
2

)
+ ReZmx3 +

m2

4
ρ2m−2x2

3 + ν
m∑
j=0

ajx
2m−2j
3 ρ2j ,

where Z = x1 +
√
−1x2 = ρ exp

(√
−1θ

)
, coefficients ν and ajs are to be

determined later. We construct this P satisfying the following four proper-
ties, so does u then, for |x| = r ≤ rm with positive rm depending only on
m.
Property 2.1. σ2

(
D2P

)
− 1 =

[
r3m−3

]
, here

[
rk
]

represents an analytic
function starting from order k. Then the solution u coincides with P up to
order 3m− 2 (≥ 2m for m ≥ 2, 3, 4, · · · ).
Property 2.2. The three eigenvalues of D2P, then also D2u satisfy

λ1 = 1 +
[
rm−1

]
λ2 = 1 +

[
rm−1

]
−δ2 (m) r2m−2 ≤ λ3 ≤ −δ1 (m) r2m−2

Property 2.3. The “gradient” graph

(x,Du) =(
x, x1 +O (ρ)

[
rm−1

]
+
[
r2m

]
, x2 +O (ρ)

[
rm−1

]
+
[
r2m

]
,

ReZm + m2

2 ρ
2m−2x3 − 2mνx2m−1

3 + νρ2
[
r2m−3

]
+
[
r2m

] ) .
Property 2.4. The gradient Du satisfies

δ3 (m) r2m−1 ≤ |Du (x)| ≤ δ4 (m) r.

We first find the equation near a quadratic solution. Let

u =
1

2

(
µ1x

2
1 + µ2x

2
2 + µ3x

2
3

)
+ w (x) .

Then

σ2

(
D2u

)
− 1 =

1

2

[
(4u)2 −

∣∣D2u
∣∣2]− 1

=
1

2

[
(µ1 + µ2 + µ3 +4w)2 −

3∑
i=1

(µi + wii)
2 − 2w2

12 − 2w2
23 − 2w2

13

]
− 1

= µ1 (4w − w11) + µ2 (4w − w22) + µ3 (4w − w33) +
1

2

[
(4w)2 −

∣∣D2w
∣∣2]

+µ1µ2 + µ2µ3 + µ3µ1 − 1.
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Set µ1 = µ2 = 1 and µ3 = 0, we get

σ2

(
D2u

)
− 1 = w11 + w22 + 2w33 +

1

2

[
(4w)2 −

∣∣D2w
∣∣2]

= 4̃w +
1

2

[
(4w)2 −

∣∣D2w
∣∣2] ,

where 4̃ = ∂11 + ∂22 + 2∂33. To make the right hand side of the above
equation vanish at high orders, we choose w = h+Q+H, where

h = ReZmx3, an ad hoc “harmonic” function;

Q =
m2

4
ρ2m−2x2

3, to match σ2

(
D2h

)
;

H = ν

−x2m
3 +

m∑
j=1

ajx
2m−2j
3 ρ2j

 , to make eigenvalue λ3 negative.

Then

σ2

(
D2u

)
− 1 = 4̃h︸︷︷︸

0

+ 4̃Q+ 4̃H +
1

2

[
(4h)2 −

∣∣D2h
∣∣2]+

[
r3m−3

]
.

A simple calculation leads to

D2h =

 Re
[
m (m− 1)Zm−2

]
x3 − Im

[
m (m− 1)Zm−2

]
x3 RemZm−1

−Re
[
m (m− 1)Zm−2

]
x3 − ImmZm−1

0

 .
It follows that

σ2

(
D2h

)
= −

[
m (m− 1) ρm−2

]2
x2

3 −m2ρ2m−2.

Thus

4̃Q+ σ2

(
D2h

)
=
[
m (m− 1) ρm−2

]2
x2

3 +m2ρ2m−2 + σ2

(
D2h

)
= 0.

Finally we fix the “harmonic” H satisfying 4̃H = 0 with

a0 = −1

aj = −2 · (2m− 2j + 2) (2m− 2j + 1)

(2j)2 aj−1

= (−1)j+1 2j2m (2m− 1) · · · (2m− 2j + 1)

2242 · · · (2j)2 for j ≥ 1,

and ν is still pending. Therefore, P = 1
2

(
x2

1 + x2
2

)
+ h+Q+H, satisfies

σ2

(
D2P

)
− 1 =

[
r3m−3

]
.

Now the analytic solution u to (2.1) with initial data P follows from
Cauchy-Kowalevskaya. As in [NV], considering the linear equation for dif-
ference u−P, the Cauchy-Kowalevskaya procedure implies that the solution
u coincides with P up to order 3m − 2 (≥ 2m for m ≥ 2). Thus Property
2.1 is verified.
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We move to Property 2.2. We have

(2.2) D2u =

 1 +
[
rm−1

] [
rm−1

]
RemZm−1 +

[
r2m−2

]
1 +

[
rm−1

]
− ImmZm−1 +

[
r2m−2

]
m2

2 ρ
2m−2 +H33 +

[
r2m−1

]
 .

Because the eigenvalues are Lipschitz functions of the matrix entries, we get

λ1 = 1 +
[
rm−1

]
λ2 = 1 +

[
rm−1

]
.

By the quadratic Taylor expansion of the isolated eigenvalue λ3 in terms of
the matrix entries near D2u (0) , we obtain

λ3 = u33 − u2
13 − u2

23 +
[
r3m−3

]
=

m2

2 ρ
2m−2 + ν

∑m
j=0 (2m− 2j) (2m− 2j − 1) ajx

2m−2j
3 ρ2j

−m2ρ2m−2 +
[
r2m−1

]
for m ≥ 2

=
ν
[
−2m (2m− 1)x2m−2

3 + ã2x
2m−4
3 ρ2 + · · ·+ ãm−1ρ

2m−2
]
− m2

2 ρ
2m−2

+
[
r2m−1

]
= H33 −

m2

2
ρ2m−2 +

[
r2m−1

]
.

The “harmonic” function H33 cannot have a definite sign near the origin,

but with the help of −m2

2 ρ
2m−2 and small ν, we make λ3 negative. Let η be

a small positive constant to be chosen shortly.
Case 1: η |x3| ≥ ρ. We have[
−2m (2m− 1)x2m−2

3 + ã2x
2m−4
3 ρ2 + · · ·

]
= −

[
2m (2m− 1) +O (1) η2

]
x2m−2

3 .

Note r/
√

1 + η2 ≤ |x3| ≤ r, then

−
{
ν
[
2m (2m− 1) +O (1) η2

]
+m2

2 + o (1)

}
r2m−2 ≤ λ3 ≤ −ν

 2m(2m−1)+O(1)η2(√
1+η2

)2m−2

+o (1)

 r2m−2.

Case 2: η |x3| < ρ. Note rη/
√

1 + η2 ≤ ρ ≤ r, we have[
−2m (2m− 1)x2m−2

3 + ã2x
2m−4
3 ρ2 + · · ·

]
=

O (1)

η2m−2
ρ2m−2,

then

λ3 = −
[
m2

2
− νO (1)

η2m−2

]
ρ2m−2 +

[
r2m−1

]
and

−

[
m2

2 −
νO(1)
η2m−2

+o (1)

]
r2m−2 ≤ λ3 ≤

 −
[
m2

2 −
νO(1)
η2m−2

]
η2m−2(√

1+η2
)2m−2

+o (1)

 r2m−2.
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We first choose η = η (m) > 0 small, next ν = ν (η,m) > 0 smaller, then
there exist δ1 = δ (η,m) > 0 and δ2 = δ2 (m) > 0 such that

−δ2r
2m−2 ≤ λ3 ≤ −δ1r

2m−2

for r ≤ rm. Here rm is within the valid radius for the Cauchy-Kowalevskaya
solution u.

Property 2.3 follows from u = P +
[
r3m−2

]
.

Finally we prove Property 2.4. The upper bound is straightforward. For
the lower bound, from Property 2.3, we have

|Du(x)|2 = (x1 + [rm])2 + (x2 + [rm])2)2

+ (ReZm +
m2

2
ρ2m−2x3 − 2mνx2m−1

3 + νρ2[r2m−2] + [r2m])2.

Case 1: x2
3 ≥ ρ. From r2 = ρ2 + x2

3 ≤
(
x2

3 + 1
)
x2

3, we know

|x3| ≥ r.

Note that the other terms than −2mνx2m−1
3 in u3 (x) have the following

asymptotic behavior near the origin

|ReZm| ≤ ρm = x2m
3 ,∣∣∣∣m2

2
ρ2m−2x3

∣∣∣∣ ≤ m2

2
|x3|4m−3 ,

νρ2[r2m−2] = O(x2m+2
3 ),

[r2m] = O(x2m
3 ).

It follows that

|Du (x)|2 ≥ |u3 (x)|2 =
[
−2mνx2m−1

3 +O(x2m
3 )
]2

≥ δ3 (m)x
2(2m−1)
3 ≥ δ3 (m) r2(2m−1)

for |x| ≤ rm with positive rm and δ3 (m) to be fixed shortly.
Case 2: x2

3 < ρ. From r2 = ρ2 + x2
3 ≤ (ρ+ 1) ρ, we know

ρ > r2.

Then

|Du (x)|2 ≥ u2
1 (x) + u2

2 (x) = ρ2 + 2x1[rm] + 2x2[rm] + 2[rm]2

= ρ2 +O(ρ
m+1

2 )

≥ 1

2
ρ2 ≥ 1

2
r4 ≥ r2(2m−1)

for ρ ≤ r ≤ rm with the positive rm to be fixed next.
Now we choose positive δ3 (m) small and the small positive rm within the

valid radius for Cauchy-Kowalevskaya solution u and Property 2.2, Property
2.4 is then completely justified.
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Since u (rmx) /r2
m is still a solution to σ2

(
D2u

)
= 1 in B1 ⊂ R3. We may

assume the above constructed solution is already defined in B1 ⊂ R3. Note
that D

[
u (rmx) /r2

m

]
= Du (rmx) /rm and D2

[
u (rmx) /r2

m

]
= D2u (rmx) ,

we see that Property 2.2 and Property 2.4 are still valid in B1 with δ1, δ2, δ3

replaced by r2m−2
m δ1, r

2m−2
m δ2, r

2m−2
m δ2 respectively, and δ4 unchanged.

3. Rotate to subcritical phases |Θ| < π
2 : proof of Theorem 1.1

In this section, we carry out the construction of the singular solutions in
Theorem 1.1 by “horizontally” and π/2 rotating the Cauchy-Kowalevskaya
solutions from Section 2. The latter rotation, Proposition 3.1 is pivotal.

Step 1. Let α ∈ [0, π/4). We will take α = Θ/2 for Θ ∈ [0, π/2) in Step 3 of

this section. We make a U (3) rotation in C3 : z̃′ = eα
√
−1z′ and z̃3 = z3 with

z̃ = (z̃′, z̃3) = (x̃′, x̃3)+
√
−1 (ỹ′, ỹ3) and z = (z′, z3) = (x′, x3)+

√
−1 (y′, y3) .

Because U (3) rotations preserve the length and complex structure, M =
(x,Dv (x)) for x ∈ B1 is still a special Lagrangian submanifold in the new
coordinate system with parameterization

(3.1)

{
x̃ = (x1 cosα+ u1 (x) sinα, x2 cosα+ u2 (x) sinα, x3)

ỹ = (−x1 sinα+ u1 (x) cosα, −x2 sinα+ u2 (x) cosα, u3 (x))
.

We show that M is also a “gradient” graph over x̃ space. From Property
2.2, we know that u (x′, x3) is a convex function in terms of x′ for |x| ≤ 1,
or if necessary |x| ≤ rm with rm depending only on m. From (2.2) we also
assume |D′u3 (x)| = |(u13, u23) (x)| ≤ 1/2 for |x| ≤ rm. Then we have

δ5 (m) |x− x∗|2 ≥ |x̃ (x)− x̃ (x∗)|2(3.2)

=

∣∣∣∣(x′ − x∗′) cosα+

[
D′u (x′, x3)−D′u (x′, x∗3)

+D′u (x′, x∗3)−D′u (x∗′, x∗3)

]
sinα

∣∣∣∣2 + |x3 − x∗3|
2

≥

[
1
2

∣∣∣(x′ − x∗′) cosα+
(
D′u (x′, x∗3)−D′u (x∗′, x∗3)

)
sinα

∣∣∣2
− |(D′u (x′, x3)−D′u (x′, x∗3)) sinα|2 + |x3 − x∗3|

2

]

≥


cos2 α

2 |x′ − x∗′|2 + cosα sinα
〈
x′ − x∗′, D′u

(
x′, x∗3

)
−D′u

(
x∗′, x∗3

)〉︸ ︷︷ ︸
≥0

− sin2 α 2
∥∥D′u3

∥∥
L∞(Brm )︸ ︷︷ ︸
≤1

|x3 − x∗3|
2 + |x3 − x∗3|

2


≥ cos2 α

2

∣∣x′ − x∗′∣∣2 +
(
1− sin2 α

)
|x3 − x∗3|

2

≥ 1

4
|x− x∗|2 .(3.3)

It follows that M is a special Lagrangian graph (x̃, Dũ (x̃)) over a domain
containing a ball of radius 1/

√
2 in x̃ space. The Hessian of the potential
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function ũ satisfies

D2ũ =
∂ỹ

∂x̃
=
∂ỹ

∂x

(
∂x̃

∂x

)−1

=

 − sinα+ u11 cosα u12 cosα u13 cosα
u12 cosα − sinα+ u22 cosα u23 cosα
u13 u23 u33


 cosα+ u11 sinα u12 sinα u13 sinα

u12 sinα cosα+ u22 sinα u23 sinα
0 0 1

−1

=

 tan
(
π
4 − α

)
tan

(
π
4 − α

)
0

+
[
rm−1

]
(3.4)

and

(3.5) detD2ũ = tan
(π

4
− α

)[
−m

2

2
ρ2m−2 + tan

(π
4
− α

)
H33

]
−
[
r2m−1

]
,

where the above abused notation
[
rm−1

]
also represents a matrix whose

entries are all analytic functions starting from order m− 1, and (3.4) (3.5)
follow from a simple calculation and the asymptotic behavior of D2u, (2.2).
We verify the following properties for D2ũ. There exists a positive number
r̃m,α depending only on m and α ∈ [0, π/4) such that for |x̃| ≤ r̃m,α we have:
Property 3.1. The determinant detD2ũ (x̃) is negative for small x̃ 6= 0,
indeed

detD2ũ (x̃) ≈ − tan
(π

4
− α

)
|x̃|2m−2 ;

Property 3.2. The upper left 2×2 principle minor of the Hessian D2ũ,

2 tan
(π

4
− α

)
I ≥

(
D2ũ

)′ ≥ tan
(
π
4 − α

)
2

I;

Property 3.3. The three eigenvalues λ̃i of the Hessian D2ũ satisfy
θ̃1 = arctan λ̃1 =

(
π
4 − α

) [
1 +O

(
|x̃|m−1

)]
θ̃2 = arctan λ̃2 =

(
π
4 − α

) [
1 +O

(
|x̃|m−1

)]
θ̃3 = arctan λ̃3 ≈ − 1

tan(π4−α)
|x̃|2m−2

[
1 +O

(
|x̃|m−1

)] ;

where “ ≈′′ means two quantities are comparable up to a multiple of con-
stant depending only on m and α. Relying on (3.5), repeating the argu-
ments for the estimate of λ3 in Section 2, using (3.3) and (3.1), we obtain
Property 3.1. Property 3.2 follows from (3.4). From (3.3) (3.4) and the
Lipschitz continuity of eigenvalues in terms of matrix entries, we derive the
estimates for the first two eigenvalues in Property 3.3. In turn, noticing

λ̃3 = detD2ũ/
(
λ̃1λ̃2

)
, relying on both (3.2) and (3.3) we get two sided

estimates of the last eigenvalue.
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Step 2. We proceed with the following proposition.

Proposition 3.1. Let L = (x,Df) be a Lagrangian surface in C3 = R3×R3

with the smooth potential f over Bρ ⊂ R3, satisfying:

Df (0) = 0,

detD2f (x) < 0 for x 6= 0, κ−1I ≥
[
f11 (x) f12 (x)
f21 (x) f22 (x)

]
≥ κI

|D′f3 (x)| = |(f13, f23) (x)| ≤ 1
2 , say

 for x ∈ Bρ, κ > 0.(3.6)

Then L can be re-represented as a graph (x̃, ỹ) =
(
x̃, Df̃ (x̃)

)
over the

open set Ω = Df
(
B 1

2
κ2ρ

)
with x̃ +

√
−1ỹ = e−

π
2

√
−1
(
x+
√
−1y

)
and

f̃ ∈ C1 (Ω) ∩ C∞ (Ω\ {0}) .
Proof of Proposition 3.1. Note that the U (3) rotation by π/2 is (x̃, ỹ) =
(y,−x) . This proposition really says that the map Df has a (unique) con-

tinuous inverse Φ = −Df̃.
Step 2.1. We first prove Df is one-to-one on Bκ2ρ. Consider a coordinate

change given by t = Ψ (x) = (f1 (x) , f2 (x) , x3). Then the Jacobian of Ψ is

(3.7) detDxΨ (x) = det

 f11 f12 f13

f21 f22 f23

0 0 1

 (x) = det

[
f11 f12

f21 f22

]
(x) > 0.

Hence Ψ is a local diffeomorphism on Bρ. Note that Ψ is actually a distance

expansion map. We have for all x, x# in Bρ∣∣∣Ψ (x)−Ψ
(
x#
)∣∣∣2 =

∣∣∣∣∣ D′f (x′, x3)−D′f
(
x#′, x3

)
+D′f

(
x#′, x3

)
−D′f

(
x#′, x#

3

) ∣∣∣∣∣
2

+
∣∣∣x3 − x#

3

∣∣∣2

≥

 1
2

∣∣D′f (x′, x3)−D′f
(
x#′, x3

)∣∣2 − ∣∣∣D′f (x#′, x3

)
−D′f

(
x#′, x#

3

)∣∣∣2
+
∣∣∣x3 − x#

3

∣∣∣2


=

 1
2

∣∣D′f (x′, x3)−D′f
(
x#′, x3

)
− κ

(
x′ − x#′)+ κ

(
x′ − x#′)∣∣2

−
∣∣∣D′f (x#′, x3

)
−D′f

(
x#′, x#

3

)∣∣∣2 +
∣∣∣x3 − x#

3

∣∣∣2


≥


〈
D′f

(
x′, x3

)
−D′f

(
x#′, x3

)
− κ

(
x′ − x#′

)
, κ
(
x′ − x#′

)〉
︸ ︷︷ ︸

≥0

+1
2

∣∣κ (x′ − x#′)∣∣2 − 2 ‖D′f‖2L∞(Bρ)

∣∣∣x3 − x#
3

∣∣∣2 +
∣∣∣x3 − x#

3

∣∣∣2


≥ κ2

2

∣∣∣x′ − x#′
∣∣∣2 +

(
1− 2

∥∥D′f∥∥2

L∞(Bρ)

) ∣∣∣x3 − x#
3

∣∣∣2
≥ κ2

2

∣∣∣x− x#
∣∣∣2 ,(3.8)
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where we used (3.6). Thus Ψ is a “global” diffeomorphism on Bρ.

We claim that the Ψ-image of Bρ, Ψ(Bρ) ⊃ Bt
κ√
2
ρ. Otherwise, let t# be

a boundary point of Ψ(Bρ) in B̊t
κ√
2
ρ. We know there exist a sequence of

points xi ∈ Bρ such that Ψ(xi) goes to t# and xi goes to x# ∈ B̄ρ as i

goes to infinity. If x# ∈ B̊ρ, then Ψ
(
x#
)

= t# by the continuity of Ψ. But

this is impossible because Ψ
(
x#
)

is an interior point of Ψ(Bρ) under the

diffeomorphism of Ψ. If x# ∈ ∂Bρ, from (3.8), we have

|t#| = lim
i→∞
|Ψ(xi)− 0| ≥ lim

i→∞

κ√
2
|xi − 0| = κ√

2
|x#| = κ√

2
ρ.

This contradicts t# ∈ B̊t
κ√
2
ρ.

From (3.6) (only the upper bound), then

|Ψ(x)−Ψ(x#)| ≤ ||DD′f ||L∞(Bρ) |x− x#| ≤ κ−1|x− x#|,

if follows that Ψ−1 is also a distance expansion map with a factor κ. Apply
the arguments above we get Ψ−1(Bt

1
2
κρ

) ⊃ B 1
2
κ2ρ or Bt

1
2
κρ
⊃ Ψ(B 1

2
κ2ρ).

Now for the injectivity of Df on B 1
2
κ2ρ, it suffices to show that

y (t) = Df ◦Ψ−1 (t) = (t1, t2, f3(x (t))

is one-to-one in Bt
1
2
κρ
. Suppose that y (t) = y

(
t#
)
, then

t#1 = t1, t
#
2 = t2, y3(t#) = y3(t).

Note that

∂y3 (t1, t2, ξ)

∂t3
= det

 1 0 0
0 1 0

∗ ∗ ∂y3(t1,t2,ξ)
∂t3


= detDt

(
Df ◦Ψ−1

)
= det

(
D2f

)∣∣
Ψ−1(t1,t2,ξ)

· detDtΨ
−1
∣∣
(t1,t2,ξ)

< 0

for (t1, t2, ξ) 6= 0, where we used (3.7) and detD2f (x) < 0 for x 6= 0.
It follows that the function y3(t1, t2, ξ) is strictly decreasing in ξ. Now

y3(t1, t2, t
#
3 ) = y3(t1, t2, t3) implies t#3 = t3. This shows that y = Df ◦ Ψ−1

is one-to-one.
So far we have obtained the inverse function Φ = (Df)−1 on Ω = Df

(
B 1

2
κ2ρ

)
.

Step 2.2. We prove Df is an open map from Bρ to R3. Since the Jacobian
detD2f (x) 6= 0 for x 6= 0, Df is already a local diffeomorphism for x 6= 0.
It suffices to show that the image of an open neighborhood of 0 in Bρ, under
Df, contains an open neighborhood of 0 in R3. Since Ψ is a diffeomorphism,
we only need to show this property for Df ◦ Ψ−1. Indeed we only need to
consider the image of the ball Bt

2η of radius 2η centered at t = 0 for a

small η > 0. According to Step 2.1, y (t1, t2, ·) is strictly decreasing in the
third variable. So 2h− = y3(0, 0, η) < 0 and 2h+ = y3(0, 0,−η) > 0. By
continuity of y = Df ◦Ψ−1, there exists η′ ∈ (0, η) such that y3(t1, t2, η) <
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h− < 0 and y3(t1, t2,−η) > h+ > 0 for |(t1, t2)| ≤ η′. Then by intermediate
value theorem (for function y3 (t1, t2, ·)), the open set

{|(y1, y2)| < η′} × {h− < y3 < h+} ⊂ Df ◦Ψ−1({|(t1, t2)| ≤ η′} × {|t3| ≤ η})
⊂ Df ◦Ψ−1(Bt

2η).

Thus Df is an open map.
Step 2.3. Now Ω = Df(Bκ2ρ) is an open neighborhood of y = 0, and Φ is

continuous on Ω by the openness of Df. Lastly we find a potential for the
Lagrangian submanifold L now represented as (x̃,−Φ (x̃)) . Let

f̃(x̃) =

∫ x̃

0
−Φ1(s)ds1 − Φ2(s)ds2 − Φ3(s)ds3.

Because Dx̃ (−Φ (x̃)) = −
(
D2f

)−1
is symmetric when x̃ 6= 0 and Φ is

bounded, f̃ (x̃) is well-defined on Ω. Further we know f̃ ∈ C1 (Ω)∩C∞ (Ω\ {0}) .
The proof for Proposition 3.1 is complete. �

Remark. For the purpose of Theorem 1.1, we can replace (3.6) by a

weaker condition (3.7) det
[
D2f

]′
> 0. Consequently we have no estimate

on the size of the existing neighborhood supporting the solution ˜̃u in this
section, then um for each single m and Θ. The stronger assumption (3.6) is
designed for Theorem 1.2 where we need a uniform control with respect to
ε on the valid radius for the solutions ˜̃uε, then uε. Lastly there is another
argument for the openness of the particular map Dũ = Df, relying on the
uniqueness of the pre-image of y = 0 (which can be also derived from the
distance expansion property at the origin (4.3)), instead of using the strict
monotonicity property in Step 2.2.

Step 3. Equipped with Property 3.1, 3.2, and (3.4), we apply Proposition
3.1 to our function ũ (x̃) with x̃ replaced by ˜̃x, x replaced by x̃, ρ = r̃m,α,

and κ = tan
(
π
4 − α

)
/2. Then we get a new C1 function ˜̃u

(
˜̃x
)
, defined on

an open neighborhood of ˜̃x = 0. By Property 3.3, the three eigen-angles
˜̃
θi = arctan

˜̃
λi of D2 ˜̃u

(
˜̃x
)

away from the origin satisfy

(3.9)



˜̃
θ1 = θ̃1 − π

2 = −π
4 − α+ o(1)

˜̃
θ2 = θ̃2 − π

2 = −π
4 − α+ o(1)

˜̃
θ3 = θ̃3 − π

2 + π

= π
2 −

δm,α(x)

tan(π4−α)

∣∣D ˜̃u
(
˜̃x
)∣∣2m−2

[
1 +O

(∣∣D ˜̃u
(
˜̃x
)∣∣m−1

)] ,

where the positive number δm,α (x) is bounded from both below and above

uniformly with respect to ˜̃x, and

3∑
i=1

˜̃
θi = −2α.
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We verify ˜̃u is still a viscosity solution to (1.1) with Θ = −2α across the
origin. For any quadratic Q touching ˜̃u at the origin from below, we have
under the “diagonalized” coordinate system for D2 ˜̃u (0)

D2Q ≤

 tan
(
−π

4 − α
)

tan
(
−π

4 − α
)
∞

 .

It follows that the eigenvalues λ∗i of D2Q must satisfy

arctanλ∗1 ≤ −
π

4
− α, arctanλ∗2 ≤ −

π

4
− α, and arctanλ∗3 <

π

2
.

Then the quadratic satisfies

3∑
i=1

arctanλ∗i < −2α.

Observe that we can never arrange any quadratic touching ˜̃u from above at
the origin. Then there is nothing to check. When those testing quadratics
touch the smooth ˜̃u away from the origin, the verification according to the
definition of viscosity solutions is straightforward. Thus ˜̃u is a viscosity
solution to (1.1) with Θ = −2α in a neighborhood of the origin.

Step 4. Lastly we verify that the solution ˜̃u is in fact C1,1/(2m−1) but not
C1,δ for any δ > 1/ (2m− 1) in a neighborhood of the origin. The latter is
easy. From Property 2.3 and (3.3), we see that

(0, 0, x̃3, Dũ (0, 0, x̃3)) =
(
0, 0, x̃3,

[
x̃2m

3

]
,
[
x̃2m

3

]
,−2mεx̃2m−1

3 +
[
x̃2m

3

])
.

It follows that

|x̃3 − 0|
|Dũ (0, 0, x̃3)−Dũ (0)|δ

=
|x̃3|

(2mε+ [x̃3])δ |x̃3|(2m−1)δ
→∞

as x̃3 → 0 for any δ > 1
2m−1 . This shows that ˜̃u is not C1,δ for any δ >

1/ (2m− 1) .



SINGULAR SOLUTIONS 15

Next we prove that ˜̃u is C1,1/(2m−1) by the argument in [NV]. Observe
that for i = 1, 2, 3[∣∣˜̃ui (˜̃x)− ˜̃ui

(
˜̃x∗
)∣∣∣∣˜̃x− ˜̃x∗

∣∣1/(2m−1)

]2m−1

=

[ ∣∣˜̃ui (˜̃x)− ˜̃ui
(
˜̃x∗
)∣∣∣∣˜̃u2m−1

i

(
˜̃x
)
− ˜̃u2m−1

i

(
˜̃x∗
)∣∣1/(2m−1)

]2m−1 ∣∣˜̃u2m−1
i

(
˜̃x
)
− ˜̃u2m−1

i

(
˜̃x∗
)∣∣∣∣˜̃x− ˜̃x∗

∣∣
≤ C (m) (2m− 1) sup

˜̃x

∣∣˜̃ui (˜̃x)∣∣2m−2 ∣∣D ˜̃ui
(
˜̃x
)∣∣

≤ C (m) sup
˜̃x

∣∣D ˜̃u
(
˜̃x
)∣∣2m−2 ∣∣D2 ˜̃u

(
˜̃x
)∣∣

≤ C (m) sup
˜̃x

∣∣D ˜̃u
(
˜̃x
)∣∣2m−2 1∣∣D ˜̃u

(
˜̃x
)∣∣2m−2

≤ C (m) ,

where we used the fact that the scalar function t1/(2m−1) is C1/(2m−1)
(
R1
)

for the first inequality, and (3.9) for the third inequality.
Finally by scaling um (x) = ˜̃u (τx) /τ2 with valid radius τ implicitly de-

pending on m and the r̃m,α in Step 1 (We need to make this dependence
explicit and then to have a uniform control with respect to ε on the valid
radius for the solutions uε in Section 4. Our guaranteed valid radius goes to
zero as m goes to infinity.), the desired solutions in Theorem 1.1 with each
fixed Θ ∈ (−π

2 , 0] are achieved. By symmetry, −um are the sought solutions
with phase Θ ∈ [0, π2 ).

4. Rotate to smooth solutions: proof of Theorem 1.2

In this section, we create the desired family of solutions by another cor-
responding families of U (3) rotations in C3 on top those two in Section 3.
For any fixed Θ ∈ [0, π2 ), let 4γ = π

2 − Θ > 0. We start the construction
by taking small positive numbers ε ∈ (0, γ) and solution u with fixed m in
Section 1.

Step 1. We take the U (3) rotation in Step 1 of Section 3 with α = Θ
2 −

3ε
2 .

The valid radius of the rotation and the estimates of the Hessian D2ũ are
still valid. To prepare the final rotations in the last Step of this section, we
require the following estimates of D2ũ with eigenvalues λ̃i by shrinking the
radius for x̃ or |x| ≤ rΘ :

(4.1)


θ̃ε1 = arctan λ̃ε1 = π

4 −
Θ
2 + 3ε

2 + o (1) ≥ γ
θ̃ε2 = arctan λ̃ε2 = π

4 −
Θ
2 + 3ε

2 + o (1) ≥ γ
θ̃ε3 = arctan λ̃ε3 = − δm,α(x̃)

tan(π4−
Θ
2

+ 3ε
2 )
|x̃|2m−2

[
1 +O

(
|x̃|m−1

)] ,
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where again the positive δm,α (x̃) is bounded from both below and above
uniformly with respect to x̃ and ε, further the above estimates and rΘ are
both uniform with respect to ε.

Step 2. Exactly as in Step 3 of Section 3, we apply Proposition 3.1 with
ρ = rΘ and κ = tan

(
π
4 − α

)
/2 to (x̃, Dũ) to get the potential ˜̃uε with(

˜̃x,D ˜̃uε
)

for ˜̃x ∈ Dũ
(
B 1

2
κ2rΘ

)
. It follows from (4.1) and (3.9) that

(4.2)


˜̃
θ1 = −π

4 −
Θ
2 + 3ε

2 + o (1) ≥ γ − π
2

˜̃
θ2 = −π

4 −
Θ
2 + 3ε

2 + o (1) ≥ γ − π
2

˜̃
θ3 = π

2 − |o (1)|

for
∣∣˜̃x∣∣ = |Dũ (x̃)| ≤ ˜̃rΘ. We need to show this ˜̃rΘ and the above o (1)

terms are still uniform with respect to ε, and also the |o (1)| term for
˜̃
θ3

never vanishes when the input ˜̃x does not vanish (actually this |o (1)| can
be made explicit enough by (4.3)). All these can be seen from the following
inequalities

(4.3) δ6 (m) |x̃| ≥
∣∣˜̃x (x̃)

∣∣ = |Dũ (x̃)| ≥ δ7 (m) |x̃|2m−1 .

Indeed we see the first inequality by recalling (3.1)

Dũ (x̃ (x)) = ỹ (x) =
(
cosα D′u (x)− sinα x′, u3 (x)

)
,(

D′u, u3

) (
x′, x3

)
= Du (x) ∈ C1,

and (3.2). We have to work a little harder for the second inequality. Because
of (2.2) and α ∈

(
−3

2γ,
π
4 − 4γ

)
, the following convexity for function

u′x3

(
x′
)

= cosα u
(
x′, x3

)
− sinα

2

∣∣x′∣∣2
is available

cosα
[
D2u (x)

]′ − sinα

[
1

1

]
≥ cosα− sinα

2
I > 0

for |(x′, x3)| ≤ rΘ, where we shrink rΘ if necessary. Then we get

|ỹ (x)|2 =
∣∣(Du′x3

(
x′
)
, u3 (x)

)∣∣2 =
∣∣(Du′x3

(
x′
)
− bx′ + bx′, u3 (x)

)∣∣2
≥
∣∣bx′∣∣2 + 2

〈
Du′x3

(
x′
)
− bx′, bx′

〉︸ ︷︷ ︸
≥0

+ |u3 (x)|2

≥ b2
∣∣x′∣∣2 + |u3 (x)|2 ,
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where we set b = (cosα− sinα) /2 for simplicity of notation. In order to

bound |x′|2 from below, we use Property 2.3 to obtain∣∣D′u (x′, x3

)∣∣2 ≤ 2
∣∣D′u (x′, x3

)
−D′u (0, x3)

∣∣2 + 2
∣∣D′u (0, x3)

∣∣2
≤ Cm

∣∣x′∣∣2 +
∣∣[r2m

]∣∣2 , or∣∣x′∣∣2 ≥ 1

Cm

∣∣D′u (x)
∣∣2 − ∣∣[r2m

]∣∣2 .
Hence

|ỹ (x)|2 ≥ b2

Cm
|Du (x)|2 −

∣∣[r2m
]∣∣2 ,

where we assumed the positive b2/Cm ≤ 1 without loss of generality. By
virtue of Property 2.4, we get

|ỹ (x)|2 ≥ b2

Cm

∣∣r2m−1
∣∣2 − ∣∣[r2m

]∣∣2
≥ (δ7 (m))2

δ5 (m)

(
|x|2m−1

)2

for |x| ≤ rΘ and small positive δ7 (m,α) , where again we shrink rΘ if nec-
essary. By (3.2) we arrive at the second inequality of (4.3).

Step 3. We make a final family of U (3) rotations in C3 : ˜̃̃z = eε
√
−1 ˜̃z.

Again because U (3) rotation preserves the length and complex structure,
M =

(
˜̃x,D ˜̃uε

)
for

∣∣˜̃r∣∣ ≤ ˜̃rΘ still a smooth special Lagrangian submanifold
with parameterization{

˜̃̃x = ˜̃x cos ε+D ˜̃uε
(
˜̃x
)

sin ε
˜̃̃y = −˜̃x sin ε+D ˜̃uε

(
˜̃x
)

cos ε
.

We show that M is still a “gradient” graph over ˜̃̃x space. From (4.2) we

know that the function ˜̃uε
(
˜̃x
)

+ 1
2 tan

(
π
2 − γ

) ∣∣˜̃x∣∣2 is convex. We then have∣∣∣ ˜̃̃x (˜̃x)− ˜̃̃x
(
˜̃x∗
)∣∣∣2 =

∣∣(˜̃x− ˜̃x∗
)

cos ε+
(
D ˜̃uε

(
˜̃x
)
−D ˜̃uε

(
˜̃x∗
))

sin ε
∣∣2

=

∣∣∣∣ (
˜̃x− ˜̃x∗

) [
cos ε− tan

(
π
2 − γ

)
sin ε

]
+

+
[(
D ˜̃uε

(
˜̃x
)
−D ˜̃uε

(
˜̃x∗
))

+
(
˜̃x− ˜̃x∗

)
tan

(
π
2 − γ

)]
sin ε

∣∣∣∣2

≥


∣∣(˜̃x− ˜̃x∗

) (
cos ε− tan

(
π
2 − γ

)
sin ε

)∣∣2 +

+2

[
cos ε−

tan
(
π
2 − γ

)
sin ε

]
sin ε

〈
˜̃x− ˜̃x∗,

[ (
D ˜̃uε

(
˜̃x
)
−D ˜̃uε

(
˜̃x∗
))

+(
˜̃x− ˜̃x∗

)
tan

(
π
2 − γ

) ]〉
︸ ︷︷ ︸

≥0


=
∣∣˜̃x− ˜̃x∗

∣∣2 cos2 ε

(
1− tan ε

tan γ

)2

≥ 1

4

∣∣˜̃x− ˜̃x∗
∣∣2

provided we take ε ∈ (0, γ) even smaller. It follows that the smooth M is a

special Lagrangian graph
(

˜̃̃x,D ˜̃̃uε
(

˜̃̃x
))

over a domain containing a ball of
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radius 1
2
˜̃rΘ in ˜̃̃x space. The eigenvalues

˜̃̃
λεi of the Hessian D2 ˜̃̃uε satisfy

(4.4)


˜̃̃
θε1 = arctan

˜̃̃
λε1 = −π

4 −
Θ
2 + 3ε

2 − ε+ o (1)
˜̃̃
θε2 = arctan

˜̃̃
λε2 = −π

4 −
Θ
2 + 3ε

2 − ε+ o (1)
˜̃̃
θε3 = arctan

˜̃̃
λε3 = π

2 − ε− |o (1)|

.

It follows that ˜̃̃uε is smooth and satisfies

arctan
˜̃̃
λε1 + arctan

˜̃̃
λε2 + arctan

˜̃̃
λε3 = −Θ in B 1

2
˜̃rΘ
.

Finally set

uε (x) = −
˜̃̃uε
(

1
2
˜̃rΘ x

)(
1
2
˜̃rΘ

)2 .

Observe that the gradients of the potential functions, or the heights of the
special Lagrangian graphs are kept uniformly bounded with respect to ε
under the above three families of U (3) rotations. Combined with (4.4), we
obtain the desired family of smooth solutions to (1.1) with n = 3 and fixed
Θ ∈ [0, π/2). By symmetry, −uε are the other family of solutions to (1.1)
with n = 3 and fixed Θ ∈ (−π/2, 0].

5. Minimal surface system: proof of Theorem 1.3

In this section, we prove Theorem 1.3. Take the singular solutions um

from Theorem 1.1 with Θ = 0 and m = 2, 3, 4, · · · . Let

Um = Dum.

From Property 2.2 and Proposition 3.1, we see that

|DUm (y)| =
∣∣D2um (y)

∣∣ ≈ 1

|Dum (y)|2m−2 .

Here “ ≈ ” means two quantities are equivalent up to a multiple of constant
depending only on the dimension and m. Then we have∫

B1

|DUm (y)|p dy ≈
∫
B1

1

|Dum (y)|(2m−2)p
dy

=

∫
Dum(B1)

1

|x|(2m−2)p

∣∣∣det
[
D2um (y)

]−1
∣∣∣ dx

≈
∫
Dum(B1)

1

|x|(2m−2)p
|x|2m−2 dx1dx2dx3.

It follows that

Um ∈W 1,p (B1) for any p <
2m+ 1

2m− 2
but Um /∈W 1, 2m+1

2m−2 (B1) .
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We next show that Um satisfies (1.2) in the integral sense, namely∫
B1

3∑
i,j=1

√
ggij

〈
∂xiU, ∂xjΦ

〉
dx = 0

for all Φ ∈ C∞0
(
B1,R3

)
. This is because the integrand is 0 everywhere

except at the origin and we have the following bound on the integrand near
the origin. Diagonalizing D2um, we see that∣∣∣∣∣∣

3∑
i,j=1

√
ggij

〈
∂xiU, ∂xjΦ

〉∣∣∣∣∣∣ =

∣∣∣∣∣
3∑
i=1

√(
1 + λ2

1

)
· · ·
(
1 + λ2

3

) λi
1 + λ2

i

∂iΦ
i

∣∣∣∣∣
≤ C (3,m)

∣∣D2um
∣∣ |DΦ| = C (3,m) |DUm| |DΦ| ∈ L1,

where we used again the fact (3.9) that two of the eigenvalues of D2um are
bounded. The first part of the Theorem 1.3 is proved.

The second part of Theorem 1.3 is straightforward if we take U ε = Duε

with smooth solutions uε in Theorem 1.2 for any fixed Θ ∈
(
−π

2 ,
π
2

)
.
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